Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 8, 2021

Site preference and atomic ordering in the ternary Rh5Ga2As: first-principles calculations

  • Nilanjan Roy , Sucharita Giri , Harshit and Partha P. Jana EMAIL logo

Abstract

The site preference and atomic ordering of the ternary Rh5Ga2As have been investigated using first-principles density functional theory (DFT). An interesting atomic ordering of two neighboring elements Ga and As reported in the structure of Rh5Ga2As by X-ray diffraction data only is confirmed by first-principles total-energy calculations. The previously reported experimental model with Ga/As ordering is indeed the most stable in the structure of Rh5Ga2As. The calculation detected that there is an obvious trend concerning the influence of the heteroatomic Rh–Ga/As contacts on the calculated total energy. Interestingly, the orderly distribution of As and Ga that is found in the binary GaAs (Zinc-blende structure type), retained to ternary Rh5Ga2As. The density of states (DOS) and Crystal Orbital Hamiltonian Population (COHP) are calculated to enlighten the stability and bonding characteristics in the structure of Rh5Ga2As. The bonding analysis also confirms that Rh–Ga/As short contacts are the major driving force towards the overall stability of the compound.


Corresponding author: Partha P. Jana, Department of Chemistry, IIT Kharagpur, Kharagpur, India, E-mail:

Funding source: Science and Engineering Research Board

Award Identifier / Grant number: CRG/2020/004115

Acknowledgment

Authors acknowledge the Department of Computer Science and Engineering, IIT Kharagpur, and Dr. Gopal Dixit (Ultrafast Lab, Department of Physics, IIT Bombay) for computational facilities. Authors are grateful to Dr. Aurab Chakraborty for his help and suggestions. NR and SG acknowledges CSIR for SRF. Harshit acknowledges Dr. Pawan Goyal and IIT Kharagpur for computational facilities and for research fellowship.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was supported by the Science and Engineering Research Board (SERB), India, grant no. CRG/2020/004115.

  3. Conflict of interest statement: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

1. Kanatzidis, M. G., Pöttgen, R., Jeitschko, W. The metal flux: a preparative tool for the exploration of intermetallic compounds. Angew. Chem. Int. Ed. 2005, 44, 6996–7023; https://doi.org/10.1002/anie.200462170.Search in Google Scholar

2. Westbrook, J. H., Fleischer, R. L. Intermetallic Compounds. Principles and Practice, Vol. 1; John Wiley & Sons: Chichester, 1995.Search in Google Scholar

3. Nesper, R. Bonding patterns in intermetallic compounds. Angew. Chem. Int. Ed. 1991, 103, 803–834; https://doi.org/10.1002/ange.19911030709.Search in Google Scholar

4. Pottgen, D. J. R. Intermetallics: Synthesis, Structure, Function; De Gruyter: Berlin, 2014.10.1524/9783486856187Search in Google Scholar

5. Sands, T., Keramidas, V. G., Yu, K. M., Washburn, J., Krishnan, K. M. A comparative study of phase stability and film morphology in thin‐film M/GaAs systems (M = Co, Rh, Ir, Ni, Pd, and Pt). J. Appl. Phys. 1987, 62, 2070–2079; https://doi.org/10.1063/1.339553.Search in Google Scholar

6. Députier, S., Pivan, J. Y., Guérin, R. The crystal structures of two ternary Mx (Ga, As) y phases (M ≡ Rh, Pd) with Rh5Ge3-and Cr12P7-type derivative structures. J. Less Common. Met. 1991, 171, 357–368; https://doi.org/10.1016/0022-5088(91)90159-2.Search in Google Scholar

7. Uno, R., Okano, T., Yukino, K. Electron distribution in GaAs as revealed by the X-ray diffraction. J. Phys. Soc. Jpn. 1970, 28, 437–442; https://doi.org/10.1143/jpsj.28.437.Search in Google Scholar

8. Xiong, L., Manthiram, A. Influence of atomic ordering on the electrocatalytic activity of Pt-Co alloys in alkaline electrolyte and proton exchange membrane fuel cells. J. Mater. Chem. 2004, 14, 1454–1460; https://doi.org/10.1039/b400968c.Search in Google Scholar

