Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) August 18, 2021

A europium kagome lattice in the solid solution Eu3−х Sr х Pt4Zn12 – first zinc representatives of the Gd3Ru4Al12 type

  • Steffen Klenner , Maximilian Kai Reimann and Rainer Pöttgen EMAIL logo

Abstract

Eu3Pt4Zn12 and Sr3Pt4Zn12 form a complete solid solution Eu3−x Sr x Pt4Zn12. Samples with x = 0, 0.5, 1, 1.5, 2, 2.5 and 3 were synthesized from the elements in sealed tantalum ampoules in an induction furnace. All samples were characterized by powder X-ray diffraction and the structures of Sr3Pt3.93Zn12.07, Eu1.80Sr1.20Pt4Zn12 and Eu3Pt3.68Zn12.32 were refined from single crystal X-ray diffractometer data. The new compounds are isotypic with Gd3Ru4Al12, space group P63/mmc. The striking building units in these phases are the kagome networks occupied by the europium and strontium atoms and Pt1@Zn8 and Pt2@Zn8 distorted cubes. Besides the Eu/Sr mixing within the solid solution, the structure refinements indicated small homogeneity ranges induced by Pt/Zn mixing. The europium containing samples of the solid solution Eu3−x Sr x Pt4Zn12 are Curie–Weiss paramagnets and the experimental magnetic moments manifest stable divalent europium. The samples with x = 0, 0.5 and 2 order magnetically: T N = 15.4(1) K for x = 0, T C = 12.4(1) K for x = 0.5 and T N = 4.0(1) K for x = 2. The 3 K magnetization isotherms tend toward Brillouin type behavior with increasing europium dilution. The divalent ground state of Eu3Pt4Zn12 is further confirmed by 151Eu Mössbauer spectroscopy with an isomer shift of −9.66(2) mm s−1 at 78 K. In the magnetically ordered state Eu3Pt4Zn12 shows full magnetic hyperfine field splitting (23.0(1) T).


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgments

We thank Dipl.-Ing. J. Kösters for collecting the single crystal X-ray data.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Fazekas, P., Anderson, P. W. Phil. Mag. 1974, 30, 423–440; https://doi.org/10.1080/14786439808206568.Search in Google Scholar

2. Kawamura, H. J. Phys. Soc. Jpn. 1987, 56, 474–491; https://doi.org/10.1143/jpsj.56.474.Search in Google Scholar

3. Ramirez, A. P. Annu. Rev. Mater. Sci. 1994, 24, 453–480; https://doi.org/10.1146/annurev.ms.24.080194.002321.Search in Google Scholar

4. Collins, M. F., Petrenko, O. A. Can. J. Phys. 1997, 75, 605–655; https://doi.org/10.1139/p97-007.Search in Google Scholar

5. Pati, S. K., Rao, C. N. R. Chem. Commun. 2008, 4683–4693; https://doi.org/10.1039/b807207h.Search in Google Scholar

6. Lacroix, C., Mendels, P., Mila, F., Eds. Introduction to Frustrated Magnetism – Materials, Experiment, Theory; Springer-Verlag: Berlin, 2011.10.1007/978-3-642-10589-0Search in Google Scholar

7. Akagi, Y., Motome, Y. Phys. Rev. B 2015, 91, 155132; https://doi.org/10.1103/physrevb.91.155132.Search in Google Scholar

8. Mendels, P., Bert, F. Compt. Rendus Phys. 2016, 17, 455–470; https://doi.org/10.1016/j.crhy.2015.12.001.Search in Google Scholar

9. Grey, I. E. Mineral. Mag. 2020, 84, 640–652; https://doi.org/10.1180/mgm.2020.72.Search in Google Scholar

10. Nial, O. Z. Anorg. Allg. Chem. 1938, 238, 287–296; https://doi.org/10.1002/zaac.19382380213.Search in Google Scholar

11. Kang, M., Fang, S., Ye, L., Po, H. C., Denlinger, J., Jozwiak, C., Bostwick, A., Rotenberg, E., Kaxiras, E., Checkelsky, J. G., Comin, R. Nat. Commun. 2020, 11, 4004; https://doi.org/10.1038/s41467-020-17465-1.Search in Google Scholar

