An evaluation of EU-DEM in comparison with ASTER GDEM, SRTM and contour-based DEMs over the Eastern Mecsek Mountains

  • Edina Józsa Department of Physical and Environmental Geography, Institute of Geography, University of Pécs, Hungary
  • Szabolcs Ákos Fábián Department of Physical and Environmental Geography, Institute of Geography, University of Pécs, Hungary
  • Mónika Kovács Department of Physical and Environmental Geography, Institute of Geography, University of Pécs, Hungary
Keywords: EU-DEM, ASTER GDEM, SRTM, denoising, geomorphometry, open source GIS

Abstract

The availability of global coverage digital surface models (like ASTER GDEM or SRTM) and the variation of fused models based on these (like EU-DEM) still has a great impact on scientific researches, as they provides a fairly good base dataset with a low production time and expenses. However, validation reports of the initial DSMs convinced different characteristics and errors, thus it is essential to examine these height datasets prior to application. A verifying process for EU-DEM is more important, because it has been published without a formal validation. Although the base of the EU-DEM was a corrected ASTER GDEM dataset, the visual assessment and the error statistics suggest more similarity to the SRTM DSM. This study goes further than just identifying the errors, it attempts to moderate or correct the height differences. For this reason altering the false values of the land cover and filtering the occurring noise was implemented. The geomorphometric analyses carried out as part of the verification methods propose each improved model as potential base for geomorphological studies, if they meet the certain eff ective resolution requirements.

References

Ádám, L., Marosi, S. and Szilárd, J. 1981. A Dunántúli-dombság (The Transdanubian Hills). Magyarország tájföldrajza 4. (Landscape Geography of Hungary 4). Budapest, Akadémiai Kiadó, 704 p.

Aguilar, F.J., Agüera, F. and Aguilar, M.A. 2007. A theoretical approach to modelling the accuracy assessment of digital elevation models. Photogrammetric Engineering & Remote Sensing 73. (12): 1367-1379. https://doi.org/10.14358/PERS.73.12.1367

ASTER GDEM database.

ASTER GDEM Validation Team (Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D., Oimoen, M., Zhang, Z., Danielson, J., Krieger, T., Curtis, B., Hasse, J., Abrams, M., Crippen, R., Carabajal, C. and Meyer, D.) 2011. ASTER Global Digital Elevation Model Version 2 - Summary of Validation Results. 26.

ASTER GDEM Validation Team 2009. ASTER global DEM validation summary report. METI & NASA. 28.

Bashfield, A. and Keim, A. 2011. Continent-wide DEM Creation for the European Union. 34th International Symposium on Remote Sensing of Environment. The GEOSS Era: Towards Operational Environmental Monitoring. Sydney, Australia 10-15 April 2011

Bivand, R. 2013. Package spgrass6: Interface between GRASS 6 and R. R package version 0.8-3.

Bolch, T., Kamp, U. and Olsenholler, J. 2005. Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In New Strategies for European Remote Sensing. Ed. Oliuc, M. Proceedings, 24th Annual Symposium European Association of Remote Sensing Laboratories (EARSeL), 25-27 May 2004, Dubrovnik, Croatia. Rotterdam, Millpress, 119-127.

Borders of Hungarian micro regions.

Borders of Natura 2000 areas.

Bubenzer, O. and Bolten, A. 2008. The use of new elevation data (SRTM/ASTER) for the detection and morphometric quantification of Pleistocene megadunes (draa) in the eastern Sahara and the southern Namib. Geomorphology 102. 221-231. https://doi.org/10.1016/j.geomorph.2008.05.003

Büttner, G., Kosztra, B., Maucha, G. and Pataki, R. 2012. Implementation and achievements of CLC2006. 65.

CLC2006 database.

