Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 8, 2024

Removal of acid dye from wastewater by cloud point extraction and regeneration of surfactant by pH regulation

  • Halima Ghouas

    Halima Ghouas, Professor of chemical engineering at the Higher School of Eelectrical Engineering and Energy of Oran (ESGEEO).

    EMAIL logo
    , Abdelkader Benderrag

    Abdelkader Benderrag, Professor of chemical engineering at the University of Science and Technology of Oran (USTO).

    , Boumedienne Haddou

    Boumedienne Haddou, Professor of chemical engineering at the University of Science and Technology of Oran (USTO).

    and Cristophe Gourdon

    Cristophe Gourdon, Professor of Chemical Engineering at the ENSIACET (INP Toulouse).

Abstract

This work concerns the coacervate extraction of industrial dye, namely Acid Green 9 (AG-9) from aqueous solution by nonionic surfactant Lutensol AO7 and TX-114 (readily biodegradable). Binary water/surfactant and pseudo-binary phase diagrams were plotted. The extraction results as a function of wt% of the surfactant and temperature are expressed by: percentage of solute extracted, E%, residual concentrations of solute and surfactant in the dilute phase (X s,w and X t,w respectively) and volume fraction of coacervate at equilibrium (Фc). For each parameter, whose values are determined by a design of experiments, these results are subjected to empirical smoothing in three dimensionsusing response surface methodology (RSM). The aim of this study is to find out the best compromise between E % and Фc. Under optimal conditions, the extraction extent of AG-9 reaches 98 % and 96 % using TX-114 and Lutensol AO7, respectively. The effect of Na2SO4 and CTAB addition is also studied. Finally, the possibility of recycling the surfactant is proved.


Corresponding author: Halima Ghouas, Laboratoire de Génie Électrique et Matériaux LGEM, Ecole Superieure en Génie Electrique et Energétique d’Oran, BP 64 CH2 ACHABA Hanifi Technopôle USTO, 31000 Oran, Algeria, E-mail:

About the authors

Halima Ghouas

Halima Ghouas, Professor of chemical engineering at the Higher School of Eelectrical Engineering and Energy of Oran (ESGEEO).

Abdelkader Benderrag

Abdelkader Benderrag, Professor of chemical engineering at the University of Science and Technology of Oran (USTO).

Boumedienne Haddou

Boumedienne Haddou, Professor of chemical engineering at the University of Science and Technology of Oran (USTO).

Cristophe Gourdon

Cristophe Gourdon, Professor of Chemical Engineering at the ENSIACET (INP Toulouse).

Acknowledgments

The authors thank the Key Laboratory of Materials Physico-Chemistry U. S. T. Oran and the Chemical Engineering Laboratory of INP-ENSIACET Toulouse for the technical support.

  1. Research ethics: Not applicable.

  2. Author contributions: Halima Ghouas was a major contributor in writing the manuscript, performed the experimental part in the laboratory and contributed in analysis and discussion of the results. Abdelkader Benderrag revised the manuscript and contributed key inputs. Boumedienne Haddou was responsible for the overall control of the article’s ideas and the structure of writing. Cristophe Gourdon revised the manuscript. All authors read and approved the final manuscript.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Shakiba, S., Maryam, M., Mohammad-Hossein, S., Eldon, R. R., Meysam, F. Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives. Process. Saf. Environ. Protect. 2020, 143, 138–163; https://doi.org/10.1016/j.psep.2020.05.034.Search in Google Scholar

2. Aqeel, K., Mubarak, H. A., Amoako-Attahb, J., Abdul-Rahaim, L. A., Al Khaddar, R., Abdellatif, M., Al-Janabi, A., AndHashim, K. S. Electrochemical removal of brilliant green dye from wastewater. Mat. Sci. Eng. 2020, 888, 012036; https://doi.org/10.1088/1757-899X/888/1/012036.Search in Google Scholar

3. Chowdhury, M. F., Khandaker, S., Sarker, F., Islam, A., Trahman, M., Md, R. A. Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater. A Comprehensive review. J. Mol. Liq. 2020, 318, 114061; https://doi.org/10.1016/j.molliq.2020.114061.Search in Google Scholar