9. Kudryavtsev, Y. V., Oksenenko, V. A., Lee, N. N., Lee, Y. P., Rhee, J. Y., Dubowik, J. Effect of structural disorder on some physical properties of the Cu2MnAl Heusler alloy films. J. Appl. Phys. 2005, 97, 113903; https://doi.org/10.1063/1.1921327.Search in Google Scholar

10. Umetsu, Y. R., Kobayashi, K., Fujita, A., Kainuma, R., Ishida, K. Magnetic properties and stability of L21 and B2 phases in the Co2MnAl Heusler alloy. J. Appl. Phys. 2008, 103, 2–4; https://doi.org/10.1063/1.2836677.Search in Google Scholar

11. Ouardi, S., Fecher, G. H., Balke, B., Beleanu, A., Kozina, X., Stryganyuk, G., Felser, C., Klöß, W., Schrader, H., Bernardi, F., Morais, J. Electronic and crystallographic structure, hard X-ray photoemission, and mechanical and transport properties of the half-metallic Heusler compound Co2MnGe. Phys. Rev. B 2011, 84, 1–12; https://doi.org/10.1103/physrevb.84.155122.Search in Google Scholar

12. Xiao, W., Lei, W., Gong, M., Xin, H. L., Wang, D. Recent advances of structurally ordered intermetallic nanoparticles for electrocatalysis. ACS Catal. 2018, 8, 3237–3256; https://doi.org/10.1021/acscatal.7b04420.Search in Google Scholar

13. Armbrüster, M., Kovnir, K., Behrens, M., Teschner, D., Grin, Y., Schlögl, R. Pd−Ga intermetallic compounds as highly selective semihydrogenation catalysts. J. Am. Chem. Soc. 2010, 132, 14745–14747; https://doi.org/10.1021/ja106568t.Search in Google Scholar

14. Rößner, L., Armbrüster, L, M. Electrochemical energy conversion on intermetallic compounds: a review. ACS Catal. 2019, 9, 2018–2062; https://doi.org/10.1021/acscatal.8b04566.Search in Google Scholar

15. Schulz, K. J., Musbah, O. A., Chang, Y. A. A phase investigation of the Rh-Ga-as system. J. Phase Equil. 1991, 12, 10–14; https://doi.org/10.1007/bf02663665.Search in Google Scholar

16. Geller, S. The rhodium–germanium system. I. The crystal structures of Rh2Ge, Rh5Ge3 and RhGe. Acta Crystallogr. 1955, 8, 15–21; https://doi.org/10.1107/s0365110x55000030.Search in Google Scholar

17. Kohlmann, H., Ritter, C. Refinement of the crystal structures of palladium-rich in-Pd compounds by X-ray and neutron powder diffraction. Z. Naturforsch. 2007, 62, 929–934.10.1002/chin.200737004Search in Google Scholar

18. Schubert, K., Breimer, H., Gohle, R., Lukas, H. L., Meissner, G. H., Stolz, E. Einige strukturelle Ergebnisse an metallischen Phasen III. Naturwissenschaften 1958, 45, 360–361; https://doi.org/10.1007/bf00600681.Search in Google Scholar

19. Schubert, K., Lukas, H. L., Meissner, G. H., Bhan, S. Zum Aufbau der Systeme Kobalt- Gallium, Palladium-Gallium, Palladium-Zinn und verwandter Legierungen. Z. Metallkd. 1959, 50, 534–540.10.1515/ijmr-1959-500907Search in Google Scholar

20. Ellner, M., Kattner, U., Predel, B. Konstitutionelle und strukturelle Untersuchungen im System Pd-Al. J. Less Common. Met. 1982, 87, 117–133; https://doi.org/10.1016/0022-5088(82)90048-0.Search in Google Scholar

21. Bhan, S., Kudielka, H. Ordered bcc-phases at high temperatures in alloys of transition metals and B subgroup elements. Z. Metallkd. 1978, 69, 333–336; https://doi.org/10.1515/ijmr-1978-690510.Search in Google Scholar

