Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 6, 2015

Understanding early dementia: EEG, MRI, SPECT and memory evaluation

  • Davide Vito Moretti

Abstract

Background: An increase in the EEG upper/low a power ratio has been associated with mild cognitive impairment (MCI) due to Alzheimer’s disease (AD) and to the atrophy of temporoparietal brain areas. Subjects with a higher α3/α2 frequency power ratio showed lower brain perfusion than in the low α3/α2 group. The two groups show significantly different hippocampal volumes and correlation with q frequency activity. Methods: Seventy-four adult subjects with MCI underwent clinical and neuropsychological evaluation, electroencephalogram (EEG) recording, and high resolution 3D magnetic resonance imaging (MRI). Twenty-seven of them underwent EEG recording and perfusion single-photon emission computed tomography (SPECT) evaluation. The α3/α2 power ratio and cortical thickness were computed for each subject. The difference in cortical thickness between the groups was estimated. Results: In the higher upper/low a group, memory impairment was more pronounced in both the MRI group and the SPECT MCI groups. An increase in the production of q oscillations was associated with greater interhemisperic coupling between temporal areas. It also correlated with greater cortical atrophy and lower perfusional rate in the temporoparietal cortex. Conclusion: High EEG upper/low α power ratio was associated with cortical thinning and lower perfusion in temporoparietal areas. Moreover, both atrophy and lower perfusion rate significantly correlated with memory impairment in MCI subjects. Therefore, the increase in the EEG upper/low α frequency power ratio could be useful in identifying individuals at risk for progression to AD dementia in a clinical context.

References

[1]Dubois B., Feldman H.H., Jacova C., DeKosky S.T., Barberger-Gateau P., Cummings J., et al., Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria, Lancet Neurol., 2007, 6, 734-746 10.1016/S1474-4422(07)70178-3Search in Google Scholar

[2]Albert M.S., DeKosky S.T., Dickson D., Dubois B., Feldman H.H., Fox N.C., et al., The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging - Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers Dement., 2011, 7, 270-279 10.1016/j.jalz.2011.03.008Search in Google Scholar PubMed PubMed Central

[3]Hampel H., Bürger K., Teipel S.J., Bokde A.L., Zetterberg H., Blennow K., Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease, Alzheimers Dement., 2008, 4, 38-48 10.1016/j.jalz.2007.08.006Search in Google Scholar PubMed

[4]Galluzzi S., Geroldi C., Amicucci G., Bocchio-Chiavetto L., Bonetti M., Bonvicini C., et al., Supporting evidence for using biomarkers in the diagnosis of MCI due to AD, J. Neurol., 2013, 260, 640-650 10.1007/s00415-012-6694-0Search in Google Scholar PubMed

[5]Frisoni G.B., Sabattoli F., Lee A.D., Dutton R.A., Toga A.W., Thompson P.M., In vivo neuropathology of the hippocampal formation in AD: a radial mapping MR-based study. Neuroimage, 2006, 32, 104-110 10.1016/j.neuroimage.2006.03.015Search in Google Scholar PubMed

[6]Frisoni G.B., Pievani M., Testa C., Sabattoli F., Bresciani L., Bonetti M., et al., The topography of grey matter involvement in early and late onset Alzheimer’s disease, Brain, 2007, 130, 720-730 10.1093/brain/awl377Search in Google Scholar PubMed

[7]Frisoni G.B., Ganzola R., Canu E., Rüb U., Pizzini F.B., Alessandrini F., et al., Mapping local hippocampal changes in Alzheimer’s disease and normal ageing with MRI at 3 Tesla, Brain, 2008, 131, 3266-3276 10.1093/brain/awn280Search in Google Scholar PubMed

[8]Frisoni G.B., Prestia A., Rasser P.E., Bonetti M., Thompson P.M., In vivo mapping of incremental cortical atrophy from incipient to overt Alzheimer’s disease, J. Neurol., 2009, 256, 916-924 10.1007/s00415-009-5040-7Search in Google Scholar PubMed

