Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 22, 2021

Synthesis, spectral (FT-IR, 1H, 13C) studies, and crystal structure of [(2,6-CO2)2C5H3NSnBu2(H2O)]2·CHCl3

  • Tidiane Diop EMAIL logo , Adrienne Ndioléne , Mouhamadou Birame Diop EMAIL logo , Mouhamadou Sembene Boye , Arie van der Lee , Florina Dumitru , Cheikh Abdoul Khadir Diop and Mamadou Sidibé

Abstract

Di-n-butyltin(IV) 2,6-pyridinedicarboxylate [(2,6-CO2)2C5H3NSnBu2(H2O)]2·CHCl3, has been synthesized and characterized by elemental analyses, infrared and NMR (1H and 13C) spectroscopy, and single-crystal X-ray diffraction. The title complex crystallizes in the triclinic space group P1; with a = 9.2330(4), b = 10.4790(5), c = 20.2489(8) Å, α = 89.439(4), β = 87.492(3), γ = 85.888(4)°, V = 1951.96(15) Å3, and Z = 2. In this complex, the 2,6-pyridinedicarboxylate groups are tetradentate, chelating, and bridging ligands for the tin(IV) atoms. NMR spectra showed that the ligands bind to the tin(IV) center in the anionic (COO) form. In the asymmetric unit of the dimeric complex, the monomer is composed of an n-Bu2Sn unit bonded to one 2,6-pyridinedicarboxylate group through one nitrogen and two oxygen donor atoms. It is also coordinated by a water molecule. In the dimer formed by carboxylate bridging, a trans-heptacoordinated geometry around the tin(IV) atom is established. The chloroform molecule is connected to the dimer by C–H···O contacts. Compound exhibits extended O–H···O and C–H···O hydrogen bonding networks leading to a supramolecular layer topology.


Corresponding authors: Tidiane DiopandMouhamadou Birame Diop, Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, E-mail: (T. Diop), (M.B. Diop)

Acknowledgments

The authors gratefully acknowledge the Cheikh Anta Diop University – Dakar (Senegal), the University of Montpellier II, Montpellier (France).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Davies, A. G., Gielen, M., Pannell, K. H., Tiekink, E. R. T. Tin Chemistry: Fundamentals, Frontiers, and Applications; John Wiley & Sons: Chichester, 2008.10.1002/9780470758090Search in Google Scholar

2. van Rijt, S. H., Sadler, P. J. Drug Discov. Today 2009, 14, 1089–1097; https://doi.org/10.1016/j.drudis.2009.09.003.Search in Google Scholar

3. Gielen, M. Coord. Chem. Rev. 1996, 151, 41–51; https://doi.org/10.1016/s0010-8545(96)90193-9.Search in Google Scholar

4. Alama, A., Tasso, B., Novelli, F., Sparatore, F. Drug Discov. Today 2009, 14, 500–508; https://doi.org/10.1016/j.drudis.2009.02.002.Search in Google Scholar PubMed

5. Etaiw, S. E. H., Abd El-Aziz, D. M., Ali, E. A. J. Organomet. Chem. 2019, 894, 43–60; https://doi.org/10.1016/j.jorganchem.2019.05.007.Search in Google Scholar

6. Basu Baul, T. S., Paul, A., Pellerito, L., Scopelliti, M., Singh, P., Verma, P., Duthie, A., de Vos, D., Tiekink, E. R. T. Invest. N. Drugs 2011, 29, 285–299; https://doi.org/10.1007/s10637-009-9360-3.Search in Google Scholar PubMed

7. Gielen, M., Biesemans, M., Willem, R. Appl. Organomet. Chem. 2005, 19, 440–450; https://doi.org/10.1002/aoc.771.Search in Google Scholar

8. Hanif, M., Hussain, M., Ali, S., Bhatti, M. H., Ahmed, M. S., Mirza, B., Stoeckli-Evans, H. Polyhedron 2010, 29, 613–619; https://doi.org/10.1016/j.poly.2009.07.039.Search in Google Scholar

