Order/disorder processes and electromechanical properties of monoclinic GdCa4O(BO3)3
-
Marie Münchhalfen
, Jürgen Schreuer
Abstract
Large single crystals of GdCa4O(BO3)3 (space group Cm) were grown by the Czochralski method. Dielectric, piezoelectric and elastic coefficients at room temperature as well as specific heat capacity, thermal expansion and cation disorder were studied employing a variety of methods including resonant ultrasound spectroscopy, differential scanning calorimetry, dilatometry and X-ray diffraction techniques. The electromechanical parameters (4 dielectric, 10 piezoelectric and 13 elastic stiffness coefficients) obtained on different samples are in excellent agreement indicating high internal consistency of our approach, whereas the values reported in literature differ significantly. The elastic behaviour of GdCa4O(BO3)3 resembles the one of structurally related fluorapatite, i.e. the elastic anisotropy is relatively small and the longitudinal effect of the deviations from Cauchy-relations exhibit a pronounced minimum along the direction of the dominating chains of cation polyhedra. GdCa4O(BO3)3 exhibits a maximum longitudinal piezoelectric effect of 7.67 × 10−12 CN−10, a value in the order of that of langasite-type materials. Significant changes of the calcium/gadolinium distribution on the 3 independent cation sites accompanied by characteristic anomalies of heat capacity and thermal expansion suggest processes of nonconvergent cation ordering above about 900 K in GdCa4O(BO3)3.
References
[1] H. Fritze, High-temperature bulk acoustic wave sensors. Meas. Sci. Technol.2011, 22, 012002 (28 pp).10.1088/0957-0233/22/1/012002Search in Google Scholar
[2] H. Fritze, High-temperature piezoelectric crystals and devices. J. Electroceram.2011, 26, 122.10.1007/s10832-011-9639-6Search in Google Scholar
[3] X. Jiang, K. Kim, S. Zhang, J. Johnson, G. Salazar, High-temperature piezoelectric sensing. Sensors2014, 14, 144.10.3390/s140100144Search in Google Scholar PubMed PubMed Central
[4] S. Zhang, F. Yu, Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc.2011, 94, 3153.10.1111/j.1551-2916.2011.04792.xSearch in Google Scholar
[5] F. Yu, X. Duan, S. Zhang, Q. Lu, X. Zhao, Rare-Earth calcium oxyborate piezoelectric crystals ReCa4O(BO3)3: growth and piezoelectric characterizations. Crystals2014, 4, 241.10.3390/cryst4030241Search in Google Scholar
[6] F. Yu, S. Hou, X. Zhao, S. Zhang, High-temperature piezoelectric crystals ReCa4O(BO3)3: a review. Phys. Status Solidi A2014, 211, 574.10.1002/pssa.201330191Search in Google Scholar
[7] T. N. Khamaganova, V. K. Trunov, B. F. Dzhurinski, The crystal structure of calcium samarium oxide borate Ca8Sm2O2(BO3)6. Russ. J. Inorg. Chem.1991, 36, 484.Search in Google Scholar
[8] R. Norrestam, M. Nygren, J. O. Bovin, Structural investigations of new calcium-rare earth (R) oxyborates with the composition Ca4RO(BO3)3. Chem. Mater.1992, 4, 737.10.1021/cm00021a044Search in Google Scholar
[9] S. Lei, Q. Huang, Y. Zheng, A. Jiang, C. Chen, Structure of calcium fluoroborate, Ca5(BO3)3F. Acta Crystallogr.1989, C 45, 1861.10.1107/S0108270189004361Search in Google Scholar
[10] J. G. Fletcher, F. P. Glasser, R. A. Howie, Pentacalcium triborate fluoride and its relationship to fluorapatite. Acta Crystallogr.1991, C 47, 12.10.1107/S0108270190006680Search in Google Scholar
[11] G. Aka, A. Kahn-Harari, D. Vivien, J.-M. Benitez, F. Salin, J. Godard, A new non-linear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB). Eur. J. Solid State Inorg. Chem.1996, 33, 727.10.1002/chin.199701031Search in Google Scholar