[9]Frisoni G.B., Alzheimer disease: biomarker trajectories across stages of Alzheimer disease, Nat. Rev. Neurol., 2012, 8, 299-300 10.1038/nrneurol.2012.81Search in Google Scholar PubMed

[10]van Strien N.M., Cappaert N.L., Witter M.P., The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network, Nat. Rev. Neurosci., 2009, 10, 272-282 10.1038/nrn2614Search in Google Scholar PubMed

[11]Missonnier P., Herrmann F.R., Michon A., Fazio-Costa L., Gold G., Giannakopoulos P., Early disturbances of gamma band dynamics in mild cognitive impairment, J. Neural Transm., 2010, 117, 489-498 10.1007/s00702-010-0384-9Search in Google Scholar

[12]Steriade M., Grouping of brain rhythms in corticothalamic systems, Neuroscience, 2006, 137, 1087-1106 10.1016/j.neuroscience.2005.10.029Search in Google Scholar

[13]Hogan M.J., Swanwick G.R.J., Kaiser J., Rowan M., Lawlor B., Memory-related EEG power and coherence reductions in mild Alzheimer’s disease, Int. J. Psychophysiol., 2003, 43, 147-163 10.1016/S0167-8760(03)00118-1Search in Google Scholar

[14]Lopes da Silva F.H., Vos J.E., Mooibroek J., van Rotterdam A., Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis, Electroencephalogr. Clin. Neurophysiol., 1980, 50, 449-456 10.1016/0013-4694(80)90011-5Search in Google Scholar

[15]Ingber L., Nunez P.L., Neocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs, Math. Biosci., 2011, 229, 160-173 10.1016/j.mbs.2010.12.003Search in Google Scholar PubMed

[16]Nunez P.L., Generation of human EEG rhythms by a combination of long and short-range neocortical interactions, Brain Topogr., 1989, 1, 199-215 10.1007/BF01129583Search in Google Scholar PubMed

[17]Stam C.J., Montez T., Jones B.F., Rombouts S.A., van der Made Y., Pijnenburg Y.A., et al., Disturbed fluctuations of resting state EEG synchronization in Alzheimer’s disease, Clin. Neurophysiol., 2005, 116, 708-715 10.1016/j.clinph.2004.09.022Search in Google Scholar PubMed

[18]Moretti D.V., Miniussi C., Frisoni G.B., Geroldi C., Zanetti O., Binetti G., et al., Hippocampal atrophy and EEG markers in subjects with mild cognitive impairment, Clin. Neurophysiol., 2007,118, 2716-2729 10.1016/j.clinph.2007.09.059Search in Google Scholar PubMed

[19]Moretti D.V., Pievani M., Fracassi C., Binetti G., Rosini S., Geroldi C., et al., Increase of theta/gamma and alpha3/alpha2 ratio is associated with amygdalo-hippocampal complex atrophy, J. Alzheimers Dis., 2009, 17, 349-357 10.3233/JAD-2009-1059Search in Google Scholar PubMed

[20]Moretti D.V., Frisoni G.B., Pievani M., Rosini S., Geroldi C., Binetti G., et al., Cerebrovascular disease and hippocampal atrophy are differently linked to functional coupling of brain areas: an EEG coherence study in MCI subjects, J. Alzheimers Dis., 2008, 14, 285-299 10.3233/JAD-2008-14303Search in Google Scholar

[21]Moretti D.V., Babiloni C., Binetti G., Cassetta E., Dal Forno G., Ferreri F., et al., Individual analysis of EEG frequency and band power in mild Alzheimer’s disease, Clin. Neurophysiol., 2004, 115, 299-308 10.1016/S1388-2457(03)00345-6Search in Google Scholar

[22]Moretti D.V., Miniussi C., Frisoni G., Zanetti O., Binetti G., Geroldi C., et al., Vascular damage and EEG markers in subjects with mild cognitive impairment, Clin. Neurophysiol., 2007, 118, 1866-1876 10.1016/j.clinph.2007.05.009Search in Google Scholar

