Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 17, 2022

Synthesis and luminescent properties of red-emitting Li2CaSnO4: xEu3+ phosphors

  • Arif Ullah , Jinghao Zhuang , Xiaozhan Yang ORCID logo EMAIL logo and Wenlin Feng ORCID logo

Abstract

Red emitting Li2CaSnO4: xEu3+ phosphors were successfully synthesized by the high-temperature solid-state method. The crystal structure, composite and luminescence properties (e.g. the excitation and emission spectra, fluorescent lifetimes, and CIE chromaticity coordinates) of the samples were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), energy dispersive spectrometer (EDS) and spectral analysis technique. The emission spectra consist of the characteristic peak resultant to Eu3+ under the excitation of 395 nm and the dominant emission peak is at 621 nm (7F05L6). The optimal red emission was obtained through 4% Eu3+ doping. These new red Li2CaSnO4: Eu3+ phosphors have the potential application for white LEDs.


Corresponding author: Xiaozhan Yang, School of Science, Chong-qing University of Technology, Chongqing 400054, China; and Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing 400054, China, E-mail:

Funding source: Chongqing Science and Technology Bureau

Award Identifier / Grant number: CSTCCXLJRC201905, cstc2021jcyj-msxmX0493

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 51574054

Award Identifier / Grant number: KJZD-M201901102

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: Unassigned

Funding source: Chongqing Municipal Education Commission

Award Identifier / Grant number: Unassigned

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Natural Science Foundation of China (51574054), Chongqing Municipal Education Commission (KJZD-M201901102), Chongqing Science and Technology Bureau (cstc2021jcyj-msxmX0493).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] M. Gao, C. Peng, X. Dong, G. Xue, A. Wang, and Y. Pan, “A red phosphor of Ba3In2F12:Mn4+ with enhanced moisture stability for warm WLED application,” J. Lumin., vol. 242, p. 118564, 2022. https://doi.org/10.1016/j.jlumin.2021.118564.Search in Google Scholar

[2] Y. Yin, W. Yang, Z. Wang, et al.., “Achieving zero-thermal quenching luminescence in ZnGa2O4: 0.02Eu3+ red phosphor,” J. Alloys Compd., vol. 898, p. 162786, 2022. https://doi.org/10.1016/j.jallcom.2021.162786.Search in Google Scholar

[3] S. Wang, Y. Xu, T. Chen, et al.., “A novel red phosphor Ba2La4Y4(SiO4)6O2:Eu3+ with high quantum yield and thermal stability for warm white LEDs,” J. Alloys Compd., vol. 789, pp. 381–391, 2019. https://doi.org/10.1016/j.jallcom.2019.02.229.Search in Google Scholar

[4] X. Feng, W. Feng, M. Xia, et al.., “Co-precipitation synthesis, photoluminescence properties and theoretical calculations of MgWO4:Eu3+ phosphors,” RSC Adv., vol. 6, pp. 14826–14831, 2016. https://doi.org/10.1039/c5ra22631g.Search in Google Scholar

[5] S. Tamboli, G. B. Nair, S. J. Dhoble, and D. K. Burghate, “Energy transfer from Pr3+ to Gd3+ ions in BaB8O13 phosphor for phototherapy lamps,” Phys. B Condens. Matter, vol. 535, pp. 232–236, 2018. https://doi.org/10.1016/j.physb.2017.07.042.Search in Google Scholar

[6] J. Zhuang, W. Feng, B. Zhou, Q. Zhang, C. Liu, and Y. Gong, “Photoluminescence properties of Eu3+ doped CaSr(WO4)2 phosphors by Li+ charge compensation,” Z. Naturforch. A, vol. 77, pp. 715–722, 2022. https://doi.org/10.1515/zna-2022-0022.Search in Google Scholar

[7] H. Ji, Z. Huang, Z. Xia, et al.., “Comparative investigations of the crystal structure and photoluminescence property of eulytite-type Ba3Eu(PO4)3 and Sr3Eu(PO4)3, Dalt,” OR Trans., vol. 44, pp. 7679–7686, 2015. https://doi.org/10.1039/c4dt03887h.Search in Google Scholar PubMed

[8] V. V. Atuchin, A. K. Subanakov, A. S. Aleksandrovsky, et al.., “Structural and spectroscopic properties of new noncentrosymmetric self-activated borate Rb3EuB6O12 with B5O10 units,” Mater. Des., vol. 140, pp. 488–494, 2018. https://doi.org/10.1016/j.matdes.2017.12.004.Search in Google Scholar

[9] J. Wang, J. Guo, Q. Lv, et al.., “Spectroscopic investigation of the novel orange-red phosphor Ca3La2W2O12:Sm3+ with the high color purity for w-LED applications,” J. Lumin., vol. 241, p. 118459, 2022. https://doi.org/10.1016/j.jlumin.2021.118459.Search in Google Scholar