12. Kuz’ma, Y. B., Krypyakevych, P. I., Bilonizhko, N. S. Dopov. Akad. Nauk Ukr. RSR, Ser. A 1969, 939–941.Search in Google Scholar

13. Schnelle, W., Leithe-Jasper, A., Rosner, H., Schappacher, F. M., Pöttgen, R., Pielnhofer, F., Weihrich, R. Phys. Rev. B 2013, 88, 144404; https://doi.org/10.1103/physrevb.88.144404.Search in Google Scholar

14. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2020/21); ASM International®: Materials Park, Ohio (USA), 2020.Search in Google Scholar

15. Chevalier, B., Sebastian, C. P., Pöttgen, R. Solid State Sci. 2006, 8, 1000–1008; https://doi.org/10.1016/j.solidstatesciences.2006.02.047.Search in Google Scholar

16. Gibson, B., Pöttgen, R., Kremer, R. K., Simon, A., Ziebeck, K. R. A. J. Alloys Compd. 1996, 239, 34–40; https://doi.org/10.1016/0925-8388(96)02201-3.Search in Google Scholar

17. Zhao, K., Deng, H., Chen, H., Ross, K. A., Petříček, V., Günther, G., Russina, M., Hutanu, V., Gegenwart, P. Science 2020, 367, 1218–1223; https://doi.org/10.1126/science.aaw1666.Search in Google Scholar

18. Gladyshevskii, R. E., Strusievicz, O. R., Cenzual, K., Parthé, E. Acta Crystallogr. B 1993, 49, 474–478; https://doi.org/10.1107/s0108768192011510.Search in Google Scholar

19. Niermann, J., Jeitschko, W. Z. Anorg. Allg. Chem. 2002, 628, 2459–2556; https://doi.org/10.1002/1521-3749(200211)628:11<2549::aid-zaac2549>3.0.co;2-x.10.1002/1521-3749(200211)628:11<2549::AID-ZAAC2549>3.0.CO;2-XSearch in Google Scholar

20. Bukhan’ko, N. G., Tursina, A. I., Malyshev, S. V., Gribanov, A. V., Seropegin, Yu. D., Bodak, O. I. In: VIII International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, Ukraine, September 25-28, 2002, p. 84.Search in Google Scholar

21. Bukhan’ko, N. G., Tursina, A. I., Malyshev, S. V., Gribanov, A. V., Seropegin, Yu. D., Bodak, O. I. J. Alloys Compd. 2004, 367, 149–151.10.1016/j.jallcom.2003.08.028Search in Google Scholar

22. Tougait, O., Noël, H., Troc, R. J. Solid State Chem. 2004, 177, 2053–2057; https://doi.org/10.1016/j.jssc.2004.02.009.Search in Google Scholar

23. Gonçalves, A. P., Noël, H. Intermetallics 2005, 13, 580–585; https://doi.org/10.1016/j.intermet.2004.09.010.Search in Google Scholar

24. Pasturel, M., Tougait, O., Potel, M., Roisnel, T., Wochowski, K., Noël, H., Troć, R. J. Phys. : Condens. Matter 2009, 21, 125401 https://doi.org/10.1088/0953-8984/21/12/125401.Search in Google Scholar

25. Gonçalves, A. P., Waerenborgh, J. C., Gacyński, P., Noël, H., Tougait, O. Intermetallics 2009, 17, 25–31; https://doi.org/10.1016/j.intermet.2008.09.003.Search in Google Scholar

26. Troć, R., Pasturel, M., Tougait, O., Sazonov, A. P., Gukasov, A., Sułkowski, C., Noël, H. Phys. Rev. B 2012, 85, 064412.10.1103/PhysRevB.85.064412Search in Google Scholar

27. Ge, W., Ohta, H., Michioka, C., Yoshimura, K. J. Phys: Conf. Ser. 2012, 344, 012023; https://doi.org/10.1088/1742-6596/344/1/012023.Search in Google Scholar

28. Wen, Z., Liu, C., Zeng, L., Yan, J. Powder Diffr. 2013, 28, 293–295; https://doi.org/10.1017/s0885715613000407.Search in Google Scholar