Drăguţ, L. and Eisank, C. 2011. Object representations at multiple scales from digital elevation models. - Geomorphology 129. 183-189. https://doi.org/10.1016/j.geomorph.2011.03.003

Drăguţ, L. and Eisank, C. 2012. Automated object-based classification of topography from SRTM data. Geomorphology 141-142. 21-33. https://doi.org/10.1016/j.geomorph.2011.12.001

Drăguţ, L., Eisank, C. and Strasser, T. 2011. Local variance for multi-scale analysis in geomorphometry. Geomorphology 130. 162-172. https://doi.org/10.1016/j.geomorph.2011.03.011

Engler P. and Mélykúti, G. 2000. Az 1:10 000 méretarányú topográfi ai térképek domborzatának ellenőrzése új mérési eredmények felhasználásával (Control of the relief of topographic

maps in scale 1:10,000 using results of new measurement). X. Országos Térinformatikai Konferencia, Szolnok

EU-DEM dataset.

EU-DEM Metadata.

Fábián, Sz.Á., Schweitzer, F. and Varga, G. 2005. A Pécsi-víz völgyének kialakulása és kora. In A földrajz dimenziói: Tiszteletkötet a 65 éves Tóth Józsefnek. Eds. Dövényi, Z. and Schweitzer, F. Budapest, MTA Földrajztudományi Kutatóintézet, 461-472.

Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D. and Alsdorf, D. 2007. The Shuttle Radar Topography Mission. Reviews in Geophysics 45. 1-33. https://doi.org/10.1029/2005RG000183

Forkuor, G. and Maathuis, B. 2012. Comparison of SRTM and ASTER Derived Digital Elevation Models over Two Regions in Ghana - Implications for Hydrological and Environmental Modeling. In Studies on Environmental and Applied Geomorphology. Eds. Piacentini, T. and Miccadei, E., Rijeka, InTech, 219-240. https://doi.org/10.5772/28951

Frey, H. and Paul, F. 2012. On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories. International Journal of Applied Earth Observation and Geoinformation. 18. 480-490. https://doi.org/10.1016/j.jag.2011.09.020

Gichamo, T.Z., Popescu, I., Jonoski, A. and Solomatine, D. 2012. River cross-section extraction from the ASTER global DEM for flood modeling. Environmental Modelling & Software 31. 37-46. https://doi.org/10.1016/j.envsoft.2011.12.003

Grohmann, C.H. and Sawakuchi, A.O. 2013. Influence of cell size on volume calculation using digital terrain models: a case of coastal dune fields. Geomorphology 180-181. 130-136. https://doi.org/10.1016/j.geomorph.2012.09.012

Guth, P.L. 2010. Geomorphometric comparison of ASTER GDEM and SRTM. Special joint symposium of ISPRS Technical Commission IV & AutoCarto in conjunction with ASPRS/CaGIS 2010 Fall Specialty Conference, November 15-19, 2010 Orlando, Florida

Haas, J. 2012. Alpine evolution. In Geology of Hungary. Ed. Haas, J., Budapest, Eötvös University Press, 118-136.

Hengl, T. and Reuter, H. 2011. How accurate and usable is GDEM? A statistical assessment of GDEM using LiDAR data. In Geomorphometry - Proceedings. Eds. Hengl, T., Evans, S.I., Wilson, J.P. and Gould, M., CA, USA, 7-11 September 2011, Redlands, 45-48.

Hirano, A., Welch, R. and Lang, H. 2003. Mapping from ASTER stereo image data: DEM validation and accuracy assessment. ISPRS Journal of Photogrammetry and Remote Sensing 57. 356-370. https://doi.org/10.1016/S0924-2716(02)00164-8

Hofton, M., Dubayah, R., Blair, J. B. and Rabine, D. 2006. Validation of SRTM elevations over vegetated and non-vegetated terrain using medium footprint Lidar. Photogrammetric Engineering and Remote Sensing 72. 279-285. https://doi.org/10.14358/PERS.72.3.279

Jacobsen, K. and Passini, R. 2009. Analysis of ASTER GDEM Elevation Models. International Archieves of the Photogrammetry, Remote Sensing and Spatial Sciences 38. Calgary, 2010, 6 S.