[10] T. Tian, W. Liu, Q. Liu, et al.., “A new oxyapatite red phosphor Eu3+-doped Ca3Y7(BO4)(SiO4)5O: synthesis, structure and luminescence properties,” J. Rare Earths, vol. 40, pp. 709–716, 2022. https://doi.org/10.1016/j.jre.2021.10.004.Search in Google Scholar

[11] D. Peng, S. He, Y. Zhang, et al.., “Blue light-induced rare-earth free phosphors for the highly sensitive and selective imaging of latent fingerprints based on enhanced hydrophobic interaction,” J. Mater., vol. 8, pp. 229–238, 2022. https://doi.org/10.1016/j.jmat.2021.03.005.Search in Google Scholar

[12] Y. Zhou, S. Zhang, X. Wang, and H. Jiao, “Structure and luminescence properties of Mn4+ -activated K3TaO2F4 red phosphor for white LEDs,” Inorg. Chem., vol. 58, pp. 4412–4419, 2019. https://doi.org/10.1021/acs.inorgchem.8b03577.Search in Google Scholar PubMed

[13] X. Li, C. Yang, Q. Liu, X. Wang, and X. Mi, “Enhancement of luminescence properties of SrAl2Si2O8: Eu3+ red phosphor,” Ceram. Int., vol. 46, pp. 17376–17382, 2020. https://doi.org/10.1016/j.ceramint.2020.04.027.Search in Google Scholar

[14] S. Fang, T. Han, T. Lang, et al.., “Synthesis of a novel red phosphor K2xBa1-xTiF6:Mn4+ and its enhanced luminescence performance, thermal stability and waterproofness,” J. Alloys Compd., vol. 808, p. 151697, 2019. https://doi.org/10.1016/j.jallcom.2019.151697.Search in Google Scholar

[15] R. Nagaraj, A. Raja, and S. Ranjith, “Synthesis and luminescence properties of novel red-emitting Eu3+ ions doped silicate phosphors for photonic applications,” J. Alloys Compd., vol. 827, p. 154289, 2020. https://doi.org/10.1016/j.jallcom.2020.154289.Search in Google Scholar

[16] R. M. Calderón-Olvera, M. García-Hipólito, O. Álvarez-Fregoso, et al.., “White, blue, violet, and other colors from Tm3+/Tb3+/Eu3+ co-doped polymorph SrAl2O4 films, deposited by ultrasonic spray pyrolysis technique,” Opt. Mater., vol. 122, p. 111737, 2021. https://doi.org/10.1016/j.optmat.2021.111737.Search in Google Scholar

[17] M. Vijayakumar, P. Jayanthi, and K. Marimuthu, “Influence of dopant ions concentration on the spectroscopic properties of Eu3+ doped alkaline earth oxyfluoro-borotellurite glasses for LED and red laser applications,” Opt. Mater., vol. 93, pp. 44–50, 2019. https://doi.org/10.1016/j.optmat.2019.05.004.Search in Google Scholar

[18] Z. Yang, Y. Zhao, Y. Zhou, et al.., “Giant red-shifted emission in (Sr, Ba)Y2O4: Eu2+ phosphor toward broadband near-infrared luminescence,” Adv. Funct. Mater., vol. 32, p. 2103927, 2022. https://doi.org/10.1002/adfm.202103927.Search in Google Scholar

[19] W. Ye, C. Zhao, X. Shen, et al.., “High quantum yield Gd4.67Si3O13: Eu3+ red-emitting phosphor for tunable white light-emitting devices driven by UV or blue LED,” ACS Appl. Electron. Mater., vol. 3, pp. 1403–1412, 2021. https://doi.org/10.1021/acsaelm.1c00012.Search in Google Scholar

[20] L. Zur, J. Janek, E. Pietrasik, M. Sołtys, J. Pisarska, and W. A. Pisarski, “Influence of MO/MF2 modifiers (M = Ca, Sr, Ba) on spectroscopic properties of Eu3+ ions in germanate and borate glasses,” Opt. Mater., vol. 61, pp. 59–63, 2016. https://doi.org/10.1016/j.optmat.2016.05.045.Search in Google Scholar

[21] L. Zur, J. Janek, M. Sołtys, T. Goryczka, J. Pisarska, and W. A. Pisarski, “Structural and optical investigations of rare earth doped lead-free germanate glasses modified by MO and MF2 (M = Ca, Sr, Ba),” J. Non-Cryst. Solids, vol. 431, pp. 145–149, 2016. https://doi.org/10.1016/j.jnoncrysol.2015.03.008.Search in Google Scholar