29. Gorbunov, D. I., Henriques, M. S., Andreev, A. V., Gukasov, A., Petříček, V., Baranov, N. V., Skourski, Y., Eigner, V., Paukov, M., Prokleška, J., Gonçalves, A. P. Phys. Rev. B 2014, 90, 094405; https://doi.org/10.1103/physrevb.90.094405.Search in Google Scholar

30. Gorbunov, D. I., Henriques, M. S., Andreev, A. V., Skourski, Y., Dušek, M. J. Alloys Compd. 2015, 634, 115–121; https://doi.org/10.1016/j.jallcom.2015.02.070.Search in Google Scholar

31. Gorbunov, D. I., Henriques, M. S., Andreev, A. V., Eigner, V., Gukasov, A., Fabrèges, X., Skourski, Y., Petříček, V., Wosnitza, J. Phys. Rev. B 2016, 93, 024407; https://doi.org/10.1103/physrevb.93.024407.Search in Google Scholar

32. Henriques, M. S., Gorbunov, D. I., Kriegner, D., Vališka, M., Andreev, A. V., Matěj, Z. J. Magn. Magn. Mater. 2016, 400, 125–129; https://doi.org/10.1016/j.jmmm.2015.07.066.Search in Google Scholar

33. Pasturel, M., Nasri, N., Guizouarn, T., Belgacem, B., Ben Hassen, R., Tougait, O., Noël, H. Intermetallics 2017, 90, 74–80; https://doi.org/10.1016/j.intermet.2017.07.005.Search in Google Scholar

34. Henriques, M. S., Gorbunov, D. I., Andreev, A. V., Fabrèges, X., Gukasov, A., Uhlarz, M., Petříček, V., Ouladdiaf, B., Wosnitza, J. Phys. Rev. B 2018, 97, 014431; https://doi.org/10.1103/physrevb.97.014431.Search in Google Scholar

35. Gorbunov, D. I., Nomura, T., Ishii, I., Henriques, M. S., Andreev, A. V., Doerr, M., Stöter, T., Suzuki, T., Zherlitsyn, S., Wosnitza, J. Phys. Rev. B 2018, 97, 184412; https://doi.org/10.1103/physrevb.97.184412.Search in Google Scholar

36. Stegemann, F., Zhang, Y., Fokwa, B. P. T., Janka, O. Dalton Trans. 2020, 49, 6398–6406; https://doi.org/10.1039/d0dt00521e.Search in Google Scholar

37. Belan, B., Manyako, M., Pasinska, K., Demchyna, M., Gladyshevskii, R. Solid State Phenom. 2019, 289, 77–81; https://doi.org/10.4028/www.scientific.net/ssp.289.77.Search in Google Scholar

38. Morozkin, A. V., Knotko, A. V., Yapaskurt, V. O., Yao, J., Yuan, F., Mozharivskyj, Y., Nirmala, R., Quezado, S., Malik, S. K. J. Solid State Chem. 2015, 232, 150–156; https://doi.org/10.1016/j.jssc.2015.09.023.Search in Google Scholar

39. Yuan, F., Mozharivskyj, Y., Morozkin, A. V., Knotko, A. V., Yapaskurt, V. O., Pani, M., Provino, A., Manfrinetti, P. J. Solid State Chem. 2014, 219, 247–258; https://doi.org/10.1016/j.jssc.2014.07.030.Search in Google Scholar

40. Morozkin, A. V., Knotko, A. V., Yapaskurt, V. O., Manfrinetti, P., Pani, M., Provino, A., Nirmala, R., Quezado, S., Malik, S. K. J. Solid State Chem. 2016, 235, 58–67; https://doi.org/10.1016/j.jssc.2015.12.019.Search in Google Scholar

41. Parthé, E., Gelato, L. M. Acta Crystallogr. 1984, A40, 169–183; https://doi.org/10.1107/s0108767384000416.Search in Google Scholar

42. Gelato, L. M., Parthé, E. J. Appl. Crystallogr. 1987, 20, 139–143; https://doi.org/10.1107/s0021889887086965.Search in Google Scholar

43. Hoffmann, R.-D., Huppertz, H., Pöttgen, R. Solid State Sci. 2002, 4, 103–107; https://doi.org/10.1016/s1293-2558(01)01230-4.Search in Google Scholar