Jenness, J. 2006. Topographic Position Index (TPI) v.1.2

Kääb, A. 2005. Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sensing of Environment 94. 463-474. https://doi.org/10.1016/j.rse.2004.11.003

Karkee, M., Steward, B. and Aziz, S. 2008. Improving quality of public domain digital elevation models through data fusion. Biosystems Engineering 101. 293-305. https://doi.org/10.1016/j.biosystemseng.2008.09.010

Kenyeres, A., Sacher, M., Ihde, J., Denker, H. and Marti, U. 2010. EUVN Densification Action. Final report. 19 p.

Kovács, I.P., Bugya, T., Fábián, Sz.Á. and Schweitzer, F. 2013. Review on denudation levels of the Western Mecsek Mountains (SW Transdanubia, Hungary). Studia Geomorphologica Carpatho Balcanica 47.(1): 49-67. https://doi.org/10.2478/sgcb-2013-0004

Kovács, M. 2013. Egy Pécs közeli vízfolyás vizsgálata geomorfológiai módszerekkel (The analysis of a drainage basin near Pécs with geomorphic methods). In A földtudományi kutatások új aspektusai. Eds. Balogh, R. and Schmidt, P., Pécs, Publikon Kiadó, 27-32.

Li, P., Shi, C., Li, Z., Muller, J.-P., Drummond, J., Li, X., Li, T., Li, Y. and Liu, J. 2012. Evaluation of ASTER GEM Ver2 using GPS measurements and SRTM Ver4.1 in China. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences I-4. 181-186 https://doi.org/10.5194/isprsannals-I-4-181-2012

Lovász, Gy. (ed.) 1977. Baranya megye természeti földrajza (Physical geography of Baranya county). Pécs, Baranya Megyei Levéltár, 46-67, 163-188.

Magyar, I., Geary, D.H. and Muller, P. 1999. Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeography Palaeoclimatology Palaeoecology 147. (3-4): 151-167. https://doi.org/10.1016/S0031-0182(98)00155-2

Mukherjee, S., Joshi, P.K., Ghosh, A., Garg, R.D. and Mukhopadhyay, A. 2013. Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). International Journal of Applied Earth Observation and Geoinformation 21. 205-217. https://doi.org/10.1016/j.jag.2012.09.004

Nagymarosy, A. and Hámor, G. 2012. Genesis and Evolution of the Pannonian Basin. In Geology of Hungary. Ed. Haas, J., Budapest, Eötvös University Press, 49-200.

Neteler, M. 2005. SRTM and VMAP0 data in OGR and GRASS. GRASS Newsletter 3. 2-6.

Paul, F. 2008. Calculation of glacier elevation changes with SRTM: is there an elevation dependent bias? Journal of Glaciology 54. (188.) 945-496. https://doi.org/10.3189/002214308787779960

Pécsi, M. 1963. Hegylábi (pediment) felszínek a magyarországi középhegységekben (Pediment surfaces in the Hungarian mountain ranges). Földrajzi Közlemények 87. (3): 195-212.

Pécsi, M. 1985. Domborzatminősítő térképek (Maps for qualifi cation of relief). In Mérnökgeomorfológiai térképezés (Engineering geomorphological mapping). Eds. Ádám, L. and Pécsi, M., Budapest, MTA Földrajztudományi Kutatóintézet, 7-14.

Pécsi, M., Gerei, L., Schweitzer, F., Scheuer, Gy. and Márton, P. 1988. Ciklikus éghajlatváltozás és rosszabbodás visszatükröződése a magyarországi löszök és eltemetett talajok sorozatában. Időjárás (Quarterly Journal of The Hungarian Meteorological Service) 92. (2-3): 75-86.

Pécsi, M., Gerei, L., Schweitzer, F., Scheuer, Gy. and Márton, P. 1987. Loess and paleosol sequences in Hungary refl ecting cyclic climatic deterioration in the Late Cenozoic. In Pleistocene environment in Hungary. Ed. Pécsi, M. Contribution of the INQUA Hungarian National Committ ee to the XIIth INQUA congress: Ott awa-Budapest, Geographical Research Institute, Hungarian Academy of Sciences, 42 p.

