Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 16, 2022

Surface properties of dicationic ionic liquids and correlation with biological activity

  • Marta Wojcieszak

    Marta Wojcieszak is Ph.D. student at the Poznan University of Technology. She is involved in study of surface properties of new compounds.

    EMAIL logo
    , Damian Krystian Kaczmarek

    Damian Krystian Kaczmarek received his Ph.D. from Department of Chemical Technology, Poznan University of Technology (2021). His research interests are focused on chemistry and technology of organic compounds, and environmental technologies.

    , Klaudia Krzyźlak

    Klaudia Krzyźlak is currently a student from Department of Chemical Technology, Poznan University of Technology.

    , Amelia Siarkiewicz

    Amelia Siarkiewicz is currently a student from Department of Chemical Technology, Poznan University of Technology.

    , Tomasz Klejdysz

    Tomasz Klejdysz is a scientific researcher at the Institute of Plant Protection - National Research Institute.

    and Katarzyna Materna

    Katarzyna Materna is a professor at the Department of Chemical Technology, Poznan University of Technology. Her research interests are focused on the study of surface properties of new compounds.

Abstract

The surface activity of dicationic ionic liquids is described in this paper. The basic interfacial parameters including critical micelle concentration (CMC), surface tension at the CMC (γCMC), the adsorption efficiency (pC20), surface excess (Γmax), the minimum surface occupied by a single molecule (Amin), and Gibbs energy (ΔG0ads) were investigated and compared. Basically, we wanted to extend our previous study on dicationic ionic liquids with bis-ammonium cation. Knowing that, the compounds obtained are effective in limiting the feeding of adult and larvae confused flour beetle (T. confusum), it was decided to correlate the deterrent activity with the surface properties of analyzed dicationic ionic liquids. Accordingly, it was found that the deterrent activity of the studied compounds increases with increasing wetting ability.


Corresponding author: Ms Ph.D. student Marta Wojcieszak, Poznan University of Technology, Institute of Chemical Technology and Engineering, ul. Berdychowo 4, 60-965 Poznań, Poland, E-mail:
Parts of this work have been presented at the European Detergents Conference (EDC) 2021 in Berlin.

About the authors

Marta Wojcieszak

Marta Wojcieszak is Ph.D. student at the Poznan University of Technology. She is involved in study of surface properties of new compounds.

Damian Krystian Kaczmarek

Damian Krystian Kaczmarek received his Ph.D. from Department of Chemical Technology, Poznan University of Technology (2021). His research interests are focused on chemistry and technology of organic compounds, and environmental technologies.

Klaudia Krzyźlak

Klaudia Krzyźlak is currently a student from Department of Chemical Technology, Poznan University of Technology.

Amelia Siarkiewicz

Amelia Siarkiewicz is currently a student from Department of Chemical Technology, Poznan University of Technology.

Tomasz Klejdysz

Tomasz Klejdysz is a scientific researcher at the Institute of Plant Protection - National Research Institute.

Katarzyna Materna

Katarzyna Materna is a professor at the Department of Chemical Technology, Poznan University of Technology. Her research interests are focused on the study of surface properties of new compounds.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by the Ministry of Education and Science in Poland (0912/SBAD/2108).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Wang, X., Chi, Y., Mu, T. A review on the transport properties of ionic liquids. J. Mol. Liq. 2014, 193, 261–266. https://doi.org/10.1016/j.molliq.2014.03.011.Search in Google Scholar

2. Jarosik, A., Krajewski, S. R., Lewandowski, A., Radzimski, P. Conductivity of ionic liquids mixtures. J. Mol. Liq. 2006, 123, 43–50. https://doi.org/10.1016/j.molliq.2005.06.001.Search in Google Scholar

3. Vila, J., Ginés, P., Rilo, E., Cabeza, O., Varela, L. M. Great increase of the electrical conductivity of ionic liquids in aqueous solution. Fluid Phase Equil. 2006, 247, 32–39. https://doi.org/10.1016/j.fluid.2006.05.028.Search in Google Scholar

4. Nikfarjam, N., Ghomi, M., Agarwal, T., Hassanpour, M., Sharifi, E., Khorsandi, D., Ali Khan, M., Rossi, F., Rossetti, A., Zare, E. N., Rabiee, N., Afshar, D., Vosough, M., Maiti, T. K., Mattoli, V., Lichtfouse, E., Tay, F. R., Makvandi, P. Antimicrobial ionic liquid-based materials for biomedical applications. Adv. Funct. Mater. 2021, 31, 2104148. https://doi.org/10.1002/adfm.202104148.Search in Google Scholar