9. Devendra, R., Edmonds, N. R., Sohnel, T. RSC Adv. 2015, 5, 48935–48945; https://doi.org/10.1039/c5ra03367e.Search in Google Scholar

10. Diop, T., Diop, L., Kociok-Kohn, G., Molloy, K. C., Ardisson, J. D. Main Group Met. Chem. 2013, 36, 29–34; https://doi.org/10.1515/mgmc-2012-0038.Search in Google Scholar

11. Tian, L.-J., Sun, Y.-X., Zheng, X. L., Liu, X. J., Yu, Y., Liu, X. L. Chin. J. Chem. 2007, 25, 312–318; https://doi.org/10.1002/cjoc.200790061.Search in Google Scholar

12. Banti, C. N., Hadjikakou, S. K., Sismanoglu, T., Hadjiliadis, N. J. Inorg. Biochem. 2019, 194, 114–152; https://doi.org/10.1016/j.jinorgbio.2019.02.003.Search in Google Scholar PubMed

13. Debnath, P., Singh, K. S., Singh, K. K., Singh, S. S., Sieroń, L., Maniukiewicz, W. New J. Chem. 2020, 44, 5862–5872; https://doi.org/10.1039/d0nj00536c.Search in Google Scholar

14. Hussain, S., Ali, S., Shahzadi, S., Riaz, M., Nazir, K., Arshad, M. N., Asiri, A. M. Arabian J. Sci. Eng. 2020, 45, 4785–4795; https://doi.org/10.1007/s13369-020-04496-5.Search in Google Scholar

15. Joshi, R., Yadav, S. K., Mishra, H., Pandey, N., Tilak, R., Pokharia, S. Heteroat. Chem. 2018, 29, e21433; https://doi.org/10.1002/hc.21433.Search in Google Scholar

16. Nath, M., Saini, P. K. Dalton Trans. 2011, 40, 7077–7121; https://doi.org/10.1039/c0dt01426e.Search in Google Scholar PubMed

17. Vafaee, M., Amini, M. M., Khavasi, H. R., Ng, S. W., Tiekink, E. R. T. Appl. Organomet. Chem. 2012, 26, 471–477; https://doi.org/10.1002/aoc.2890.Search in Google Scholar

18. Khan, M. M., Khan, S., Iqbal, S., Saigal Yousuf, R. New J. Chem. 2016, 40, 7504–7512; https://doi.org/10.1039/c6nj01170e.Search in Google Scholar

19. Yildiz, B. C., Kayan, A. Des. Monomers Polym. 2017, 20, 89–96; https://doi.org/10.1080/15685551.2016.1231032.Search in Google Scholar PubMed PubMed Central

20. Zhang, C., Wei, S., Sun, L., Xu, F., Huang, P., Peng, H. J. Mater. Sci. Technol. 2018, 34, 1526–1531; https://doi.org/10.1016/j.jmst.2018.03.011.Search in Google Scholar

21. Hou, K.-L., Bai, F.-Y., Xing, Y.-H., Cao, Y.-Z., Wei, D.-M., Niu, S.-Y. J. Inorg. Organomet. Polym. Mater. 2011, 21, 213–222; https://doi.org/10.1007/s10904-010-9441-y.Search in Google Scholar

22. Abd El-Halim, H. F., Mohamed, G. G. Appl. Organomet. Chem. 2017, 32, e4176.10.1002/aoc.4176Search in Google Scholar

23. Büyükkιdan, N., Yenikaya, C., İlkimen, H., Karahan, C., Darkan, C., Rus, Şahin. E. J. Coord. Chem. 2013, 39, 96–103.10.1134/S1070328412100028Search in Google Scholar

24. İlkimen, H., Yenikaya, C., Sarı, M., Bülbül, M., Tunca, E., Dal, H. J. Enzym. Inhib. Med. Chem. 2014, 29, 353–361.10.3109/14756366.2013.782299Search in Google Scholar PubMed