Reuter, H.I., Nelson, A., Strobl, P., Mehl, W. and Jarvis, A. 2009. A First Assessment of Aster Gdem Tiles for Absolute Accuracy, Relative Accuracy and Terrain Parameters. IEEE International Geoscience and Remote Sensing Symposium. 240-243. https://doi.org/10.1109/IGARSS.2009.5417688

Robinson, N., Regetz, J. and Guralnick, R.P. 2014. EarthEnv-DEM90: A nearly-global, void-free, multi-scale smoothed, 90 m digital elevation model from fused ASTER and SRTM data. ISPRS Journal of Photogrammetry and Remote Sensing 87. 57-67. https://doi.org/10.1016/j.isprsjprs.2013.11.002

Rodriguez, E., Morris, C.S., Belz, J.E., Chaplin, E.C., Martin, J.M., Daffer, W. and Hensley, S. 2005. An Assessment of the SRTM Topographic Products. Pasadena, CA USA, Jet Propulsion Laboratory, 143 p.

Saadat, H., Bonnell, R., Sharifi, F., Mehuys, G., Namdar, M. and Ale-Ebrahim, S. 2008. Landform classification from a digital elevation model and satellite imagery. Geomorphology 100. 453-464. https://doi.org/10.1016/j.geomorph.2008.01.011

Sadeq, H., Drummond, J. and Li, Z. 2012. Evaluation of ASTER GDEM v.2 using GPS checkpoints, OSGB DEM values and photogrammetrically derived DEMs. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. I-4, XXIInd ISPRS Congress, 25 Aug.-1 Sept. 2012, Melbourne, Australia, 295-300. https://doi.org/10.5194/isprsarchives-XXXIX-B4-295-2012

Schweitzer, F. 1997. On late Miocene - early Pliocene desert climate in the Carpathian Basin. In Geomorphology and changing environments in Central Europe. Eds. Bremer, H. and Lóczy, D. IAG European Regional Geomorphological Conference, Hungary, April 1996. Stuttgart, Gebrüder Borntraeger, 37-43. (Zeitschrift für Geomorphologie Supplementband 110.)

Sebe, K., Csillag, G. and Konrád, Gy. 2008. The role of neotectonics in fluvial landscape development in the Western Mecsek Mountains and related foreland basin (SE Transdanubia, Hungary). Geomorphology 102. 55-67. https://doi.org/10.1016/j.geomorph.2007.05.018

Seres, A. and Dobos, E. 2009. Területhasználati térkép készítése műholdfelvételek alapján az SRTM magasságmodell pontosítására (Preparation of landuse map based on satellite images to clarify SRTM elevation model), HunDEM2009, Konferencia és Kerekasztal Kiadv., Miskolc, University of Miskolc, 15 p.

Siart, C., Bubenzer, O. and Eitel, B. 2009. Combining digital elevation data (SRTM/ASTER), high resolution satellite imagery (Quickbird) and GIS for geomorphological mapping: A multi-component case study on Mediterranean karst in Central Crete. Geomorphology 112. 106-121. https://doi.org/10.1016/j.geomorph.2009.05.010

SRTM 90 m Digital Elevation Database v4.1.

SRTM dataset.

Stevenson, J.A., Sun, X. and Mitchell, N.C. 2010. Despeckling SRTM and other topographic data with a denoising algorithm. Geomorphology 114. 238-252. https://doi.org/10.1016/j.geomorph.2009.07.006

Sun, X, Rosin, P.L., Martin, R.R. and Langbein, F.C. 2007. Fast and Effective Feature-Preserving Mesh Denoising. IEEE Transactions on Visualisation and Computer Graphics 13. 925-938. https://doi.org/10.1109/TVCG.2007.1065