5. Czerniak, K., Gwiazdowski, R., Marcinkowska, K., Pernak, J. Dicationic triazolium fungicidal ionic liquids with herbicidal properties. Chem. Pap. 2020, 74, 261–271. https://doi.org/10.1007/s11696-019-00875-x.Search in Google Scholar

6. Cieniecka-Rosłonkiewicz, A., Pernak, J., Kubis-Feder, J., Ramani, A., Robertson, A. J., Seddon, K. R. Synthesis, anti-microbial activities and anti-electrostatic properties of phosphonium-based ionic liquids. Green Chem. 2005, 7, 855–862. https://doi.org/10.1039/B508499G.Search in Google Scholar

7. Yang, J., Fan, C., Kong, D., Tang, G., Zhang, W., Dong, H., Liang, Y., Wang, D., Cao, Y. Synthesis and application of imidazolium-based ionic liquids as extraction solvent for pretreatment of triazole fungicides in water samples. Anal. Bioanal. Chem. 2018, 410, 1647–1656. https://doi.org/10.1007/s00216-017-0820-x.Search in Google Scholar PubMed

8. Rzemieniecki, T., Wojcieszak, M., Materna, K., Praczyk, T., Pernak, J. Synthetic auxin-based double salt ionic liquids as herbicides with improved physicochemical properties and biological activity. J. Mol. Liq. 2021, 334, 116452. https://doi.org/10.1016/j.molliq.2021.116452.Search in Google Scholar

9. Syguda, A., Wojcieszak, M., Materna, K., Woźniak-Karczewska, M., Parus, A., Ławniczak, Ł., Chrzanowski, Ł. Double-action herbicidal ionic liquids based on Dicamba Esterquats with 4-CPA, 2,4-D, MCPA, MCPP, and Clopyralid anions. ACS Sustain. Chem. Eng. 2020, 8, 14584–14594. https://doi.org/10.1021/acssuschemeng.0c05603.Search in Google Scholar

10. Kaczmarek, D., Czerniak, K., Klejdysz, T. Dicationic ionic liquids as new feeding deterrents. Chem. Pap. 2018, 72, 2457–2466. https://doi.org/10.1007/s11696-018-0495-6.Search in Google Scholar PubMed PubMed Central

11. Aktar, W., Sengupta, D., Chowdhury, A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscipl. Toxicol. 2009, 2, 1–12. https://doi.org/10.2478/v10102-009-001-7.Search in Google Scholar

12. Pernak, J., Syguda, A., Janiszewska, D., Materna, K., Praczyk, T. Ionic liquids with herbicidal anions. Tetrahedron 2011, 67, 4838–4844. https://doi.org/10.1016/j.tet.2011.05.016.Search in Google Scholar

13. Pernak, J., Markiewicz, B., Zgoła-Grześkowiak, A., Chrzanowski, Ł., Gwiazdowski, R., Marcinkowska, K., Praczyk, T. Ionic liquids with dual pesticidal function. RSC Adv. 2014, 4, 39751–39754. https://doi.org/10.1039/C4RA04816D.Search in Google Scholar

14. Biczak, R., Pawłowska, B., Bałczewski, P., Rychter, P. The role of the anion in the toxicity of imidazolium ionic liquids. J. Hazard Mater. 2014, 274, 181–190. https://doi.org/10.1016/j.hazmat.2014.03.021.Search in Google Scholar

15. Zajac, A., Kukawka, R., Pawlowska-Zygarowicz, A., Stolarska, O., Smiglak, M. Ionic liquids as bioactive chemical tools for use in agriculture and the preservation of agricultural products. Green Chem. 2018, 20, 4764–4789. https://doi.org/10.1039/C8GC01424H.Search in Google Scholar

16. Nandwani, S. K., Malek, N. I., Lad, V. N., Chakraborty, M., Gupta, S. Study on interfacial properties of Imidazolium ionic liquids as surfactants and their application in enhanced oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 2017, 516, 383–393. https://doi.org/10.1016/j.colsurfa.2016.12.037.Search in Google Scholar

17. Bhat, A. R., Wani, F. A., Alzahrani, A. K., Alshehri, A. A., Malik, M. A., Patel, R. Effect of rifampicin on the interfacial properties of imidazolium ionic liquids and its solubility therein. J. Mol. Liq. 2019, 292, 111347. https://doi.org/10.1016/j.molliq2019.111347.Search in Google Scholar