4. Hynes, N. R. J., Kumar, J. S., Kamyab, H., Sujana, J. A. J., Al-Khashman, O. A., Kuslu, Y., Ene, A., Kumar, B. S. Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector – A comprehensive review. J. Clean. Prod. 2020, 272, 122636; https://doi.org/10.1016/j.jclepro.2020.122636.Search in Google Scholar

5. Katheresan, V., Kansedo, J.and Lau, S. Y. Efficiency of various recent wastewater dye removal methods: a review. J. Environ. Chem. Eng. 2018, 6, 676–4697. https://doi.org/10.1016/j.jece.2018.06.060.Search in Google Scholar

6. Gupta, T. B., Lataye, D. H. Adsorption of indigo carmine dye onto acacia nilotica (babool) sawdust activated carbon. J. Hazard. Toxicol. Radioact. Waste. 2017, 21, 1–11; https://doi.org/10.1061/(ASCE)HZ.2153-5515.000036.Search in Google Scholar

7. Feipeng, L., Ziyi, G., Lingchen, M., Junyi, F., Jiong, H., Hong, T. Impact of textile industries on surface water contamination by Sb and other potential toxic elements: a case study in Taihu lake basin. China. Int. J. Environ. Res. Public Health. 2023, 20, 3600; https://doi.org/10.3390/ijerph20043600.Search in Google Scholar PubMed PubMed Central

8. Boubakri, S., Djebbi, M. A., Bouaziz, Z., Namour, P. M., Jaffrezic-Renault, N., Amara, A. B. H., Trabelsi-Ayadi, M., Ghorbel-Abid, I., Kalfat, K. Removal of two anionic reactive textile dyes by adsorption into MgAl-layered double hydroxide in aqueous solutions. Environ. Sci. Pollut. Res. 2018, 25, 23817–23832; https://doi.org/10.1007/s11356-018-2391-6.Search in Google Scholar PubMed

9. Tarekul, I., Reazuddin, M. d.R., Tarikul, I., Sarwar, Z., Rahman, M. M. Impact of textile dyes on health and ecosystem: a review of structure causes, and potential solutions. Environ. Sci. Pollut. Res. 2023, 30, 9207–9242; https://doi.org/10.1007/s11356-022-24398-3.Search in Google Scholar PubMed

10. Laura, C., Paredes-Quevedo., González-Caicedo, C., Torres-Luna, J. A., Carriazo, J. G. Removal of a textile azo-dye (basic red 46) in water by efficient adsorption on a natural clay. Water Air Soil Pollut. 2021, 232, 4; https://doi.org/10.1007/s11270-020-04968-2.Search in Google Scholar

11. Siddiqui, S. I., Allehyani, E. S., Al-Harbi, S. A., Hasan, Z., Abomuti, M. A., Rajor, H. K., Oh, S. Investigation of Congo red toxicity towards different living organisms: a review. Processes 2023, 11, 807; https://doi.org/10.3390/pr11030807.Search in Google Scholar

12. Abdellaoui, K., Pavlovic, I., Bouhent, M., Benhamouc, A., Barriga, C. A comparative study of the amaranth azo dye adsorption/desorption from aqueous solutions by layered double hydroxides. Appl. Clay Sci. 2017, 143, 142–150; https://doi.org/10.1016/j.clay.2017.03.019.Search in Google Scholar

13. Mahjoubi, F. Z., Khalidib, A., Abdennouria, M., Barkaa, N. Zn–Al layered double hydroxides intercalated with carbonate, nitrate, chloride and sulphate ions: synthesis, characterisation and dye removal properties. J .Taibah. Univ .Sci . 2017, 11, 90–100; https://doi.org/10.1016/j.jtusci.2015.10.007.Search in Google Scholar

14. Khan, D. Md., Singh, A., Zain Khan, Md., Tabraiz, S., Sheikh, j. Current perspectives, recent advancements, and efficiencies of various dye-containing wastewater treatment technologies. J. Water Proc. Eng. 2023, 53, 103579; https://doi.org/10.1016/j.jwpe.2023.103579.Search in Google Scholar