[23]Moretti D.V., Frisoni G.B., Pievani M., Fracassi C., Geroldi C., Calabria M., et al., Brain vascular damage of cholinergic pathways and EEG markers in mild cognitive impairment, J. Alzheimers Dis.,, 2008, 15, 357-372 10.3233/JAD-2008-15302Search in Google Scholar

[24]Bakkour A., Morris J.C., Dickerson B.C., The cortical signature of prodromal AD: regional thinning predicts mild AD dementia, Neurology, 2009, 72, 1048-1055 10.1212/01.wnl.0000340981.97664.2fSearch in Google Scholar

[25]Klimesch W., Doppelmayr M., Hanslmayr S., Upper alpha ERD and absolute power: their meaning for memory performance, Prog. Brain Res., 2006, 159, 151-165 10.1016/S0079-6123(06)59010-7Search in Google Scholar

[26]Klimesch W., Sauseng P., Hanslmayr S., EEG alpha oscillations: the inhibition timing hypothesis, Brain Res. Rev., 2007, 53, 63-88 10.1016/j.brainresrev.2006.06.003Search in Google Scholar

[27]Klimesch W., Evoked alpha and early access to the knowledge system: the P1 inhibition timing hypothesis, Brain Res., 2011, 1408, 52-71 10.1016/j.brainres.2011.06.003Search in Google Scholar

[28]Folstein M.F., Folstein S.E., McHugh P.R., “Mini-mental state”. A practical method for grading the cognitive state of patients for clinician, J. Psychiatr. Res., 1975, 12,189-198 10.1016/0022-3956(75)90026-6Search in Google Scholar

[29]Hughes C.P., Berg L., Danziger W.L., Cohen L.A., Martin R.L., A new clinical rating scale for the staging of dementia, Br. J. Psychiatry, 1982, 140, 1225-1230 10.1192/bjp.140.6.566Search in Google Scholar PubMed

[30]Rosen W.G., Terry R.D., Fuld P.A., Katzman R., Peck A., Pathological verification of ischemic score in differentiation of dementias, Ann. Neurol., 1980, 7, 486-488 10.1002/ana.410070516Search in Google Scholar PubMed

[31]Lawton M.P., Brodie E.M., Assessment of older people: self-maintaining and instrumental activity of daily living, Gerontologist, 1969, 9, 179-186 10.1093/geront/9.3_Part_1.179Search in Google Scholar

[32]Petersen R.C., Doody R., Kurz A., Mohs R.C., Morris J.C., Rabins P.V., et al., Current concepts in mild cognitive impairment, Arch. Neurol., 2001, 58, 1985-1992 10.1001/archneur.58.12.1985Search in Google Scholar PubMed

[33]Portet F., Ousset P.J., Visser P.J., Frisoni G.B., Nobili F., Scheltens P., et al., Mild cognitive impairment (MCI) in medical practice: a critical review of the concept and new diagnostic procedure. Report of the MCI Working Group of the European Consortium on Alzheimer’s Disease, J. Neurol. Neurosurg. Psychiatry, 2006, 77, 714-718 10.1136/jnnp.2005.085332Search in Google Scholar PubMed PubMed Central

[34]Lezak M., Howieson D., Loring D.W., Neuropsychological assessment, Fourth edition, Oxford University Press, Oxford, UK, 2004 Search in Google Scholar

[35]Radloff L.S., The CES-D scale: a self-report depression scale for research in the general population, Appl. Psychol. Measure., 1977, 1, 385-401 10.1177/014662167700100306Search in Google Scholar

[36]Kaplan A.Y., The problem of segmental description of human electroencephalogram, Hum. Physiol., 1999, 25, 107-114 Search in Google Scholar

[37]Cohen B.A., Sances A.Jr., Stationarity of the human electroencephalogram, Med. Biol. Eng. Comput., 1977, 15, 513-518 10.1007/BF02442278Search in Google Scholar PubMed

[38]Kawabata N., Test of statistical stability of the electroencephalogram, Biol. Cybern., 1976, 22, 235-238 10.1007/BF00365089Search in Google Scholar PubMed

