DOI QR코드

DOI QR Code

Preparation and Evaluation of Microcapsule/Emulsions via the Electroatatic Interations of Polysaccharide and Protein

식물 유래 다당류/단백질 기반 마이크로캡슐/에멀젼 제조 및 평가

  • 최유리 ((주)아모레퍼시픽 기술연구원) ;
  • 임형준 ((주)아모레퍼시픽 기술연구원) ;
  • 이존환 ((주)아모레퍼시픽 기술연구원) ;
  • 오성근 (한양대학교 화학공학과)
  • Received : 2015.11.02
  • Accepted : 2015.11.28
  • Published : 2015.12.30

Abstract

A novel microcapsule/emulsions for cosmetics was studied. Our present studies demonstrate that the biopolymer-stabilized microemulsion composed of polysaccharide and protein can encapsulate and stabilize remarkably coenzyme-Q10 (Q10). Polysaccharide and protein complex were incorporated in the microcapsule in order to reinforce the physical strength of the microspheres. We compared the long-term stability of the activity of Q10 in biopolymer-stabilized microemulsion. There was no noticeable negative effect on the activity of Q10. Optical microscope (OM) and transmission electron microscope (TEM) showed that microcapsules were spherical and had a smooth surface. Consequently, the polysaccharide/protein emulsion produced in this study may be beneficial in improving the emulsion stability and the protection capability of labile substances.

본 연구에서는 다당류와 단백질의 이온 결합으로 구성된 마이크로캡슐 및 에멀젼을 제조하여 다당류, 단백질의 비율에 따른 마이크로캡슐과 에멀젼의 안정도를 평가하였으며, 마이크로캡슐의 내부 오일도 종류별로 실험하였다. 에멀젼 입도를 줄여 안정도를 높여주기 위해 고압유화기를 이용하여 에멀젼을 제조하였으며 내부 담지 물질로 코엔자임 Q10 안정화를 관찰한 결과 대조군 대비 역가 하락이 없었다. 석유 유래 계면활성제가 아닌 천연 유래 원료만으로 안정한 마이크로캡슐 제조에 성공한 것이다. 광학현미경, 투과전자현미경을 이용하여 마이크로캡슐 및 에멀젼의 물리적 안정도를 관찰하고 에멀젼의 구조분석을 하였으며, 입자의 표면전위 측정을 통하여 pH 조절에 의해 제조되는 다당류/단백질 마이크로캡슐의 제조 메커니즘을 설명한다.

Keywords

References

  1. M. Evans, I. Ratcliffe, and P. A. Williams, Emulsion stabilisation using polysaccharide-protein complexes, J. Colloid Interface Sci., 18, 272 (2013). https://doi.org/10.1016/j.cocis.2013.04.004
  2. E. Bouyer, G. Mekhloufi, V. Rosilio, J. L. Grossiord, and F. Agnely, Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field?, Int. J. Pharm., 436, 359 (2012). https://doi.org/10.1016/j.ijpharm.2012.06.052
  3. M. Tippetts, F. K. Shen, and S. Martini, Studies on the constituents of broussonetia species oil globule microstructure of protein/polysaccharide or protein/ protein bilayer emulsions at various pH, Food Hydrocoll., 30, 559 (2013). https://doi.org/10.1016/j.foodhyd.2012.07.012
  4. A. O. Elzoghby, W. S. A. El-Fotoh, and N. A. Elgindy, Casein-based formulations as promising controlled release drug delivery systems, J. Control. Release, 153, 206 (2011). https://doi.org/10.1016/j.jconrel.2011.02.010
  5. A. Matalanis, O. G. Jones, and D. J. McClements, Structured biopolymer-based delivery systems for encapsulation, protection and release of lipophilic compounds, Food Hydrocoll., 25, 1865 (2011). https://doi.org/10.1016/j.foodhyd.2011.04.014
  6. L. J. Luo, F. Liu, and C. H. Tang, The role of glycinin in the formation of gel-like soy protein-stabilized emulsions, Food Hydrocoll., 32, 97 (2013). https://doi.org/10.1016/j.foodhyd.2012.11.031
  7. T. Tran and D. Rousseau, Stabilization of acidic soy protein-based dispersions and emulsions by soy soluble polysaccharides, Food Hydrocoll., 30, 382 (2013). https://doi.org/10.1016/j.foodhyd.2012.06.001
  8. B. Yin, W. Deng, K. Xu, L. Huang, and P. Yao, Stable nano-sized emulsions produced from soy protein and soy polysaccharide complexes, J. Colloid Interface Sci., 380, 51 (2012). https://doi.org/10.1016/j.jcis.2012.04.075
  9. A. Matalanis, U. Lesmes, E. A. Decker, and D. J. McClements, Fabrication and characterization of filled hydrogel particles based on sequential segregative and aggregative biopolymer phase separation, Food Hydrocoll., 24, 689 (2010). https://doi.org/10.1016/j.foodhyd.2010.04.009