15. Mojiri, A., Zhou, J. L., Dermani, B. K., Razmi, E., Kasmuri, N. H. Anaerobic membrane bioreactor (AnMBR) for the removal of dyes from water and wastewater: progress, challenges, and future perspectives. Processes 2023, 11, 855; https://doi.org/10.3390/pr11030855.Search in Google Scholar

16. Malviya, A., Jaspal, D. Application of waste utilization in textile dye removal. In Textile Wastewater Treatment. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry; Muthu, S. S., Khadir, A., Eds.; Springer: Singapore, 2022; pp. 371–387.10.1007/978-981-19-2832-1_14Search in Google Scholar

17. Lellis, B., Avaro-Polonio, F. C. Z., Pamphile, J. A., Polonio, J. C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290; https://doi.org/10.1016/j.biori.2019.09.001.Search in Google Scholar

18. Collivignarelli, M. C., Abb, A., Carnevale Miino, M., Damiani, S. Treatments for color removal from wastewater: state of the art. J. Environ. Manag. 2019, 236, 727–745; https://doi.org/10.1016/j.jenvman.2018.11.094.Search in Google Scholar PubMed

19. Johari, N. A., Yusof, N., Lau, W. J., Abdullah, N., Salleh, W. N. W., Jaafar, J., Aziz, F. andI. A. F., Ismail, A. F. Polyethersulfone ultrafiltration membrane incorporated with ferric-based metal-organic framework for textile wastewater treatment. Sep. Purif. Technol. 2021, 270, 118819; https://doi.org/10.1016/j.seppur.2021.118819.Search in Google Scholar

20. Ağtaş, M., Ormancı-Acar, T., Keskin, B., Türken, T.and Koyuncu, I. Nanofiltration membranes for salt and dye filtration: effect of membrane properties on performances. Water Sci. Technol. 2021, 83, 2146–2159; https://doi.org/10.2166/wst.2021.125.Search in Google Scholar PubMed

21. Alderete, B. L. S. J., Godoi, R., Silva, F. R., Taffarel, S. R., Silva, L. P., Garcia, A. L. H., Júnior, H. M., Amorim, H. L. N., Picada, J. N. Evaluation of toxicity and mutagenicity of a synthetic effluent containing azo dye after Advanced Oxidation Process treatment. Chemosphere 2021, 263, 128291; https://doi.org/10.1016/j.chemosphere.2020.128291.Search in Google Scholar PubMed

22. Eskandarian, M. R., Ganjkhanloo, M., Rasoulifard, M. H., Hosseini, S. A. Energy-efficient removal of acid red 14 by UV-LED/persulfate advanced oxidation process: pulsed irradiation, duty cycle, reaction kinetics, and energy consumption. J. Taiwan Inst. Chem. Eng. 2021, 127, 129–139; https://doi.org/10.1016/j.jtice.2021.07.035.Search in Google Scholar

23. Yang, Y. C., Zeng, S. S., Ouyang, Y., Sang, L., Yang, S. Y., Zhang, X. Q., Huang, Y. Y., Ye, J., Xiao, J. M. T., Zhang, N. An intensified ozonation system in a tank reactor with foam block stirrer: synthetic textile wastewater treatment and mass transfer modeling. Sep. Purif. Technol. 2021, 257, 117909; https://doi.org/10.1016/j.seppur.2020.117909.Search in Google Scholar

24. Turhan, K. Determination of optimal conditions in decolorization of disperse dyes in aqueous solution by ozonation. Glo. NEST J. 2021, 23, 143–151; https://doi.org/10.30955/gnj.003096.Search in Google Scholar

25. Gnanasekaran, G., Sudhakaran, M. S. P., Kulmatova, D., Han, J., Arthanareeswaran, G., Jwa, E.and Mok, Y. S. Efficient removal of anionic, cationic textile dyes and salt mixture using a novel CS/MIL-100 (Fe) based nanofiltration membrane. Chemosphere 2021, 284, 131244; https://doi.org/10.1016/j.chemosphere.2021.131244.Search in Google Scholar PubMed

