Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) July 20, 2018

First representatives of (210)-oriented perovskite variants−Synthesis, crystal structures and properties of the new 2D hybrid perovskites A[HC(NH2)2]PbI4; A=[C(NH2)3], [HSC(NH2)2]

  • Michael Daub and Harald Hillebrecht EMAIL logo

Abstract

Single crystals of [C(NH2)3][HC(NH2)2]PbI4 (GuFAPbI4) and [HSC(NH2)2][HC(NH2)2]PbI4 (TuFAPbI4) were obtained from solutions of the binary halides in HI or DMF. Large crystals grown from HI are dark-brown while single phase powders synthesized from DMF are orange. The crystal structure of GuFAPbI4 (I2/m, Z=12, a=14.3147(2), b=12.7591(2), c=25.7377(4)Å), β=101.459(1), 4256 refl., 196 param., R1=0.024, wR2=0.061) represents a 2D perovskite with a new motif similar to Ruddlesden-Popper phases (AX)m(A′BX3)n and m=n=1. The layers are formed by corner-sharing PbI6 octahedra. According to the cut-out of the 3-D perovskite the structure of GuFAPbI4 can be assigned as a (210)-oriented representative. So one octahedron is linked in trans-position and two in cis-orientation. The structure of TuFAPbI4 (P21/n, Z=12, a=14.4208(6), b=12.7545(7), c=26.3982(11) Å), β=100.609(3)°, 6808 refl., 275 param., R1=0.048, wR2=0.096) represents a simple distortion variant of GuFAPbI4. GuFAPbI4 and TuFAPbI4 were further characterized by vibrational spectroscopy and optical spectroscopy. The optical band gap was determined as 2.34 eV in agreement to the observed color. So both compounds are not suitable as a dye in the PSC perovskite solar cell. Similar to other Pb-containing 2D perovskites there is a significant excitonic peak (2.31 eV). TuFAPbI4 represents the first example with protonated thiourea as an organic cation. Therefore, we characterized protonated thiourea iodide and introduce protonated thiourea [HSC(NH2)2]+ as a new cation for hybrid halogeno perovskites.

References

[1] National Renewable Energy Laboratory, “Best Research-Cell Efficiencies”; https://www.nrel.gov/pv/assets/images/efficiency-chart.png. Accessed 3 March 2018.Search in Google Scholar

[2] J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S. M. Cho, N.-G. Park, Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater.2015, 5, 1501310.10.1002/aenm.201501310Search in Google Scholar

[3] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci.2016, 9, 1989.10.1039/C5EE03874JSearch in Google Scholar

[4] D. J. Slotcavage, H. I. Karunadasa, M. D. McGehee, Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett.2016, 1, 1199.10.1021/acsenergylett.6b00495Search in Google Scholar

[5] A. J. Barker, A. Sadhanala, F. Deschler, M. Gandini, S. P. Senanayak, P. M. Pearce, E. Mosconi, A. J. Pearson, Y. Wu, A. R. S. Kandada, T. Leijtens, F. De Angelis, S. E. Dutton, A. Petrozza, R. H. Friend, Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett.2017, 2, 1416.10.1021/acsenergylett.7b00282Search in Google Scholar

[6] A. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, M. G. Kanatzidis, Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater.2016, 28, 2852.10.1021/acs.chemmater.6b00847Search in Google Scholar

[7] C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, H. I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed.2014, 53, 11232.10.1002/anie.201406466Search in Google Scholar PubMed

[8] A. Saparov, D. B. Mitzi, Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 2016, 116, 4558.10.1021/acs.chemrev.5b00715Search in Google Scholar PubMed

[9] R. J. D. Tilley, Perovskites Structure-Property Relationships, Wiley, Chichester, UK, 2016.10.1002/9781118935651Search in Google Scholar

[10] L. Mao, Y. Wu, C. C. Stoumpos, M. R. Wasielewski, M. G. Kanatzidis, White-light emission and structural distortion in new corrugated two-dimensional lead bromide perovskites, J. Am. Chem. Soc.2017, 139, 5210.10.1021/jacs.7b01312Search in Google Scholar PubMed

[11] M. Daub, H. Hillebrecht, Synthesis, single-crystal structure and characterization of (CH3NH3)2Pb(SCN)2I2. Angew. Chem. Int. Ed.2015, 54, 11016.10.1002/anie.201506449Search in Google Scholar PubMed

[12] C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D McGehee, H. I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed.2014, 53, 11232.10.1002/anie.201406466Search in Google Scholar PubMed

[13] A. H. Slavney, R. W. Smaha, I. C. Smith, A. Jaffe, D. Umeyama, H. I Karunadasa, Chemical approaches to addressing the instability and toxicity of lead-halide perovskite absorbers. Inorg. Chem.2017, 56, 46.10.1021/acs.inorgchem.6b01336Search in Google Scholar PubMed

[14] M. Daub, L. Wagner, A. Hinsch, H. Hillebrecht, A mixed Methylammonium and Guanidinium Ruddlesden-Popper Phase for Photovoltaics 2nd International Conference on Perovskite Solar Cells and Optoelectronics (PSCO). Genova, P27 2016.Search in Google Scholar

[15] C. M. M. Soe, C. C. Stoumpos, M. Kepenekian, B. Traoré, H. Tsai, W. Nie, B. Wang, C. Katan, R. Seshadri, A. D. Mohite, J. Even, T. J. Marks, M. G. Kanatzidis, New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3(CH3NH3)nPbnI3n+1: structure, properties and photovoltaic performance. J. Am. Chem. Soc.2017, 139, 16297.10.1021/jacs.7b09096Search in Google Scholar PubMed