[39]McEwen J.A., Anderson G.B., Modeling the stationarity and gaussianity of spontaneous electroencephalographic activity, IEEE Trans. Biomed. Eng., 1975, 22, 361-369 10.1109/TBME.1975.324504Search in Google Scholar

[40]Kipiński L., König R., Sielużycki C., Kordecki W., Application of modern tests for stationarity to single-trial MEG data: transferring powerful statistical tools from econometrics to neuroscience, Biol. Cybern., 2011, 105, 183-195 10.1007/s00422-011-0456-4Search in Google Scholar PubMed

[41]Moretti D.V., Fracassi C., Pievani M., Geroldi C., Binetti G., Zanetti O., et al., Increase of theta/gamma ratio is associated with memory impairment, Clin. Neurophysiol., 2009, 120, 295-303 10.1016/j.clinph.2008.11.012Search in Google Scholar PubMed

[42]Moretti D.V., Pievani M., Fracassi C., Binetti G., Rosini S., Geroldi C., et al., Increase of theta/gamma and alpha3/alpha2 ratio is associated with amygdalo-hippocampal complex atrophy, J. Alzheimers Dis., 2009, 17, 349-357 10.3233/JAD-2009-1059Search in Google Scholar PubMed

[43]Moretti D.V., Pievani M., Geroldi C., Binetti G., Zanetti O., Cotelli M., et al., Increasing of hippocampal atrophy and cerebrovascular damage is differently associated with functional cortical coupling in MCI patients, Alzheimer Dis. Assoc. Disord., 2009, 23, 323-332 44]Cabeza R., Hemispheric asymmetry reduction in older adults: the HAROLD model, Psychol. Aging, 2002, 17, 85-100 45]Balsters J.H., O’Connell R.G., Galli A., Nolan H., Greco E., Kilcullen S.M., et al., Changes in resting connectivity with age: a simultaneous electroencephalogram and functional magnetic resonance imaging investigation, Neurobiol. Aging, 2013, 34, 2194-2207 46]Watson P., Conroy A., Moran G., Duncan S., Retrospective study of sensitivity and specificity of EEG in the elderly compared with younger age groups, Epilepsy Behav., 2012, 25, 408-411 47]Tenke C.E., Kayser J., Miller L., Warner V., Wickramaratne P., Weissman M.M., et al., Neuronal generators of posterior EEG alpha reflect individual differences in prioritizing personal spirituality, Biol. Psychol., 2013, 94, 426-432 48]Grandy T.H., Werkle-Bergner M., Chicherio C., Schmiedek F., Lövdén M., Lindenberger U., Peak individual alpha frequency qualifies as a stable neurophysiological trait marker in healthy younger and older adults, Psychophysiology, 2013, 50, 570-582 Search in Google Scholar

[49]Grandy T.H., Werkle-Bergner M., Chicherio C., Lövdén M., Schmiedek F., Lindenberger U., Individual alpha peak frequency is related to latent factors of general cognitive abilities, Neuroimage, 2013, 79, 10-18 10.1016/j.neuroimage.2013.04.059Search in Google Scholar PubMed

[50]Bekhtereva V., Sander C., Forschack N., Olbrich S., Hegerl U., Müller M.M., Effects of EEG-vigilance regulation patterns on early perceptual processes in human visual cortex, Clin. Neurophysiol., 2014, 125, 98-107 10.1016/j.clinph.2013.06.019Search in Google Scholar PubMed

[51]Ségonne F., Dale A.M., Busa E., Glessner M., Salat D., Hahn H.K., et al., A hybrid approach to the skull stripping problem in MRI, Neuroimage, 2004, 22, 1060-1075 10.1016/j.neuroimage.2004.03.032Search in Google Scholar PubMed

[52]Fischl B., Dale A.M., Measuring the thickness of the human cerebral cortex using magnetic resonance images, Proc. Natl. Acad. Sci. USA, 2000, 97, 11044-11049 10.1073/pnas.200033797Search in Google Scholar PubMed PubMed Central

