Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) January 5, 2018

Thermal cis-to-trans Isomerization of Azobenzene Side Groups in Metal-Organic Frameworks investigated by Localized Surface Plasmon Resonance Spectroscopy

  • Wencai Zhou , Sylvain Grosjean , Stefan Bräse and Lars Heinke EMAIL logo

Abstract

The energy barrier for cis-to-trans isomerization is among the key parameters for photoswitchable molecules such as azobenzene. Recently, we introduced a well-defined model system based on thin films of crystalline, nanoporous metal-organic frameworks, MOFs. The system enables the precise investigation of the thermal cis-to-trans relaxation of virtually isolated azobenzene pendant groups by means of infrared spectroscopy in vacuum. Here, this approach is extended by using localized surface plasmon resonance spectroscopy. This simple and relatively inexpensive setup enables the investigation of the thermal cis-to-trans isomerization in different environments, here in argon gas or in liquid butanediol. The energy barrier for the cis-to-trans-relaxation in argon, 1.17±0.20eV, is identical to the barrier in vacuum, while the energy barrier in liquid butanediol is slightly larger, 1.26±0.15eV.

Acknowledgments

We are grateful for the support by the Volkswagenstiftung and the DFG (SFB 1176).

References

1. B. L. Feringa, W. R. Browne, Molecular Switches, Wiley, New York (2011).10.1002/9783527634408Search in Google Scholar

2. Y. Yokoyama, K. Nakatani, Photon-Working Switches, Springer, New York (2017).10.1007/978-4-431-56544-4Search in Google Scholar

3. M.-M. Russew, S. Hecht, Adv. Mater. 22 (2010) 3348.10.1002/adma.200904102Search in Google Scholar PubMed

4. C. Brieke, F. Rohrbach, A. Gottschalk, G. Mayer, A. Heckel, Angew. Chem. Int. Ed. 51 (2012) 8446.10.1002/anie.201202134Search in Google Scholar PubMed

5. G. S. Hartley, R. J. W. Le Fevre, J. Chem. Soc. (Resumed) 119 (1939) 531.10.1039/JR9390000531Search in Google Scholar

6. H. M. D. Bandara, S. C. Burdette, Chem. Soc. Rev. 41 (2012) 1809.10.1039/C1CS15179GSearch in Google Scholar

7. G. Ferey, Chem. Soc. Rev. 37 (2008) 191.10.1039/B618320BSearch in Google Scholar PubMed

8. S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 43 (2004) 2334.10.1002/anie.200300610Search in Google Scholar PubMed

9. S. Kaskel, The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications, Wiley, New York (2016).10.1002/9783527693078Search in Google Scholar

10. I. Stassen, N. C. Burtch, A. A. Talin, P. Falcaro, M. D. Allendorf, R. Ameloot, Chem. Soc. Rev. 46 (2017) 3853.10.1039/C7CS90048ASearch in Google Scholar

11. M. Müller, U. Jung, V. Gusak, S. Ulrich, M. Holz, R. Herges, C. Langhammer, O. Magnussen, Langmuir 29 (2013) 10693.10.1021/la401825fSearch in Google Scholar PubMed

12. E. M. Larsson, C. Langhammer, I. Zorić, B. Kasemo, Science 326 (2009) 1091.10.1126/science.1176593Search in Google Scholar PubMed

13. O. Shekhah, H. Wang, S. Kowarik, F. Schreiber, M. Paulus, M. Tolan, C. Sternemann, F. Evers, D. Zacher, R. A. Fischer, C. Wöll, J. Am. Chem. Soc. 129 (2007) 15118.10.1021/ja076210uSearch in Google Scholar PubMed

14. O. Shekhah, H. Wang, T. Strunskus, P. Cyganik, D. Zacher, R. Fischer, C. Wöll, Langmuir 23 (2007) 7440.10.1021/la701148zSearch in Google Scholar PubMed

15. L. Heinke, Z. Gu, C. Wöll, Nat. Commun. 5 (2014) 4562.10.1038/ncomms5562Search in Google Scholar PubMed

16. Z. Wang, J. Liu, S. Grosjean, D. Wagner, W. Guo, Z. Gu, L. Heinke, H. Gliemann, S. Bräse, C. Wöll, ChemNanoMat 1 (2015) 338.10.1002/cnma.201500031Search in Google Scholar

17. D. Zacher, K. Yusenko, A. Betard, S. Henke, M. Molon, T. Ladnorg, O. Shekhah, B. Schupbach, T. de los Arcos, M. Krasnopolski, M. Meilikhov, J. Winter, A. Terfort, C. Wöll, R. A. Fischer, Chem. Eur. J. 17 (2011) 1448.10.1002/chem.201002381Search in Google Scholar PubMed

18. K. Müller, J. Wadhwa, J. S. Malhi, L. Schöttner, A. Welle, H. Schwartz, D. Hermann, U. Ruschewitz, L. Heinke, Chem. Commun. 53 (2017) 8070.10.1039/C7CC00961ESearch in Google Scholar PubMed