[22] Y. Zhou, S. Yi, Z. Fang, et al.., “Research on a new type of near-infrared phosphor Li2MgZrO4: Cr3+-synthesis, crystal structure, photoluminescence and thermal stability,” Opt. Mater., vol. 117, p. 111209, 2021. https://doi.org/10.1016/j.optmat.2021.111209.Search in Google Scholar

[23] X. Zhou, J. Xiang, J. Zheng, X. Zhao, H. Suo, and C. Guo, “Ab initio two-sites occupancy and broadband near-infrared emission of Cr3+ in Li2MgZrO4,” Mater. Chem. Front., vol. 11, pp. 4334–4342, 2021. https://doi.org/10.1039/d1qm00431j.Search in Google Scholar

[24] E. H. H. Hasabeldaim, O. M. Ntwaeaborwa, R. E. Kroon, E. Coetsee-Hugo, and H. C. Swart, “Pulsed laser deposition of a ZnO: Eu3+ thin film: study of the luminescence and surface state under electron beam irradiation,” Appl. Surf. Sci., vol. 502, p. 144281, 2020. https://doi.org/10.1016/j.apsusc.2019.144281.Search in Google Scholar

[25] J. Zhong, L. Yu, Q. Guo, Z. Gao, and Y. Zou, “The self-reduction synthesis and luminescent properties of color-tunable BaSnxSi3O7+2x: Eu2+-Eu3+ phosphors with high quantum efficiency for white light-emitting diodes,” Ceram. Inter., vol. 44, pp. 18656–18662, 2018. https://doi.org/10.1016/j.ceramint.2018.07.093.Search in Google Scholar

[26] Q. Cheng, F. Ren, Q. Lin, H. Tong, and X. Miao, “High quantum efficiency red emitting α-phase La2W2O9: Eu3+ phosphor,” J. Alloys Compd., vol. 772, pp. 905–911, 2019. https://doi.org/10.1016/j.jallcom.2018.08.320.Search in Google Scholar

[27] J. Xie, L. Cheng, H. Tang, et al.., “Synthesis and photoluminescence properties of NaBi(WO4)2: Eu3+ red-emitting phosphor for NUV-based WLEDs,” J. Lumin., vol. 219, p. 116841, 2020. https://doi.org/10.1016/j.jlumin.2019.116841.Search in Google Scholar

[28] X. Wang, M. Sun, Z. Hu, et al.., “Synthesis of NaLn(WO4)2 phosphors via a new phase-conversion protocol and investigation of up/down conversion photoluminescence,” Adv. Powder Technol., vol. 31, pp. 4231–4240, 2020. https://doi.org/10.1016/j.apt.2020.08.027.Search in Google Scholar

[29] A. J. Peter and I. B. S. Banu, “Synthesis and luminescence properties of NaLa(WO4)2:Eu3+ phosphors for white LED applications,” J. Mater. Sci. Mater. Electron., vol. 28, pp. 8023–8028, 2017. https://doi.org/10.1007/s10854-017-6507-4.Search in Google Scholar

[30] Z. Mu, Y. Hu, L. Chen, and X. Wang, “Enhanced red emission in ZnB2O4:Eu3+ by charge compensation,” Opt. Mater., vol. 34, pp. 89–94, 2011. https://doi.org/10.1016/j.optmat.2011.07.012.Search in Google Scholar

[31] J. Xue, Y. Guo, B. K. Moon, et al.., “Improvement of photoluminescence properties of Eu3+ doped SrNb2O6 phosphor by charge compensation,” Opt. Mater., vol. 66, pp. 220–229, 2017. https://doi.org/10.1016/j.optmat.2017.02.002.Search in Google Scholar

[32] K. Li, H. Lian, M. Shang, and J. Lin, “A novel greenish yellow-orange red Ba3Y4O9:Bi3+, Eu3+ phosphor with efficient energy transfer for UV-LEDs,” Dalton Trans., vol. 44, pp. 20542–20550, 2015. https://doi.org/10.1039/c5dt03565a.Search in Google Scholar PubMed

[33] C. Liao, R. Cao, W. Wang, et al.., “Photoluminescence properties and energy transfer of NaY(MoO4)2: R (R = Sm3+/Bi3+, Tb3+/Bi3+, Sm3+/Tb3+) phosphors,” Mater. Res. Bull., vol. 97, pp. 490–496, 2018.10.1016/j.materresbull.2017.09.053Search in Google Scholar

[34] Z. Xia and W. Wu, “Preparation and luminescence properties of Ce3+ and Ce3+/Tb3+-activated Y4Si2O7N2 phosphors,” Dalton Trans., vol. 42, pp. 12989–12997, 2013. https://doi.org/10.1039/c3dt51470f.Search in Google Scholar PubMed

Received: 2022-08-25
Accepted: 2022-09-25
Published Online: 2022-10-17
Published in Print: 2023-01-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2022-0221/html
Scroll to top button