26. Bethi, B., Sonawane, S. H., Bhanvase, B. A., Sonawane, S. S. Textile industry wastewater treatment by cavitation combined with fenton and ceramic nanofiltration membrane. Chem. Eng Process Intens. 2021, 168, 108540; https://doi.org/10.1016/j.cep.2021.108540.Search in Google Scholar

27. Cao, N., Yue, C., Lin, Y., Li, W., Zhang, H., Pang, J., Jiang, Z. Durable and chemical resistant ultra-permeable nanofiltration membrane for the separation of textile wastewater. J. Hazard. Mater. 2021, 414, 125489; https://doi.org/10.1016/j.jhazmat.2021.125489.Search in Google Scholar PubMed

28. Bessaha, H., Bouraada, M., Deménorval, L. C. Removal of indigo carmine and green bezanyl-F2B from water using calcined and uncalcined Zn/Al + Fe layered double hydroxide. J. Water. Reuse Desalination 2017, 7, 152–161; https://doi.org/10.2166/wrd.2016.042.Search in Google Scholar

29. Sanad, M. M. S., Farahat, M. M., Abdel Khalek, M. A. One-step processing of low-cost and superb natural magnetic adsorbent: kinetics and thermodynamics investigation for dye removal from textile wastewater. Adv. Powder Technol. 2021, 32, 1573–1583; https://doi.org/10.1016/j.apt.2021.03.013.Search in Google Scholar

30. do Nascimento, R. K., Damasceno, B. S., de Melo, A. N., Miranda de Farias, P. H., Lima Cavalcanti, J. V. F., Silva Sales, D. S., Lago Falcão, E. H., Vaz de Araú, A. C. Hybrid nanomaterial from pyrolyzed biomass and Fe3O4 magnetic nanoparticles for the adsorption of textile dyes. Cellulose 2023, 30, 2483–2501; https://doi.org/10.1007/s10570-022-04978-9.Search in Google Scholar

31. Zeng, Q., Wang, Y., Zan, F., Khanal, S. K., Hao, T. Biogenic sulfide for azo dye decolorization from textile dyeing wastewater. Chemosphere 2021, 283, 131158; https://doi.org/10.1016/j.chemosphere.2021.131158.Search in Google Scholar PubMed

32. Donkadokula, N. Y., Kola, A. K., Naz, I., Saroj, D. Review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Environ. Sci. Bio. Tech. 2020, 19, 543–560; https://doi.org/10.1007/s11157-020-09543-z.Search in Google Scholar

33. Dahiya, D., Nigam, P. S. Waste management by biological approach employing natural substrates and microbial agents for the remediation of dyes’ wastewater. Appl. Sci. 2020, 10, 2958; https://doi.org/10.3390/app10082958.Search in Google Scholar

34. Bhatia, D., Sharma, N. R., Singh, J., Kanwar, R. S. Biological methods for textile dye removal from wastewater: a review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1836–1876; https://doi.org/10.1080/10643389.2017.1393263.Search in Google Scholar

35. Jaafari, J., Javid, A. B., Barzanouni, H., Younesi, A., Farahani, N. A. A., Mousazadeh, M., Soleimani, P. Performance of modified one-stage Phoredox reactor with hydraulic up-flow in biological removal of phosphorus from municipal wastewater. Desalination. Water. Treat. 2019, 171, 216–222; https://doi.org/10.5004/dwt.2019.24752.Search in Google Scholar

36. Türgay, O., Ersöz, G., Atalay, S., Forss, J., Welander, U. The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Sep. Purif. Technol. 2011, 79, 26–33; https://doi.org/10.1016/j.seppur.2011.03.007.Search in Google Scholar

37. Naghdali, Z., Sahebi, S., Ghanbari, R., Mousazadeh, M., Jamali, H. A. Chromium removal and water recycling from electroplating wastewater through direct osmosis: modeling and optimization by response surface methodology. Environ. Health. Eng. Manag. J. 2019, 6, 113–120; https://doi.org/10.15171/EHEM.2019.13.Search in Google Scholar

38. Naghdali, Z., Sahebi, S., Mousazadeh, M., Jamali, H. A. Optimization of the forward osmosis process using aquaporin membranes in chromium removal. Chem. Eng. Technol. 2020, 43, 298–306; https://doi.org/10.1002/ceat.201900381.Search in Google Scholar