[16] J.-W. Lee, H.-S. Kim, N.-G. Park lewis acid−base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res.2016, 49, 311.10.1021/acs.accounts.5b00440Search in Google Scholar PubMed

[17] C. Fei, B. Li, R. Zhang, H. Fu, J. Tian, G. Cao highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 film. Adv. Energy Mater.2017, 7, 1602017.10.1002/aenm.201602017Search in Google Scholar

[18] M. E. Kamminga, G. A. de Wijs, R. W. A. Havenith, G. R. Blake, T. T. M. Palstra, The role of connectivity on electronic properties of lead iodide perovskite-derived compounds. Inorg. Chem.2017, 56, 8408.10.1021/acs.inorgchem.7b01096Search in Google Scholar PubMed PubMed Central

[19] D. H. Fabini, J. G. Labram, A. J. Lehner, J. S. Bechtel, H. A. Evans, A. Van der Ven, F. Wudl, M. L. Chabinyc, R. Seshadri, Main-group halide semiconductors derived from perovskite: distinguishing chemical, structural, and electronic aspects. Inorg. Chem.2017, 56, 11.10.1021/acs.inorgchem.6b01539Search in Google Scholar PubMed

[20] M. Szafranski, M. Jarek, Origin of spontaneous polarization and reconstructive phase transition in guanidinium iodide. CrystEngComm.2013, 15, 4617.10.1039/c3ce26979eSearch in Google Scholar

[21] A. A. Petrov, E. A. Goodilin, A. B. Tarasov, V. A. Lazarenko, P. V. Dorovatovskii, V. N. Khrustalev, Formamidinium iodide: crystal structure and phase transitions. Acta Crystallogr.2017, E73, 569.10.1107/S205698901700425XSearch in Google Scholar PubMed PubMed Central

[22] M. Daub, Ch. Haber, H. Hillebrecht, Synthesis, crystal structure, phase transitions and optical properties of the perovskite-related layered hybrids ((C(NH2)3)2MI4; M=Sn, Pb”, Eur. J. Inorg. Chem.2017, 7, 1120.10.1002/ejic.201601499Search in Google Scholar

[23] J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Stat. Sol.1966, 15, 627.10.1515/9783112492505-079Search in Google Scholar

[24] E. A. Davis, N. F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag.1970, 22, 903.10.1080/14786437008221061Search in Google Scholar

[25] T. Ishihara, X. Hong, J. Ding, A. V. Nurmikko, Dielectric confinement effect for exciton and biexciton states in PbI4-based two-dimensional semiconductor structures. Surf. Sci.1992, 267, 323.10.1016/0039-6028(92)91147-4Search in Google Scholar

[26] T. Kataoka, T. Kondo, R. Ito, S. Sasaki, K. Uchida, N. Miura, Magneto-optical study on excitonic spectra in (C6H13NH3)2PbI4. Phys. Rev. B1993, 47, 2010.10.1103/PhysRevB.47.2010Search in Google Scholar

[27] S. Ahmad, G. V. Prakash, Strong room-temperature ultraviolet to red excitons from inorganic organic-layered perovskites, (R-NH3)2MX4 (M=Pb2+, Sn2+, Hg2+; X=I, Br). J. Nanophoton. 2014, 8, 083892.10.1117/1.JNP.8.083892Search in Google Scholar

[28] C. Lermer, S. P. Harm, S. T. Birkhold, J. A. Jaser, C. M. Kutz, P. Mayer, L. Schmidt-Mende, B. V. Lotsch, Benzimidazolium lead halide perovskites: effects of anion substitution and dimensionality on the bandgap. Z. Anorg. Allg. Chem. 2016, 642, 1369.10.1002/zaac.201600371Search in Google Scholar

[29] L. Mao, H. Tsai, W. Nie, L. Ma, J. Im, C. C. Stoumpos, C. D. Malliakas, F. Hao, M. R. Wasielewski, A. D. Mohite, M. G. Kanatzidis, Role of organic counterion in lead- and tin-based two-dimensional semiconducting iodide perovskites and application in planar solar cells. Chem. Mater.2016, 28, 7781.10.1021/acs.chemmater.6b03054Search in Google Scholar

[30] T. Ishihara, J. Takahashi, T. Goto, Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4, Phys. Rev. B1990, 42, 11099.10.1103/PhysRevB.42.11099Search in Google Scholar

[31] Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, Y. Kanemitsu, Photoelectronic responses in solution-processed perovskite CH3NH3PbI3 solar cells studied by photoluminescence and photoabsorption spectroscopy. IEEE J. Photovoltaics2015, 5, 401.10.1109/JPHOTOV.2014.2364115Search in Google Scholar

[32] A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, R. J. Nicholas, Direct measurement of the exciton binding energy and effective masses for charge carriers in an organic-inorganic tri-halide perovskite. Nat. Phys.2015, 11, 582.10.1038/nphys3357Search in Google Scholar

[33] Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, P. Meredith, Electro-optics of perovskite solar cells. Nat. Phot.2014, 9, 106.10.1038/nphoton.2014.284Search in Google Scholar

[34] T. Remove, SAINT, Data reduction and frame integration program for the CCD area-detector system; Bruker Analytical X-ray Systems: Madison, WI, 2006.Search in Google Scholar

[35] Stoe & Cie (Darmstadt), Programs X-AREA, X-RED and X-SHAPE, 19992011.Search in Google Scholar

[36] G. M. Sheldrick, Program SHELXTL, Bruker AXS Analytical X-ray Instruments Inc, Madison 1997–2013.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2018-2055).


Received: 2018-02-02
Accepted: 2018-03-04
Published Online: 2018-07-20
Published in Print: 2018-07-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.5.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2018-2055/html
Scroll to top button