Suwandana, E., Kawamura, K., Sakuno, Y., Kustiyanto, E. and Raharjo, B. 2012. Evaluation of ASTER GDEM2 in Comparison with GDEM1, SRTM DEM and Topographic-Map-Derived DEM Using Inundation Area Analysis and RTK-dGPS Data. Remote Sensing 4. 2419-2431. https://doi.org/10.3390/rs4082419

Szabó, G. 2011. Az ASTER GDEM adatbázis pontosságának vizsgálata egy hazai mintaterületen (Accuracy assesment of the ASTER GDEM dataset over a Hungarian study area). In Az elmélet és a gyakorlat találkozása a térinformatikában II. Ed. Lóki, J., Konferenciakötet. Debrecen, Kapitális Nyomdaipari Kft . 421-427.

Szabó, G. and Szabó, Sz. 2010. A Shutt le Radar Topography Mission (SRTM) során nyert adatbázis pontosságának vizsgálata hazai mintaterületeken (Checking the accuracy of the database collected during the Shutt le Radar Topography Mission [SRTM] in Hungarian sample areas). Geodézia és Kartográfia 62. 31-35.

Szabó, G., Mecser, N. and Karika, A. 2013. Assessing data quality of remotely-sensed DEMs in a Hungarian sample area. Acta Geographica Debrecina Landscape and Environment 7. 42-47.

Takeda, R. and Takeuchi, W. 2010. Towards DTM generation from SRTM3 and ASTER GDEM in hilly terrain using wavelets. 31st Asian conference on remote sensing (ACRS). Nov. 2 2010. Hanoi, Vietnam.

Urai, M., Tachikawa, T. and Fujisada, H. 2012. Data acquisition strategies for Aster Global DEM generation. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. I-4, XXIInd ISPRS Congress, 25 Aug.-1 Sept. 2012, Melbourne, Australia, 199-202. https://doi.org/10.5194/isprsannals-I-4-199-2012

Vágó, J. and Hegedűs, A. 2011. DEM based examination of pediment levels: a case study in Bükkaja, Hungary. Hungarian Geographical Bulletin 60. (1): 25-44.

Van Asselen, S. and Se? monsbergen, A.C. 2006. Expert-driven semi-automated geomorphological mapping for a mountainous area using a laser DTM. Geomorphology 78. 309-320. https://doi.org/10.1016/j.geomorph.2006.01.037

Weiss, A. 2001. Topographic Position and Landforms Analysis. A poster for the Conference.

Winkler, P. 2007. Magyarország digitális ortofotó programjai és az 1:10 000 országos vektoros adatbázis (The digital ortophoto projects of Hungary and the 1:10,000 scale vector dataset). In Földminősítés, földértékelés és földhasználati információ. Eds. Tóth, T., Tóth, G., Németh, T. and Gaál, Z., Keszthely-Budapest, HAS CAR, 161-168.

Winkler, P., Iván, Gy., Kay, S., Spruyt, P. and Zielinski, R. 2006. Űrfelvételekből származtatott digitális felületmodell minőségének ellenőrzése a nagyfelbontású digitális domborzatmodell alapján (Quality checking of DSM derived from satellite data (SPOT and SRTM) on the base of Hungarian high resolution DEM). Geodézia és Kartográfia 61. 22-31.

Zhao, S., Cheng, W., Zhou, C., Chen, X., Zhang, S., Zhou, Z., Liu, H. and Chai, H. 2011. Accuracy assessment of the ASTER GDEM and SRTM3 DEM: an example in the Loess Plateau and North China Plain of China. International Journal of Remote Sensing 32. 8081-8093. https://doi.org/10.1080/01431161.2010.532176

Published
2014-12-03
How to Cite
JózsaE., FábiánS. Ákos, & KovácsM. (2014). An evaluation of EU-DEM in comparison with ASTER GDEM, SRTM and contour-based DEMs over the Eastern Mecsek Mountains. Hungarian Geographical Bulletin, 63(4), 401-423. https://doi.org/10.15201/hungeobull.63.4.3
Section
Articles