39. Crini, G., Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155; https://doi.org/10.1007/s10311-018-0785-9.Search in Google Scholar

40. Najafpoor, A. A., Davoudi, M., Salmani, E. R. Decolorization of synthetic textile wastewater using electrochemical cell divided by cellulosic separator. J. Environ. Health Sci. Eng. 2017, 15, 1–11; https://doi.org/10.1186/s40201-017-0273-3.Search in Google Scholar PubMed PubMed Central

41. Emamjomeh, M. M., Kakavand, S., Jamali, H. A., Alizadeh, S. M., Safdari, M., Mousavi, S. E. S., Hashim, K. S., Mousazadeh, M. The treatment of printing and packaging wastewater by electrocoagulation-flotation: the simultaneous efficacy of critical parameters and economics. Desalination Water Treat. 2020, 205, 161–174; https://doi.org/10.5004/dwt.2020.26339.Search in Google Scholar

42. Palanisamy, S., Nachimuthu, P., Awasthi, M. K., Ravindran, B., Chang, S. W., Palanichamy, M., Nguyen, D. D. Application of electrochemical treatment for the removal of triazine dye using aluminium electrodes. J. Water Supply Res. Technol – Aqua 2020, 69, 345–354; https://doi.org/10.2166/aqua.2020.109.Search in Google Scholar

43. Alibrahim, M. Removal of toxic eosin Y dye from water samples by cloud point extraction using triton X-114 as nonionic surfactant. Tenside Surfactants Deterg. 2020, 57, 326–331; https://doi.org/10.3139/113.110691.Search in Google Scholar

44. Giovanoudis, I., Athanasiadis, V., Chatzimitakos, T., Gortzi, O., Nanos, G. D., Lala, S. I. Development of a cloud point extraction technique based on lecithin for the recovery of carotenoids from liquid Tomato wastewater. Waste 2023, 1, 105–114; https://doi.org/10.3390/waste1010008.Search in Google Scholar

45. Vivek, K., Vamsi Vikram, G., Pushpavanam, S. Simultaneous extraction and enrichment of sunset yellow dye in an aqueous two-phase system. Dyes Pigments 2023, 212, 111100; https://doi.org/10.1016/j.dyepig.2023.111100.Search in Google Scholar

46. Quina, F. H., Hinze, W. L. Surfactant-mediated cloud point extraction: an environmentally benign alternative separation approach. Ind. Eng. Chem. Res. 1999, 38, 150–168; https://doi.org/10.1021/ie980389n.Search in Google Scholar

47. Kasmi, M., Benderrag, A., Haddou, B., Daaou, M., Canselier, J. P., Gourdon, C. Removal of lead(II) from aqueous solution using triton X-114 in the presence of alanine or phenylalanine as biodegradable system. Tenside Surfactants Deterg. 2020, 57, 521–533; https://doi.org/10.3139/113.110711.Search in Google Scholar

48. Ozalp, O., Soylak, M. Microextraction methods for the separation-preconcentration and determination of food dyes: a minireview. Anal. Lett. 2023, 0, 1–18; https://doi.org/10.1080/00032719.2022.2047998.Search in Google Scholar

49. Anzum, R., Alawamleh, H. S. K., Bokov, D. O., Jalil, A. T., Hoi, H. T., Abdelbasset, W. K., Thoi, N. T., Widjaja, G., Kurochkin, A. A review on separation and detection of copper, cadmium, and chromium in food based on cloud point extraction technology. Food Sci. Technol. 2022, 42; https://doi.org/10.1590/fst.80721.Search in Google Scholar

50. Ingram, T., Storm, S., Glembin, P., Bendt, S., Huber, D., Mehling, T., Smirnova, I. Aqueous surfactant two-phase systems for the continuous countercurrent cloud point extraction. Chem. Ing. Technol. 2012, 84, 840–848; https://doi.org/10.1002/cite.201100256.Search in Google Scholar

51. Benkhedja, H., Canselier, J. P., Gourdon, C., Haddou, B. Phenol and benzenoid alcohols separation from aqueous stream using cloud point extraction: scaling-up of the process in a mixer-settler. J. Water Process Eng. 2017, 18, 202–212; https://doi.org/10.1016/j.jwpe.2017.06.016.Search in Google Scholar