[53]Han X., Jovicich J., Salat D., van der Kouwe A., Quinn B., Czanner S., et al., Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer, Neuroimage, 2006, 32, 180-194 10.1016/j.neuroimage.2006.02.051Search in Google Scholar PubMed

[54]Gronenschild E.H., Habets P., Jacobs H.I., Mengelers R., Rozendaal N., van Os J., et al., The effects of FreeSurfer version, workstation type, and Macintosh operating system version on anatomical volume and cortical thickness measurements, PLoS One, 2012, 7, 238-234 10.1371/journal.pone.0038234Search in Google Scholar PubMed PubMed Central

[55]DeCarli C., Fletcher E., Ramey V., Harvey D., Jagust W.J, Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden, Stroke, 2005, 36, 50-55 10.1161/01.STR.0000150668.58689.f2Search in Google Scholar PubMed PubMed Central

[56]Pennanen C., Testa C., Laasko M.P., Hallikainen M., Helkala E.L., Hanninen T., et al., A voxel based morphometry study on mild cognitive impairment, J. Neurol. Neurosurg. Psychiatry, 2005, 76, 11-14 10.1136/jnnp.2004.035600Search in Google Scholar PubMed PubMed Central

[57]Markesbery W.R., Schmitt R.A, Kryscio R.J., Davis D., Smith C., Wekstein D. Neuropathologic substrate of mild cognitive impairment, Arch. Neurol., 2006, 63, 38-46 10.1001/archneur.63.1.38Search in Google Scholar PubMed

[58]McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R.Jr, Kawas C.H., et al., The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers Dement., 2011, 7, 263-269 10.1016/j.jalz.2011.03.005Search in Google Scholar PubMed PubMed Central

[59]Sperling R.A., Aisen P.S., Beckett L.A., Bennett D.A., Craft S., Fagan A.M., et al., Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers Dement., 2011, 7, 280-292 10.1016/j.jalz.2011.03.003Search in Google Scholar

[60]Caroli A., Testa C., Geroldi C., Nobili F., Guerra U.P., Bonetti M., et al., Brain perfusion correlates of medial temporal lobe atrophy and white matter hyperintensities in mild cognitive impairment, J. Neurol., 2007, 254, 1000-1008 10.1007/s00415-006-0498-zSearch in Google Scholar

[61]Matsuda H., The role of neuroimaging in mild cognitive impairment, Neuropathology, 2007, 27, 570-577 10.1111/j.1440-1789.2007.00794.xSearch in Google Scholar

[62]Petrella J.R., Wang L., Krishnan S., Slavin M.J., Prince S.E., Tran T.T., et al., Cortical deactivation in mild cognitive impairment: high-field-strength functional MR imaging, Radiology, 2007, 245, 224-235 10.1148/radiol.2451061847Search in Google Scholar

[63]Pihlajamaki M., Jauhiainen A.M., Soininen H., Structural and functional MRI in mild cognitive impairment, Curr. Alzheimer Res., 2009, 6, 179-185 10.2174/156720509787602898Search in Google Scholar

[64]Dickerson B.C., Sperling R.A., Large-scale functional brain network abnormalities in Alzheimer’s disease: insights fromfunctional neuroimaging, Behav. Neurol., 2009, 21, 63-75 10.1155/2009/610392Search in Google Scholar

[65]Ryu S.Y., Kwon M.J., Lee S.B., Yang D.W., Kim T.W., Song I.U., et al., Measurement of precuneal and hippocampal volumes using magnetic resonance volumetry in Alzheimer’s disease, J. Clin. Neurol., 2010, 6, 196-203 10.3988/jcn.2010.6.4.196Search in Google Scholar

[66]Sperling R.A., Dickerson B.C., Pihlajamaki M., Vannini P., LaViolette P.S., Vitolo O.V., et al., Functional alterations in memory networks in early Alzheimer’s disease, Neuromolecular Med., 2010, 12, 27-43 10.1007/s12017-009-8109-7Search in Google Scholar