[12] R. Möckel, C. Reuther, J. Götze, REECOB: 20 years of rare earth element calcium oxoborates crystal growth research. J. Crystal Growth2013, 371, 70.10.1016/j.jcrysgro.2013.02.007Search in Google Scholar
[13] G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, J. P. Damelet, Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3. J. Opt. Soc. Am. B1997, 14, 2238.10.1364/JOSAB.14.002238Search in Google Scholar
[14] R. A. Kumar, Borate crystals for nonlinear optical and Laser applications: a review. J. Chem.2013, 2013, 6. doi: 10.1155/2013/154862.10.1155/2013/154862Search in Google Scholar
[15] A. L. Bajor, J. Kisielewski, A. Klos, K. Kopczynski, T. Lukasiewicz, J. Mierczyk, J. Mlynczak, Assessment of gadolinium calcium borate (GdCOB) for laser applications. Opto-Electron. Rev.2011, 19, 439.10.2478/s11772-011-0042-2Search in Google Scholar
[16] G. J. Dirksen, G. Blasse, Tetracalcium gadolinium oxoborate (Ca4GdO(BO3)3) as a new host lattice for luminescent materials. J. Alloys Comp.1993, 191, 121.10.1016/0925-8388(93)90282-RSearch in Google Scholar
[17] S. Hou, F. Yu, Y. Liu, S. Zhang, Q. Lu, S. Wang, X. Zhao, Crystal growth and characterization of thulium calcium oxyborate high-temperature piezoelectric crystals. CrystEngComm2015, 17, 553.10.1039/C4CE01830CSearch in Google Scholar
[18] F. Yu, S. Hou, X. Zhao, S. Zhang, Electro-elastic properties of YCa4O(BO3)3 piezoelectric crystals. IEEE Trans. Ultrason. Ferroelect. Freq. Control2014, 61, 1344.10.1109/TUFFC.2014.3042Search in Google Scholar PubMed
[19] J. Wang, X. Hu, X. Yin, R. Song, J. Wei, Z. Shao, Y. Liu, M. Jiang, Y. Tian, J. Jiang, W. Huang, Growth, defects and properties of GdCa4O(BO3)3 and Nd:GdCa4O(BO3)3 crystals. J. Mater. Res.2001, 16, 790.10.1557/JMR.2001.0093Search in Google Scholar
[20] M. Nishida, T. Shiosaki, Measurement of materials constants and theoretical calculation of surface acoustic wave characteristics of GdCOB crystal. Proc. IEEE Int. Ultras., Ferroel. Freq. Control Symposium2004, 1988.10.1109/ULTSYM.2004.1418223Search in Google Scholar
[21] IEEE Standards on Piezoelectricity, Sponsored by the Standards Committee of the IEEE Ultrasonics, Ferroelectrics and Frequency Control Society, 1988.Search in Google Scholar
[22] A. B. Ilyukhin, B. F. Dzhurinskii, Crystal structures of binary oxoborates LnCa4LaO(BO3)3 (Ln=Gd, Tb, and Lu) and Eu2CaO(BO3)2. Russ. J. Inorg. Chem.1993, 38, 917.Search in Google Scholar
[23] R. Möckel, M. Hengst, J. Götze, G. Heide, REECa4O(BO3)3 (REECOB): new material for high-temperature piezoelectric applications. In Minerals as Advanced Materials II, (Ed. S. V. Krivovichev), Springer-Verlag, Berlin, Heidelberg, p. 367, 2012.10.1007/978-3-642-20018-2_34Search in Google Scholar
[24] F. Mougel, A. Kahn-Harari, G. Aka, D. Pelenc, Structural and thermal stability of Czochralski grown GdCOB oxoborate single crystals. J. Mater. Chem.1998, 8, 1619.10.1039/a800492gSearch in Google Scholar
[25] S. Nakai, H. Aoi, K. Hayashi, T. Katoh, T. Watanabe, Solubilities of boric acid in heavy water. J. Nuc. Sci. Technol.1988, 25, 65.10.1080/18811248.1988.9733556Search in Google Scholar
[26] C. Reuther, R. Möckel, M. Hengst, J. Götze, A. Schwarzer, H. Schmidt, Growth and structure of Ca4La[O|(BO3)3]. J. Crystal Growth2011, 320, 90.10.1016/j.jcrysgro.2011.02.007Search in Google Scholar