52. Khiat, M., Reffas, H., Hadj, Y. M., Benabdallah, T. Green removal of low and high levels of Cu(II) and Cr(III) cations from concentrated saline chloride medium achieved by a mixture of N, N′-bis(salicylidene)-thiocarbohydrazide-TritonX-100 micellar system via cloud point extraction process. Tenside Surfactants Deterg. 2023, 60, 435–449; https://doi.org/10.1515/tsd-2023-2508.Search in Google Scholar

53. Alibrahim, M. Cloud point extraction of direct blue 71 dye using triton X-100 as nonionic surfactant. Tenside Surfactants Deterg. 2021, 58, 27–32; https://doi.org/10.1515/tsd-2018-2091.Search in Google Scholar

54. Ghouas, H., Haddou, B., Canselier, J. P., Gourdon, C. Wastewater pollution prevention for volatile organic compounds (Benzene, Toluene, Ethylbenzene, and Xylene) using cloud point extraction and regeneration of surfactant by evaporation. Euro-Mediterranean J. Environ. Integr. 2022, 7, 1–12; https://doi.org/10.1007/s41207-022-00292-9.Search in Google Scholar

55. Rather, S. U., Habibur Rahman, Md., Bamufleh, H. S., Alhumade, H., Taimoor, A. A., Saeed, U., Sulaimon, A. A., Alalayah, W. M., Shariff, A. M., Anamul Hoque, Md. Physicochemical approaches reveal the impact of electrolytes and hydrotropic salt on micellization and phase separation behavior of polymer polyvinyl alcohol and surfactant mixture. Inter. J. Biol. Macromol. 2023, 235, 123761; https://doi.org/10.1016/j.ijbiomac.2023.123761.Search in Google Scholar PubMed

56. Nazrul Islam, M. d., Abdul Rub, M., Rafikul Islam, Md., Abdul Goni, Md., Rana, S., Kumar, D., Asiri, A. M., Alghamdi, Y. G., Anamul Hoque, Md., Kabir, S. E. Physico-chemical study of the effects of electrolytes and hydrotropes on the clouding development of TX-100 and ceftriaxone sodium drug mixture. J. Mol. Liq. 2023, 379, 121601; https://doi.org/10.1016/j.molliq.2023.121601.Search in Google Scholar

57. Alam, M. S., Siddiq, A. M., Kamely, N., Priyadharshini, M., Mythili, V.and Mandal, A. B. Influence of additives on clouding of non-ionic surfactant triton X-114 solutions: evaluation of thermodynamics at CP. J. Disp. Sci. Technol. 2015, 36, 1569–1576; https://doi.org/10.1080/01932691.2014.979296.Search in Google Scholar

58. Naqvi, A. Z., Kabir-Ud-Din. Clouding phenomenon in amphiphilic systems: a review of five decades. Colloids Surf. B Biointerfaces 2018, 165, 325–344; https://doi.org/10.1016/j.colsurfb.2018.01.060.Search in Google Scholar PubMed

59. Rehman, R., Usman, Md., Bokhari, T. H., Abd urahman, H.Md., Mansha, A., Siddiq, Md., Rasheed, A., UnNisa, M. Effects of nonionic surfactant (TX-100) on solubilizing power of cationic surfactants (CTAB and CPC) for Direct Red 13. Colloids Surf. A Phys. Chem. Eng. Asp. 2020, 586, 124241; https://doi.org/10.1016/j.colsurfa.2019.124241.Search in Google Scholar

60. Jo, M. S., Rene, E. R., Kim, S. H., Park, H. S. An analysis of synergistic and antagonistic behavior during BTEX removal in batch system using response surface methodology. J. Hazard. Mater. 2008, 152, 1276–1284; https://doi.org/10.1016/j.jhazmat.2007.08.002.Search in Google Scholar PubMed

61. Montgomery, D. C. Design and Analysis of Experiments, 3rd ed.; Wiley: NewYork, 1991.Search in Google Scholar

62. Box, G. E. P., Draper, N. Empirical Model Building and Response Surfaces; John Wiley&Sons: NewYork, 1987.Search in Google Scholar