[67]de Haan W., Mott K., van Straaten E.C., Scheltens P., Stam C.J., Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease, PLoS Comput. Biol., 2012, 8, e1002582 10.1371/journal.pcbi.1002582Search in Google Scholar

[68]Pievani M., de Haan W., Wu T., Seeley W.W., Frisoni G.B., Functional network disruption in the degenerative dementias, Lancet Neurol., 2011, 10, 829-843 10.1016/S1474-4422(11)70158-2Search in Google Scholar

[69]Chatwal J.P., Sperling R.A., Functional MRI of mnemonic networks across the spectrum of normal aging, mild cognitive impairment, and Alzheimer’s disease, J. Alzheimers Dis., 2012, 31, S155-167 10.3233/JAD-2012-120730Search in Google Scholar PubMed PubMed Central

[70]Jones D.T., Machulda M.M., Vemuri P., McDade E.M., Zeng G., Senjem M.L., et al., Age-related changes in the default mode network are more advanced in Alzheimer disease, Neurology, 2011, 77, 1524-1531 10.1212/WNL.0b013e318233b33dSearch in Google Scholar PubMed PubMed Central

[71]Brier M.R., Thomas J.B., Snyder A.Z., Benzinger T.L., Zhang D., Raichle M.E., et al., Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression, J. Neurosci., 2012, 32, 8890-8899 10.1523/JNEUROSCI.5698-11.2012Search in Google Scholar PubMed PubMed Central

[72]Palop J.J., Mucke L., Synaptic depression and aberrant excitatory network activity in Alzheimer’s disease: two faces of the same coin?, Neuromolecular Med., 2010, 12, 48-55 10.1007/s12017-009-8097-7Search in Google Scholar PubMed PubMed Central

[73]Stam C.J., van der Made Y., Pijnenburg Y.A., Scheltens P., EEG synchronization in mild cognitive impairment and Alzheimer’s disease, Acta Neurol. Scand., 2003, 108, 90-96 10.1034/j.1600-0404.2003.02067.xSearch in Google Scholar PubMed

[74]Bhattacharya B.S., Coyle D., Maguire L.P., Alpha and theta rhythm abnormality in Alzheimer’s disease: a study using a computational model, Adv. Exp. Med. Biol., 2011, 718, 57-73 10.1007/978-1-4614-0164-3_6Search in Google Scholar PubMed

[75]Rossini P.M., Buscema M., Capriotti M., Grossi E., Rodriguez G., Del Percio C., et al., Is it possible to automatically distinguish resting EEG data of normal elderly vs. mild cognitive impairment subjects with high degree of accuracy?, Clin. Neurophysiol., 2008, 119, 1534-1545 10.1016/j.clinph.2008.03.026Search in Google Scholar PubMed

[76]Wu X., Li R., Fleisher A.S., Reiman E.M., Guan X., Zhang Y., et al., Altered default mode network connectivity in Alzheimer’s disease - a resting functional MRI and Bayesian network study, Hum. Brain Mapp., 2011, 32, 1868-1881 10.1002/hbm.21153Search in Google Scholar PubMed PubMed Central

[77]Wonderlick J.S., Ziegler D.A., Hosseini-Varnamkhasti P., Locascio J.J., Bakkour A., van der Kouwe A., et al., Reliability of MRI-derived cortical and subcortical morphometric measures: effects of pulse sequence, voxel geometry, and parallel imaging, Neuroimage, 2009, 44, 1324-1333 10.1016/j.neuroimage.2008.10.037Search in Google Scholar PubMed PubMed Central

[78]Zhang S., Li C.S., Functional connectivity mapping of the human precuneus by resting state fMRI, Neuroimage, 2012, 59, 3548-3562 10.1016/j.neuroimage.2011.11.023Search in Google Scholar PubMed PubMed Central