[27] C. Reuther, R. Möckel, J. Götze, M. Hengst, G. Heide, Synthesis and optical characterization of Gd-neso-borate single crystals. Chemie der Erde2015, 75, 317.10.1016/j.chemer.2015.04.004Search in Google Scholar
[28] G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. A2008, 64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed
[29] C. Andeen, J. Fontanella, D. Schuele, Accurate determination of the dielectric constant by the method of substitution. Rev. Sci. Instrum.1970, 41, 1573.10.1063/1.1684344Search in Google Scholar
[30] C. Andeen, J. Fontanella, D. Schuele, Low-frequency dielectric constants of the alkaline Earth fluorides by the method of substitution. J. Appl. Phys.1971, 42, 2216.10.1063/1.1660527Search in Google Scholar
[31] P. B. Ishai, M. S. Talary, A. Caduff, E. Levy, Y. Feldman, Electrode polarization in dielectric measurements: a review. Meas. Sci. Technol.2013, 24, 102001.10.1088/0957-0233/24/10/102001Search in Google Scholar
[32] R. Leisure, F. Willis, Resonant ultrasound spectroscopy. J. Phys.: Condens. Matter1997, 9, 6001.10.1088/0953-8984/9/28/002Search in Google Scholar
[33] A. Migliori, J. Sarrao, Resonant Ultrasound Spectroscopy. Wiley, New York, 1997.Search in Google Scholar
[34] H. Ogi, M. Fukunaga, M. Hirao, H. Ledbetter, Elastic constants, internal friction, and piezoelectric coefficient of α-TeO2. Phys. Rev.2004, B69, 024104.10.1103/PhysRevB.69.024104Search in Google Scholar
[35] H. Ogi, T. Ohmori, N. Nakamura, M. Hirao, Elastic, anelastic, and piezoelectric coefficients of α-quartz determined by resonance ultrasound spectroscopy. J. Appl. Phys.2006, 100, 053511.10.1063/1.2335684Search in Google Scholar
[36] P. M. Davulis, A. Shyam, E. Lara-Curzio, M. Pereira da Cunha, High temperature elastic constants of langatate from RUS measurements up to 1100°C. Proc. IEEE Int. Ultrason. Symp.2008, 2150.10.1109/ULTSYM.2008.0532Search in Google Scholar
[37] C. Hirschle, J. Schreuer, High-temperature ultrasound attenuation in langasite and langatate. IEEE Trans. Ultrason. Ferroelect. Freq. Control2018, 65, 1250.10.1109/TUFFC.2018.2836434Search in Google Scholar PubMed
[38] H. Ogi, N. Nakamura, M. Hirao, H. Ledbetter, Determination of elastic, anelastic, and piezoelectric coefficients of piezoelectric materials from a single specimen by acoustic resonance spectroscopy. Ultrasonics2004, 42, 183.10.1016/j.ultras.2004.01.007Search in Google Scholar PubMed
[39] H. Ogi, N. Nakamura, K. Sato, M. Hirao, S. Uda, Elastic, anelastic, and piezoelectric coefficients of langasite: Resonance ultrasound spectroscopy with Laser-Doppler interferometry. IEEE Trans. Ultrason. Ferroelect. Freq. Control2003, 50, 553.10.1109/TUFFC.2003.1201468Search in Google Scholar
[40] J. Schreuer, Elastic and piezoelectric properties of La3Ga5SiO14 and La3Ga5.5Ta0.5O14: an application of resonant ultrasound spectroscopy. IEEE Trans. Ultrason. Ferroelect. Freq. Control2002, 49, 274.10.1109/TUFFC.2002.1049728Search in Google Scholar
[41] R. Tarumi, T. Matsuhisa, Y. Shibutani, Low temperature elastic constants and piezoelectric coefficients of LiNbO3 and LiTaO3: resonant ultrasound spectroscopy measurement and lattice dynamics analysis. Jpn. J. Appl. Phys.2012, 51, 07GA02.10.7567/JJAP.51.07GA02Search in Google Scholar
[42] N. Nakamura, H. Ogi, M. Hirao, Elastic, anelastic, and piezoelectric coefficients of GaN. J. Appl. Phys.2012, 111, 013509.10.1063/1.3674271Search in Google Scholar