22. Bronger, W., Wrzesien, K. The structure of Al3Pt5. J. Alloys Compd. 1996, 244, 194–196; https://doi.org/10.1016/s0925-8388(96)02450-4.Search in Google Scholar

23. Miller, G. J. The “coloring problem” in solids: how it affects structure, composition and properties. Eur. J. Inorg. Chem. 1998, 1998, 523–536; https://doi.org/10.1002/(sici)1099-0682(199805)1998:5<523::aid-ejic523>3.0.co;2-l.10.1002/(SICI)1099-0682(199805)1998:5<523::AID-EJIC523>3.0.CO;2-LSearch in Google Scholar

24a. Roy, N., Chakrabarty, A., Koley, B., Saha-Dasgupta, T., Jana, P. P. Site preference and atomic ordering in the structure of In3Pd5: a theoretical study. J. Solid State Chem. 2020, 290, 121567; https://doi.org/10.1016/j.jssc.2020.121567.Search in Google Scholar

24b. Harshit, Roy. N., Chakrabarty, A., Jana, P. P. Site preference, atomic ordering, electronic structure and chemical bonding of A3Pd5 (A= Mg, Al, Ga): first principles study. Solid State Sci. 2021, 113, 106544; https://doi.org/10.1016/j.solidstatesciences.2021.106544.Search in Google Scholar

25. Hohenberg, P., Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864; https://doi.org/10.1103/physrev.136.b864.Search in Google Scholar

26. Kohn, W., Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133; https://doi.org/10.1103/physrev.140.a1133.Search in Google Scholar

27. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502; https://doi.org/10.1088/0953-8984/21/39/395502.Search in Google Scholar

28. Perdew, J. P., Burke, K., Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar

29. Monkhorst, H. J., Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192; https://doi.org/10.1103/physrevb.13.5188.Search in Google Scholar

30. Methfessel, M., Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621; https://doi.org/10.1103/physrevb.40.3616.Search in Google Scholar

31. Fischer, T. H., Almlöf, J. General methods for geometry and wave function Optimization. J. Phys. Chem. 1992, 96, 9768–9774; https://doi.org/10.1021/j100203a036.Search in Google Scholar

32. Dronskowski, R., Blöchl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 1993, 97, 8617–8624; https://doi.org/10.1021/j100135a014.Search in Google Scholar

33. Deringer, V. L., Tchougréeff, A. L., Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. 2011, 115, 5461–5466; https://doi.org/10.1021/jp202489s.Search in Google Scholar PubMed

34. Maintz, S., Deringer, V. L., Tchougréeff, A. L., Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 2013, 34, 2557–2567; https://doi.org/10.1002/jcc.23424.Search in Google Scholar PubMed

35. Maintz, S., Esser, M., Dronskowski, R. Efficient rotation of local basis functions using real spherical harmonics. Acta Phys. Pol. B 2016, 47, 1165–1175; https://doi.org/10.5506/aphyspolb.47.1165.Search in Google Scholar

36. Maintz, S., Deringer, V. L., Tchougréeff, A. L., Dronskowski, R. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 2016, 37, 1030–1035; https://doi.org/10.1002/jcc.24300.Search in Google Scholar PubMed PubMed Central

37. Tang, W., Sanville, E., Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 2009, 21, 084204.10.1088/0953-8984/21/8/084204Search in Google Scholar PubMed

38. Sanville, E., Kenny, S. D., Smith, R., Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899–908; https://doi.org/10.1002/jcc.20575.Search in Google Scholar PubMed

39. Henkelman, G., Arnaldsson, A., Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360; https://doi.org/10.1016/j.commatsci.2005.04.010.Search in Google Scholar

40. Yu, M., Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111; https://doi.org/10.1063/1.3553716.Search in Google Scholar PubMed

41. Momma, K., Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276; https://doi.org/10.1107/s0021889811038970.Search in Google Scholar

42. Brandenburg, K., Putz, H. Diamond 3; Crystal Impact GbR: Bonn, Germany, 2004.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2021-2019).


Received: 2021-04-11
Accepted: 2021-05-19
Published Online: 2021-06-08
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2021-2019/html
Scroll to top button