[79]Morbelli S., Drzezga A., Perneczky R., Frisoni G.B., Caroli A., van Berckel B.N., et al., Resting metabolic connectivity in prodromal Alzheimer’s disease. A European Alzheimer Disease Consortium (EADC) project, Neurobiol. Aging, 2012, 33, 2533-2550 10.1016/j.neurobiolaging.2012.01.005Search in Google Scholar

[80]Ghaem O., Mellet E., Crivello F., Tzourio N., Mazoyer B., Berthoz A., et al., Mental navigation along memorized routes activates the hippocampus, precuneus, and insula, Neuroreport, 1997, 8, 739-744 10.1097/00001756-199702100-00032Search in Google Scholar

[81]Leichnetz G.R., Connections of the medial posterior parietal cortex (area 7m) in the monkey, Anat. Rec., 2001, 263, 215-236 10.1002/ar.1082Search in Google Scholar

[82]Cavanna A.E., Trimble M.R., The precuneus: a review of its functional anatomy and behavioural correlates, Brain, 2006, 129, 564-583 10.1093/brain/awl004Search in Google Scholar

[83]Wenderoth N., Debaere F., Sunaert S., Swinnen S.P., The role of anterior cingulate cortex and precuneus in the coordination of motor behaviour, Eur. J.Neurosci., 2005, 22, 235-246 10.1111/j.1460-9568.2005.04176.xSearch in Google Scholar

[84]Klimesch W., Schimke H., Doppelmayr M., Ripper B., Schwaiger J., Pfurtscheller G., Event-related desynchronization (ERD) and the Dm effect: does alpha desynchronization during encoding predict late recall performance?, Int. J. Psychophysiol., 1996, 24, 47-60 10.1016/S0167-8760(96)00054-2Search in Google Scholar

[85]Klimesch W., Doppelmayr M., Stadler W., Pöllhuber D., Sauseng P., Röhm D., Episodic retrieval is reflected by a process specific increase in human electroencephalographic theta activity, Neurosci. Lett., 2001, 302, 49-52 10.1016/S0304-3940(01)01656-1Search in Google Scholar

[86]Fries P., Reynolds J.H., Rorie A.E., Desimone R., Modulation of oscillatory neuronal synchronization by selective visual attention, Science, 2001, 291, 1560-1563 10.1126/science.1055465Search in Google Scholar PubMed

[87]Kilner J.M., Mattout J., Henson R., Friston K.J., Hemodynamic correlates of EEG: a heuristic, Neuroimage, 2005, 28, 280-286 10.1016/j.neuroimage.2005.06.008Search in Google Scholar PubMed

[88 Wyart V., Tallon-Baudry C., Neural dissociation between visual awareness and spatial attention, J. Neurosci., 2008, 28, 2667-2679 10.1523/JNEUROSCI.4748-07.2008Search in Google Scholar PubMed PubMed Central

[89]Spitzer B., Hanslmayr S., Opitz B., Mecklinger A., Bäuml K.-H., Oscillatory correlates of retrieval-induced forgetting in recognition memory, J. Cogn. Neurosci., 2009, 21, 976-990 10.1162/jocn.2009.21072Search in Google Scholar PubMed

[90]Staudigl T., Hanslmayr S., Bäuml K.-H., Theta oscillations reflect the dynamics of interference in episodic memory retrieval, J. Neurosci., 2010, 30, 11356-11362 10.1523/JNEUROSCI.0637-10.2010Search in Google Scholar PubMed PubMed Central

[91]Hanslmayr S., Staudigl T., Aslan A., Bäuml K.-H., Theta oscillations predict the detrimental effects of memory retrieval, Cogn. Affect. Behav. Neurosci., 2010, 10, 329-338 10.3758/CABN.10.3.329Search in Google Scholar PubMed

[92]Hanslmayr S., Staudigl T., Fellner M.C., Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis, Front. Hum. Neurosci., 2012, 6, 74 10.3389/fnhum.2012.00074Search in Google Scholar PubMed PubMed Central

[93]Jensen O., Mazaheri A., Shaping functional architecture by oscillatory alpha activity: gating by inhibition, Front. Hum. Neurosci., 2010, 4, 186 10.3389/fnhum.2010.00186Search in Google Scholar PubMed PubMed Central