[43] C. S. Pandey, J. Schreuer, Elastic and piezoelectric constants of tourmaline single crystals at non-ambient temperatures determined by resonant ultrasound spectroscopy. J. Appl. Phys.2012, 111, 013516.10.1063/1.3673820Search in Google Scholar
[44] W. Ritz, Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. Z. reine u. angew. Math.1909, 135, 31.10.1515/crll.1909.135.1Search in Google Scholar
[45] C. Pawlaczyk, E. Markiewicz, A. Klos, W. Hofman, A. Pajaczkowska, Elastic and piezoelectric properties of gadolinium calcium oxoborate GdCa4O(BO3)3 crystal. Phys. Stat. Sol. (A)2006, 203, 2103.10.1002/pssa.200521013Search in Google Scholar
[46] H. Shimizu, T. Nishida, H. Takeda, T. Shiosaki, Dielectric, elastic and piezoelectric properties of RCa4O(BO3)3 (R=rare-earth elements) crystals with monoclinic structure of point group m. J. Crystal Growth2009, 311, 916.10.1016/j.jcrysgro.2008.09.144Search in Google Scholar
[47] H. Schmidt, A. Sotnikov, S. V. Biryukov, M. Weihnacht, Precise microacoustic characterization of new piezoelectric crystals for high-temperature sensors. AMA Conferences 2015 – Sensor 2015 and IRS 20152015, 396.10.5162/sensor2015/C3.4Search in Google Scholar
[48] F. Yu, S. Zhang, Zhao, X., D. Yuan, C.-M. Wang, T. R. Shrout, Characterization of neodymium calcium oxyborate piezoelectric crystal with monoclinic phase. Cryst. Growth Des.2010, 10, 1871.10.1021/cg9015756Search in Google Scholar
[49] H. Shimizu, K. Kodama, H. Takeda, T. Nishida, T. Shikida, S. Okamura, T. Shiosaki, Evaluation of material constants and temperature properties in lanthanum calcium oxoborate LaCa4O(BO3)3 single crystals. Jpn. J. Appl. Phys.2004, 43, 6716.10.1143/JJAP.43.6716Search in Google Scholar
[50] H. Shimizu, H. Takeda, T. Nishida, S. Okamura, T. Shiosaki, T. Shikida, Evaluation of material constants and SAW properties in LaCa4O(BO3)3 single crystals. 2004 IEEE Ultrasonics Symposium2004, 1218.10.1109/ULTSYM.2004.1418006Search in Google Scholar
[51] R. A. Robie, J. L. Edwards, Some Debye temperatures from single-crystal elastic constant data. J. Appl. Phys.1966, 37, 2659.10.1063/1.1782100Search in Google Scholar
[52] M. C. Sha, Z. Li, R. C. Bradt, Single-crystal elastic constants of fluorapatite, Ca5F(PO4)3. J. Appl. Phys.1994, 75, 7784.10.1063/1.357030Search in Google Scholar
[53] H. S. Yoon, R. E. Newnham, Elastic properties of fluorapatite. Am. Mineral.1969, 54, 1193.Search in Google Scholar
[54] S. Haussühl, Die Abweichungen von den Cauchy-Relationen. Phys. kondens. Mater.1967, 6, 181.10.1007/BF02422715Search in Google Scholar
[55] S. Haussühl, Interpretation of elastic properties of ionic crystals. Validity of a quasi-additivity rule? Z. Kristallogr.1993, 205, 215.10.1524/zkri.1993.205.Part-2.215Search in Google Scholar
[56] S. Haussühl, D. Mateika, Elastic and thermoelastic constants of gadolinium gallium garnet Gd3Ga5O12. Z. Naturfosch.1972, A27, 1522.10.1515/zna-1972-1025Search in Google Scholar
[57] K. Adachi, H. Ogi, N. Takeuchi, N. Nakamura, H. Watanabe, T. Ito, Y. Ozaki, Unusual elasticity of monoclinic β-Ga2O3. J. Appl. Phys.2018, 124, 085102–1.10.1063/1.5047017Search in Google Scholar
[58] W. Miller, K. Böttcher, G. Zbigniew, J. Schreuer, Numerical modelling of the Czochralski growth of β-Ga2O3. Crystals2017, 7, 26.10.3390/cryst7010026Search in Google Scholar
[59] H. Oda, O. L. Anderson, D. G. Isaak, I. Suzuki, Measurement of elastic properties of single-crystal CaO up to 1200 K. Phys. Chem. Miner.1992, 19, 96.10.1007/BF00198607Search in Google Scholar