19. D. Johannsmann, The Quartz Crystal Microbalance in Soft Matter Research, Springer, Berlin (2015), P. 387.10.1007/978-3-319-07836-6Search in Google Scholar

20. L. Heinke, J. Phys. D Appl. Phys. 50 (2017) 193004.10.1088/1361-6463/aa65f8Search in Google Scholar

21. W. Zhou, C. Wöll, L. Heinke, Materials 8 (2015) 3767.10.3390/ma8063767Search in Google Scholar

22. A. Modrow, D. Zargarani, R. Herges, N. Stock, Dalton Trans. 40 (2011) 4217.10.1039/c0dt01629bSearch in Google Scholar PubMed

23. A. B. Kanj, K. Müller, L. Heinke, Macromol. Rapid Commun. 38 (2017) 1700239.10.1002/marc.201700239Search in Google Scholar

24. Z. Wang, A. Knebel, S. Grosjean, D. Wagner, S. Bräse, C. Wöll, J. Caro, L. Heinke, Nat. Commun. 7 (2016) 13872.10.1038/ncomms13872Search in Google Scholar PubMed PubMed Central

25. L. Heinke, M. Cakici, M. Dommaschk, S. Grosjean, R. Herges, S. Bräse, C. Wöll, ACS Nano 8 (2014) 1463.10.1021/nn405469gSearch in Google Scholar PubMed

26. Z. Wang, S. Grosjean, S. Braese, L. Heinke, ChemPhysChem 16 (2015) 3779.10.1002/cphc.201500829Search in Google Scholar PubMed

27. K. Müller, A. Knebel, F. Zhao, F. Bléger, J. Caro, L. Heinke, Chem. Eur. J. 23 (2017) 5434.10.1002/chem.201700989Search in Google Scholar PubMed

28. K. Müller, J. Helfferich, F. Zhao, R. Verma, A. B. Kanj, V. Meded, D. Bléger, W. Wenzel, L. Heinke, Adv. Mater. 2017. DOI: 10.1002/adma.201706551.10.1002/admaSearch in Google Scholar

29. Z. Wang, L. Heinke, J. Jelic, M. Cakici, M. Dommaschk, R. J. Maurer, H. Oberhofer, S. Grosjean, R. Herges, S. Bräse, K. Reuter, C. Wöll, Phys. Chem. Chem. Phys. 17 (2015) 14582.10.1039/C5CP01372KSearch in Google Scholar PubMed

30. X. Yu, Z. Wang, M. Buchholz, N. Fullgrabe, S. Grosjean, F. Bebensee, S. Bräse, C. Wöll, L. Heinke, Phys. Chem. Chem. Phys. 17 (2015) 22721.10.1039/C5CP03091ASearch in Google Scholar PubMed

31. C. Rietze, E. Titov, S. Lindner, P. Saalfrank, J. Phys. Condens. Matter 29 (2017) 12.10.1088/1361-648X/aa75bdSearch in Google Scholar PubMed

32. C. Wadell, S. Syrenova, C. Langhammer, ACS Nano 8 (2014) 11925.10.1021/nn505804fSearch in Google Scholar PubMed

33. I. Zoric, M. Zach, B. Kasemo, C. Langhammer, ACS Nano 5 (2011) 2535.10.1021/nn102166tSearch in Google Scholar PubMed

34. C. Langhammer, E. M. Larsson, B. Kasemo, I. Zoric, Nano Lett. 10 (2010) 3529.10.1021/nl101727bSearch in Google Scholar PubMed

35. C. Langhammer, I. Zoric, B. Kasemo, Nano Lett. 7 (2007) 3122.10.1021/nl071664aSearch in Google Scholar PubMed

36. Z.-G. Gu, A. Pfriem, S. Hamsch, H. Breitwieser, J. Wohlgemuth, L. Heinke, H. Gliemann, C. Wöll, Microporous Mesoporous Mater. 211 (2015) 82.10.1016/j.micromeso.2015.02.048Search in Google Scholar

37. K. Müller, K. Fink, L. Schöttner, M. Koenig, L. Heinke, C. Wöll, ACS Appl. Mater. Interfaces 9 (2017) 37463.10.1021/acsami.7b12045Search in Google Scholar PubMed

38. M. Saghanejhadtehrani, E. K. Schneider, L. Heinke, ChemPhysChem 2017. DOI: 10.1002/cphc.20170102.10.1002/cphcSearch in Google Scholar

39. V. Krungleviciute, K. Lask, L. Heroux, A. D. Migone, J. Y. Lee, J. Li, A. Skoulidas, Langmuir 23 (2007) 3106.10.1021/la061871aSearch in Google Scholar PubMed

Received: 2017-11-21
Accepted: 2017-12-04
Published Online: 2018-01-05
Published in Print: 2018-12-19

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.6.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2017-1081/html
Scroll to top button