44. De Negri, S., Solokha, P., Pavlyuk, V., Saccone, A. Intermetallics 2011, 19, 671–681; https://doi.org/10.1016/j.intermet.2011.01.007.Search in Google Scholar

45. Verbovytskyy, Y., Gonçalves, A. P. Solid State Sci. 2015, 40, 84–91; https://doi.org/10.1016/j.solidstatesciences.2015.01.006.Search in Google Scholar

46. Klenner, S., Reimann, M. K., Pöttgen, R. Z. Kristallogr. 2021, in press; https://doi.org/10.1515/zkri-2021-2026.Search in Google Scholar

47. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachz. 1999, 43, 133–136.Search in Google Scholar

48. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150; https://doi.org/10.1524/zkri.1999.214.3.143.Search in Google Scholar

49. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

50. OriginLab Corp. OriginPro 2016G (version 9.3.2.303), 2016.Search in Google Scholar

51. Corel Corporation. CorelDRAW Graphics Suite 2017 (version 19.0.0.328), 2017.Search in Google Scholar

52. Long, G. J., Cranshaw, T. E., Longworth, G. Mössbauer Effect Ref. Data J. 1983, 6, 42–49.Search in Google Scholar

53. Brand, R. A. WinNormos for Igor6 (version for Igor6.2 or above: 22.02.2017); Universität Duisburg: Duisburg, Germany, 2017.Search in Google Scholar

54. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1016/b978-0-12-415817-7.00037-2.Search in Google Scholar

55. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

56. Klenner, S., Heletta, L., Pöttgen, R. Dalton Trans. 2019, 48, 3648–3657; https://doi.org/10.1039/c9dt00035f.Search in Google Scholar

57. Klenner, S., Bönnighausen, J., Pöttgen, R. Z. Anorg. Allg. Chem. 2021, 647, 286–294; https://doi.org/10.1002/zaac.202000259.Search in Google Scholar

58. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

59. Mishra, T., Hermes, W., Harmening, T., Eul, M., Pöttgen, R. J. Solid State Chem. 2009, 182, 2417–2422; https://doi.org/10.1016/j.jssc.2009.06.034.Search in Google Scholar

60. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

61. Lueken, H. Magnetochemie; Teubner: Stuttgart, 1999.10.1007/978-3-322-80118-0Search in Google Scholar

62. Chandragiri, V., Iyer, K. K., Sampathkumaran, E. V. J. Phys. : Condens. Matter 2016, 28, 286002 https://doi.org/10.1088/0953-8984/28/28/286002.Search in Google Scholar

63. Upadhyay, S. K., Iyer, K. K., Sampathkumaran, E. V. J. Phys. : Condens. Matter 2017, 29, 325601 https://doi.org/10.1088/1361-648x/aa7959.Search in Google Scholar

64. Reimann, M. K., Pöttgen, R. Z. Anorg. Allg. Chem. 2021, 647, in press.10.1002/zaac.202100168Search in Google Scholar

65. Ryan, D. H., Cranswick, L. M. D. J. Appl. Crystallogr. 2008, 41, 198–205; https://doi.org/10.1107/s0021889807065806.Search in Google Scholar

66. Niehaus, O., Ryan, D. H., Flacau, R., Lemoine, P., Chernyshov, D., Svitlyk, V., Cuervo-Reyes, E., Slabon, A., Nesper, R., Schellenberg, I., Pöttgen, R. J. Mater. Chem. C 2015, 3, 7203–7215; https://doi.org/10.1039/c5tc01017a.Search in Google Scholar

67. Müllmann, R., Mosel, B. D., Eckert, H., Kotzyba, G., Pöttgen, R. J. Solid State Chem. 1998, 137, 174–180; https://doi.org/10.1006/jssc.1998.7750.Search in Google Scholar

68. Müllmann, R., Ernet, U., Mosel, B. D., Eckert, H., Kremer, R. K., Hoffmann, R.-D., Pöttgen, R. J. Mater. Chem. 2001, 11, 1133–1140; https://doi.org/10.1039/b100055l.Search in Google Scholar

Received: 2021-07-06
Accepted: 2021-08-02
Published Online: 2021-08-18
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.5.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2021-2041/html
Scroll to top button