18. Garcia, G., Atilhan, M., Aparicio, S. Interfacial properties of double salt ionic liquids: a molecular dynamics study. J. Phys. Chem. C 2015, 119, 28405–28416. https://doi.org/10.1021/acs.jpcc.5b09070.Search in Google Scholar

19. Barari, M., Lashkarbolooki, M., Abedini, R. Interfacial properties of crude oil/imidazolium based ionic liquids in the presence of NaCl and Na2SO4 during EOR process. J. Mol. Liq. 2021, 327, 114845. https://doi.org/10.1016/j.molliq.2020.114845.Search in Google Scholar

20. El Seoud, O. A., R Pires, P. A., Abdel-Moghny, T., L. Bastos, E. Synthesis and micellar properties of surface-active ionic liquids:1-alkyl-3-methylimidazolium chlorides. J. Colloid Interface Sci. 2007, 313, 296–304. https://doi.org/10.1016/j.jcis.2007.04.028.Search in Google Scholar PubMed

21. Buettner, C. S., Cognigni, A., Schröder, Ch., Bica-Schröder, K. Surface-active ionic liquids: a review. J. Mol. Liq. 2022, 347, 118160. https://doi.org/10.1016/j.molliq.2021.118160.Search in Google Scholar

22. Rosen, M. J. Surfactant and interfacial phenomenon 2nd; John Willey and Sons Inc., 2004. https://doi.org/10.1002/9781118228920.Search in Google Scholar

23. Galgano, P. D., El. Seoud, O. A. Micellar properties of surface active ionic liquids: a comparison of 1-hexadecyl-3-methylimidazolium chloride with structurally related cationic surfactants. J. Colloid Interface Sci. 2010, 345, 1–11. https://doi.org/10.1016/j.cis.2010.01.078.Search in Google Scholar

24. Galgano, P. D., El. Seoud, O. A. Surface active ionic liquids: study of the micellar properties of 1-(1-alkyl)-3methylimidazolium chlorides and comparison with structurally related surfactants. J. Colloid Interface Sci. 2011, 361, 186–194. https://doi.org/10.1016/j.jcis.2011.04.108.Search in Google Scholar PubMed

25. Dong, B., Li, N., Zheng, L., Yu, L., Inoue, T. Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir 2007, 23, 4178–4182. https://doi.org/10.1021/la0633029.Search in Google Scholar PubMed

26. Farooq, U., Patel, R., Ali, A. Interaction of a surface-active ionic liquids with an antidepressant drug: micellization and spectroscopic studies. J. Solut. Chem. 2018, 47, 568–585. https://doi.org/10.1007/s10953-018-0739-7.Search in Google Scholar

27. Łuczak, J., Jungnickel, C., Łącka, I., Stolte, S., Hupka, J. Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives. Green Chem. 2010, 12, 593–601. https://doi.org/10.1039/B921805J.Search in Google Scholar

28. Łuczak, J., Hupka, J., Thöming, J., Jungnickel, C. Self-organization of imidazolium ionic liquids in aqueous solution. Colloids Surf., A 2008, 329, 125–133. https://doi.org/10.1016/j.colsurfa.2008.07.012.Search in Google Scholar

29. Ei-Seoud, O. A., Pires, P. A. R., Moghny, T. A., Bastos, E. L. Synthesis and micellar properties of surface active ionic liquids: 1-alkyl-3-methylimidazolium chlorides. J. Colloid Interface Sci. 2007, 313, 296–304. https://doi.org/10.1016/j.jcis.2007.04.08.Search in Google Scholar

30. Zana, R. Critical micelle concentration of surfactants in aqueous solution and free energy of micellization. Langmuir 1996, 12, 1208–1211. https://doi.org/10.1021/la950691q.Search in Google Scholar

31. Chabba, S., Kumar, S., Aswal, V. K., Kang, T. S., Mahajan, R. K. Interfacial and aggregation behaviour of aqueous mixtures of imidazolium based surface active ionic liquids and anionic surfactant sodium dedecylbenzenesulfonate. Colloids Surf., A 2015, 472, 9–20. https://doi.org/10.1016/j.colsurfa.2015.02.032.Search in Google Scholar

32. Das, S., Patra, N., Banerjee, A., Das, B., Ghosh, S. Studies on the self-aggregation, interfacial and thermodynamic properties of a surface active imidazolium-based ionic liquid in aqueous solution: effects of salt and temperature. J. Mol. Liq. 2020, 320, 114497. https://doi.org/10.1016/j.molliq.2020.114497.Search in Google Scholar