63. Lucas, M. S., Thaís, M. M., Delia, R. T. B. Using response surface methodology (RSM) to optimize 2G bioethanol production. Biomass. Bioenergy. 2021, 151, 106166; https://doi.org/10.1016/j.biombioe.2021.106166.Search in Google Scholar

64. Materna, K., Szymanowski, J. Separation of phenols from aqueous micellar solutions by cloud point extraction. J. Colloid Interface Sci. 2002, 255, 195–201; https://doi.org/10.1006/jcis.2002.8613.Search in Google Scholar PubMed

65. Oukebdane, K., Semmoud, R., Didi, M. A. Cloud point extraction of Telon Orange anionic azo-dye from aqueous sulphate solutions using Aliquat 336 ionic liquid/Tween 40 as extracting system: factorial design optimization methodology. Desalination Water Treat. 2022, 247, 272–280; https://doi.org/10.5004/dwt.2022.28039.Search in Google Scholar

66. Oke, E. A., Ijardar, S. P. Aqueous biphasic systems composed of alcohol-based deep eutectic solvents and inorganic salts: application in the extraction of dyes with varying hydrophobicity. J. Mol. Liq. 2023, 375, 121372; https://doi.org/10.1016/j.molliq.2023.121372.Search in Google Scholar

67. Usman, M., Raza, S., Sultana, H., Raza, Z. A., Siddiq, M., Haq, A., Bukhtawar, F., Younis, S., Rafiq, S. Interaction of Direct Blue 86 with cationic surfactant micelles: spectroscopic, conductometric and thermodynamic aspects. Tenside Surfactants Deterg. 2022, 59, 501–510; https://doi.org/10.1515/tsd-2022-2448.Search in Google Scholar

68. Ghouas, H., Haddou, B., Bouabdesselam, H., Bouberka, Z., Derriche, Z. Elimination of fuel spills from effluent using cloud point extraction methods. J. Hazard. Mater. 2010, 180, 188–196; https://doi.org/10.1016/j.jhazmat.2010.04.012.Search in Google Scholar PubMed

69. Haddou, B., Taibi, A., Bouberka, Z., Bouabdesselam, H., Derriche, Z. Separation of neutral red and methylene blue from wastewater using two-aqueous phase extraction. Sep. Sci. Technol. 2007, 42, 2677–2691; https://doi.org/10.1080/01496390701514774.Search in Google Scholar

70. Haddou, B., Canselier, J. P.and Gourdon, C. Cloud point extraction of phenol and benzyl alcohol from aqueous stream, Sep. Purif. Technol. 2006, 50, 114–121; https://doi.org/10.1016/j.seppur.2005.11.014.Search in Google Scholar

71. Robert, L., Revia, A., Makharadze, G. Cloud-point preconcentration of fulvic and humic acids. Talanta 1999, 48, 409–413; https://doi.org/10.1016/S0039-9140(98)00262-8.Search in Google Scholar PubMed

72. Habbal, S., Haddou, B., Canselier, J. P., Gourdon, C. Easy removal of methylparaben and propylparaben from aqueous solution using nonionic micellar system. Tenside Surfactants Deterg. 2019, 56, 112–118; https://doi.org/10.3139/113.110611.Search in Google Scholar

73. Ghouas, H., Haddou, B., Kameche, M., Canselier, J. P., Gourdon, C. Removal of Tannic acid from aqueous solution by cloud point extraction and investigation of surfactant regeneration by microemulsion extraction. J. Surf. Deterg. 2016, 19, 57–66; https://doi.org/10.1007/s11743-015-1764-9.Search in Google Scholar

74. Ghouas, H., Haddou, B., Kameche, M., Derriche, Z., Gourdon, C. Extraction of humic acid by coacervate: investigation of direct and back processes. J. Hazard. Mater. 2012, 205–206, 171–178; https://doi.org/10.1016/j.jhazmat.2011.12.057.Search in Google Scholar PubMed

Received: 2023-08-31
Accepted: 2023-10-09
Published Online: 2024-01-08
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/tsd-2023-2557/html
Scroll to top button