25. Costa, L. C. M., de Lima, G. M., Maia, J. R, da, S., Filgueiras, C. A. L., Doriguetto, A. C., Ellena, J. Spectrochim. Acta, Part A 2005, 61, 1971–1975; https://doi.org/10.1016/j.saa.2004.07.028.Search in Google Scholar PubMed

26. Huber, F., Preut, H., Hoffmann, E., Gielen, M. Acta Crystallogr. 1989, C45, 51–54; https://doi.org/10.1107/s0108270188009631.Search in Google Scholar

27. Ng, S. W. Acta Crystallogr. 2011, E67, m277; https://doi.org/10.1107/s1600536811002935.Search in Google Scholar PubMed PubMed Central

28. Gielen, M., Joosen, E., Mancilla, T., Jurkschat, K., Willem, R., Roobol, C., Bernheim, J., Atassi, G., Huber, F., Hoffman, E., Preut, H., Mahieu, B. Main Group Met. Chem. 1987, 10, 147–167.Search in Google Scholar

29. Ng, S. W. Z. Kristallogr. 1998, 213, 427–431.10.1016/S0014-5793(98)00801-1Search in Google Scholar

30. Diop, L., Mahieu, B., Mahon, M. F., Molloy, K. C., Okio, K. Y. A. Appl. Organomet. Chem. 2003, 17, 881–882; https://doi.org/10.1002/aoc.536.Search in Google Scholar

31. Diop, M. B., Diop, L., Plasseraud, L., Cattey, H. Main Group Met. Chem. 2016, 39, 119–123; https://doi.org/10.1515/mgmc-2016-0016.Search in Google Scholar

32. Hooft, R. W. W. Collect, Nonius KappaCCD Data Collection Software; Nonius BV: Delft (The Netherlands), 2003.Search in Google Scholar

33. Duisenberg, A. J. M. J. Appl. Crystallogr. 1992, 25, 92–96; https://doi.org/10.1107/s0021889891010634.Search in Google Scholar

34. Duisenberg, A. J. M., Kroon-Batenburg, L. M. J., Scheurs, A. M. M. J. Appl. Crystallogr. 2003, 36, 220–229; https://doi.org/10.1107/s0021889802022628.Search in Google Scholar

35. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

36. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

37. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

38. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P. A. J. Appl. Crystallogr. 2008, 41, 466–470; https://doi.org/10.1107/s0021889807067908.Search in Google Scholar

39. Du, D., Jiang, Z., Liu, C., Sakho, A. M., Zhu, D., Xu, L. J. Organomet. Chem. 2011, 696, 2549–2558; https://doi.org/10.1016/j.jorganchem.2011.03.048.Search in Google Scholar

40. Li, W., Du, D., Liu, S., Zhu, C., Sakho, A. M., Zhu, D., Xu, L. J. Organomet. Chem. 2010, 695, 2153–2159; https://doi.org/10.1016/j.jorganchem.2010.06.001.Search in Google Scholar

41. Deacon, G. B., Phillips, R. J. Coord. Chem. Rev. 1980, 33, 227–250; https://doi.org/10.1016/s0010-8545(00)80455-5.Search in Google Scholar

42. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed.; John Wiley & Sons: New York, 1997.Search in Google Scholar

43. Siddiqi, Z. A., Sharma, P. K., Shahid, M., Khalid, M. J. Photochem. Photobiol. B Biol. 2013, 125, 171–178; https://doi.org/10.1016/j.jphotobiol.2013.06.006.Search in Google Scholar PubMed

44. Xiao, X., Du, D., Tian, M., Han, X., Liang, J., Zhu, D., Xu, L. J. Organomet. Chem. 2012, 715, 54–63; https://doi.org/10.1016/j.jorganchem.2012.05.038.Search in Google Scholar

Received: 2020-12-01
Accepted: 2020-12-30
Published Online: 2021-01-22
Published in Print: 2021-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2020-0195/html
Scroll to top button