33. Pal, A., Punia, R. Effect of chain length and counter-ion on interaction study of mixed micellar system of isoquinoline-based surface active ionic liquid and cationic surfactants in aqueous medium. Colloid Polym. Sci. 2019, 297, 1541–1557. https://doi.org/10.1007/s00396-019-04566-7.Search in Google Scholar

34. Masri, A. N., Mi, A. M., Leveque, J-M. A review on dicationic ionic liquids: classification and application. Ind. Eng. Manag. 2016, 5, 4–7. https://doi.org/10.4172/2169-0316.1000197.Search in Google Scholar

35. Fang, D., Yang, J., Jiao, C. Dicationic ionic liquids as environmentally benign catalysts for biodiesel synthesis. ACS Catal. 2011, 1, 42–47. https://doi.org/10.1021/cs100026q.Search in Google Scholar

36. Baltazar, Q. Q., Chandawalla, J., Sawyer, K., Anderson, J. L. Interfacial and micellar properties of imidazolium-based monocationic and dicationic ionic liquids. Colloids Surf., A. 2007, 302, 150–156. https://doi.org/10.1016/j.colsurfa.2007.02.012.Search in Google Scholar

37. Song, L. D., Rosen, M. J. Surface properties, micellization and premicellar aggregation of gemini surfactants with rigid and flexible spacers. Langmuir 1996, 12, 1149–1153. https://doi.org/10.1021/la950508t.Search in Google Scholar

38. Tikariha, D., Ghosh, K. K., Quagliotto, P., Ghosh, S. Mixed micellization properties of cationic monomeric and gemini surfactants. J. Chem. Eng. Data 2010, 55, 4162–4167. https://doi.org/10.1021/je100113r.Search in Google Scholar

39. Payagala, T., Huang, J., Breitbach, Z. S., Sharma, P. S., Amstrong, D. W. Unsymmetrical dicationic ionic liquids: manipulation of physicochemical properties using specific structural architectures. Chem. Mater. 2007, 19, 5848–5850. https://doi.org/10.1021/cm702325a.Search in Google Scholar

40. Menger, F. M., Keiper, J. S. Gemini surfactants. Angew. Chem. Int. Ed. 2000, 39, 1906–1920. https://doi.org/10.1002/1521-3773(20000602)39:11<1906:AID-ANIE1906>3.0.CO;2-Q.10.1002/1521-3773(20000602)39:11<1906::AID-ANIE1906>3.0.CO;2-QSearch in Google Scholar

41. Kuperkar, K., Modi, J., Patel, K. Surface-active properties and antimicrobial study of conventional cationic and synthesized symmetrical gemini surfactants. J. Surfactants Deterg. 2012, 15, 107–115. https://doi.org/10.1007/s11743-011-1269-0.Search in Google Scholar

42. Hough-Troutman, W. L., Smiglak, M., Griffin, S., Reichert, W. M., Mirska, I., Jodynis-Liebert, J., Adamska, T., Nawrot, J., Monika Stasiewicz, M., Rogers, R. D., Juliusz Pernak, J. Ionic liquids with dual biological function: sweet and antimicrobial, hydrophobic quaternary ammonium-based salts. New J. Chem. 2009, 33, 26–33. https://doi.org/10.1039/B813213P.Search in Google Scholar

43. Ahmed, T., Kamel, A. O., Wettig, S. D. Interaction between DNA and Gemini surfactant: impact on gene therapy: part I. Nanomedicine 2016, 11, 289–306. https://doi.org/10.2217/nnm.15.203.Search in Google Scholar

44. Kirby, A. J., Camilleri, P., Engberts, J. B. F. N., Feiters, M. C., Nolte, R. J. M., Söderman, O., Bergsma, M., Bell, P. C., Fielden, M. L., García Rodríguez, C. L., Guédat, P., Kremer, A., McGregor, C., Perrin, C., Ronsin, G., van Eijk, M. C. P. Gemini surfactants: new synthetic vectors for gene transfection. Angew. Chem. Int. Ed. 2003, 42, 1448–1457. https://doi.org/10.1002/anie.200201597.Search in Google Scholar

45. Karlsson, L., van Eijk, M. C. P., Söderman, O. Compaction of DNA by gemini surfactants: effects of surfactant architecture. J. Colloid Interface Sci. 2002, 252, 290–296. https://doi.org/10.1006/jcis.2002.8477.Search in Google Scholar