[60] M. Kodama, T. Matsushita, S. Kojima, Velocity of sound and elastic properties of Li2O–B2O3 glasses. Jpn. J. Appl. Phys.1995, 34, 2570.10.1143/JJAP.34.2570Search in Google Scholar
[61] A. Ballato, Basic material quartz and related innovations. In Piezoelectricity, (Eds. W. Heywang, K. Lubnitz, W. Wersing) Evolution and Future of a Technology, Vol. 114, Springer Series in Materials Science, Berlin, Heidelberg, 2008.10.1007/978-3-540-68683-5_2Search in Google Scholar
[62] S. Hou, F. Yu, Y. Tang, S. Zhang, X. Zhao, Pyroelectric properties of rare-earth calcium oxyborate crystals: ReCa4O(BO3)3 (Re: Y, Gd, Nd, and Pr). IEEE Trans. Ultrason. Ferroelect. Freq. Control2014, 61, 561.10.1109/TUFFC.2014.2944Search in Google Scholar
[63] G. L. Hovis, B. T. Scott, C. M. Altomare, A. R. Leaman, M. D. Morris, G. P. Tomaino, F. M. McCubbin, Thermal expansion of fluorapatite-hydroxylapatite crystalline solutions. Am. Mineral2014, 99, 2171.10.2138/am-2014-4914Search in Google Scholar
[64] R. S. Bubnova, S. K. Filatov, Strong anisotropic thermal expansion in borates. Physica B2008, 245, 2469.10.1002/pssb.200880253Search in Google Scholar
[65] B. P. Burton, Order-disorder phenomena and phase separation. In Encyclopedia of Materials: Science and Technology, (Eds. K. H. J. Buschow, B. Ilschner, E. J. Kramer, S. Mahajan, P. Veyssire) Elsevier, Oxford, 2001.10.1016/B0-08-043152-6/01149-9Search in Google Scholar
[66] M. A. Carpenter, R. Powell, E. K. H. Salje, Thermodynamics of nonconvergent cation ordering in minerals: I. An alternative approach. Am. Mineral.1994, 79, 1053.Search in Google Scholar
[67] J. B. Thompson, Chemical reactions in crystals. Am. Mineral.1969, 54, 341.Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Crystal structure of a new polymorphic modification of Na2Mn3(SO4)4
- Order/disorder processes and electromechanical properties of monoclinic GdCa4O(BO3)3
- Production of iron oxide and nickel oxide nanostructural particles, investigation of the supercapacitor and photocatalytic properties
- Hydrogen bonding in lead uranyl oxide mineral sayrite
- Influence of the alkali cation size on the Cu2+ coordination environments in (AX)[Cu(HSeO3)2] (A=Na, K, NH4, Rb, Cs; X=Cl, Br) layered copper hydrogen selenite halides
- Copper hydroselenite nitrates (A+NO3)n [Cu(HSeO3)2] (A=Rb+, Cs+ and Tl+, n=1, 2) related to Ruddlesden – Popper phases
- Reliable Sn–Ag–Cu lead-free melt-spun material required for high-performance applications
- Micro Review
- William Barlow’s early publications in the ‘Zeitschrift für Krystallographie und Mineralogie’ and their influence on crystal structure research
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Crystal structure of a new polymorphic modification of Na2Mn3(SO4)4
- Order/disorder processes and electromechanical properties of monoclinic GdCa4O(BO3)3
- Production of iron oxide and nickel oxide nanostructural particles, investigation of the supercapacitor and photocatalytic properties
- Hydrogen bonding in lead uranyl oxide mineral sayrite
- Influence of the alkali cation size on the Cu2+ coordination environments in (AX)[Cu(HSeO3)2] (A=Na, K, NH4, Rb, Cs; X=Cl, Br) layered copper hydrogen selenite halides
- Copper hydroselenite nitrates (A+NO3)n [Cu(HSeO3)2] (A=Rb+, Cs+ and Tl+, n=1, 2) related to Ruddlesden – Popper phases
- Reliable Sn–Ag–Cu lead-free melt-spun material required for high-performance applications
- Micro Review
- William Barlow’s early publications in the ‘Zeitschrift für Krystallographie und Mineralogie’ and their influence on crystal structure research