46. Li, B., Li, H., Pang, X., Cui, K., Lin, J., Liu, F., Mu, W. Quaternary ammonium cationic surfactants increase bioactivity of indoxacarb on pests and toxicological risk to Daphnia magna. Ecotoxicol. Environ. Saf. 2018, 149, 190–196. https://doi.org/10.1016/j.ecoenv.2017.11.038.Search in Google Scholar

47. Cybulski, J., Wiśniewska, A., Kulig-Adamska, A., Lewicka, L., Cieniecka-Rosłonkiewicz, A., Kita, K., Fojutowski, A., Nawrot, J., Materna, K., Pernak, J. Long-alkyl-chain quaternary ammonium lactate based ionic liquids. Chem. Eur J. 2008, 14, 9305–9311. https://doi.org/10.1002/chem.200800973.Search in Google Scholar

48. Hamill, A., Holt, J., Mallory-Smith, C. Contributions of weed science to weed control and management. Weed Technol. 2004, 18, 1563–1565. https://doi.org/10.1614/0890-037X(2004)018[1563:COWSTW]2.0.CO;2.10.1614/0890-037X(2004)018[1563:COWSTW]2.0.CO;2Search in Google Scholar

49. Picó, Y., font, G., Moltó, J. C., Mañes, J. Solid-phase extraction of quaternary ammonium herbicides. J. Chromatogr. A 2000, 885, 251–271. https://doi.org/10.1016/S0021-9673(99)01145-0.Search in Google Scholar

50. Wu, Q., Liu, C., Yang, J., Guan, A., Ma, H. Design, synthesis, and herbicidal activity of novel quaternary ammonium salt derivatives. Pestic. Biochem. Physiol. 2017, 143, 246–251. https://doi.org/10.1016/j.pestbp.2017.05.006.Search in Google Scholar

51. Bureš, F. Quaternary ammonium compounds: simple in structure, complex in application. Top. Curr. Chem. 2019, 377, 1–21. https://doi.org/10.1007/s41061-019-0239-2.Search in Google Scholar PubMed

52. Chruściel, A., Hreczuch, W., Dąbrowska, K., Materna, K., Sznajdrowska, A. Interfacial activity of 2-Ethylhexan-1-ol-Based surfactants in quasi-ternary systems. J. Surfactants 2017, 20, 83–101. https://doi.org/10.1007/s11743-016-1888-6.Search in Google Scholar

53. Turguła, A., Stęsik, K., Materna, K., Klejdysz, T., Praczyk, T., Prenak, J. Third-generation ionic liquids with N-alkylated 1,4-diazabicyclo[2.2.2]octane cations and pelargonate anions. RSC Adv. 2020, 10, 8653–8663. https://doi.org/10.1030/DORA00766H.Search in Google Scholar

54. Lendzion-Bieluń, Z., Moszyński, D. Zastosowania Metod Inżynierii Chemicznej, Wyd. 978-83-7663-296-4; Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie: Szczecin, 2019.Search in Google Scholar

55. Ben-Moshe, M., Magdassi, S. Surface activity and micellar properties of anionic gemini surfactants and their analogues. Colloids Surf., A 2004, 250, 403–408. https://doi.org/10.1016/j.colsurfa.2004.01.044.Search in Google Scholar

56. Si, Y., Yu, C., Dong, Z., Jiang, L. Wetting and spreading: fundamental theories to cutting-edge applications. Curr. Opin. Colloid Interface Sci. 2018, 36, 10–19. https://doi.org/10.1016/j.cocis.2017.12.006.Search in Google Scholar

57. Holc, M., Mozetič, M., Recek, N., Primc, G., Vesel, A., Zaplotnik, R., Gselman, P. Wettability increase in plasma-treated agricultural seeds and its relation to germination improvement. Agronomy 2011, 11, 1467. https://doi.org/10.3390/agronomy11081467.Search in Google Scholar

58. Osborn, J., Letey, J., DeBano, F., Terry, E. Seed germination and establishment as affected by non-wettable soils and wetting agents. Ecology 1967, 48, 494–497. https://doi.org/10.2307/1932685.Search in Google Scholar

Received: 2022-02-28
Accepted: 2022-04-05
Published Online: 2022-05-16
Published in Print: 2022-07-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.5.2024 from https://www.degruyter.com/document/doi/10.1515/tsd-2022-2431/html
Scroll to top button