[94]Norman K.A., How hippocampus and cortex contribute to recognition memory: revisiting the complementary learning systems model, Hippocampus, 2010, 20, 1217-1227 10.1002/hipo.20855Search in Google Scholar PubMed PubMed Central

[95]Schneidman E., Puchalla J.L., Segev R., Harris R.A., Bialek W., Berry M.J., Synergy from silence in a combinatorial neural code, J. Neurosci., 2011, 31, 15732-15741 10.1523/JNEUROSCI.0301-09.2011Search in Google Scholar PubMed PubMed Central

[96]Kurimoto R., Ishii R., Canuet L., Ikezawa K., Iwase M., Azechi M., et al., Induced oscillatory responses during the Sternberg’s visual memory task in patients with Alzheimer’s disease and mild cognitive impairment, Neuroimage, 2012, 59, 4132-4140 10.1016/j.neuroimage.2011.10.061Search in Google Scholar PubMed

[97]Goard M., Dan Y., Basal forebrain activation enhances cortical coding of natural scenes, Nat. Neurosci., 2009, 12, 1444-1449 10.1038/nn.2402Search in Google Scholar PubMed PubMed Central

[98]Chalk M., Herrero J.L., Gieselmann M.A., Delicato L.S., Gotthardt S., Thiele A., Attention reduces stimulus-driven gamma frequency oscillations and spike field coherence in V1, Neuron, 2010, 66, 114-125 10.1016/j.neuron.2010.03.013Search in Google Scholar PubMed PubMed Central

[99]Barlow H.B., The coding of sensory messages, In: Current problems in animal behaviour, Eds. Thorpe W.H., Zangwill O.L., Cambridge University Press, Cambridge, UK, 1961, 331-360 Search in Google Scholar

[100]Bialek W., Rieke F., de Ruytervan Steveninck R.R., Warland D., Reading a neural code, Science, 1991, 252, 1854-1857 10.1126/science.2063199Search in Google Scholar PubMed

[101]Hanslmayr S., Spitzer B., Bäuml K.-H., Brain oscillations dissociate between semantic and non semantic encoding of episodic memories, Cereb. Cortex, 2009, 19, 1631-1640 10.1093/cercor/bhn197Search in Google Scholar PubMed

[102]Craik F.I.M., Levels of processing: past, present and future?, Memory, 2002, 10, 305-318 10.1080/09658210244000135Search in Google Scholar PubMed

[103]Moretti D.V., Pievani M., Geroldi C., Binetti G., Zanetti O., Rossini P.M., et al., EEG markers discriminate among different subgroup of patients with mild cognitive impairment, Am. J. Alzheimers Dis. Other Demen., 2010, 25, 58-73 10.1177/1533317508329814Search in Google Scholar PubMed

[104]Moretti D.V., Frisoni G.B., Fracassi C., Pievani M., Geroldi C., Binetti G., et al., MCI patients’ EEGs show group differences between those who progress and those who do not progress to AD, Neurobiol. Aging, 2011, 32, 563-571 10.1016/j.neurobiolaging.2009.04.003Search in Google Scholar PubMed

[105]Moretti D.V., Frisoni G.B., Binetti G., Zanetti O., Anatomical substrate and scalp EEG markers are correlated in subjects with cognitive impairment and Alzheimer’s disease, Front. Psychiatry, 2011, 1, 152 10.3389/fpsyt.2010.00152Search in Google Scholar PubMed PubMed Central

[106]Moretti D.V., Prestia A., Fracassi C., Geroldi C., Binetti G., Rossini P.M., et al., Volumetric differences in mapped hippocampal regions correlate with increase of high alpha rhythm in Alzheimer’s disease, Int. J. Alzheimers Dis., 2011, 208218 10.4061/2011/208218Search in Google Scholar PubMed PubMed Central

[107]Moretti D.V., Paternicò D., Binetti G., Zanetti O., Frisoni G.B., EEG markers are associated to gray matter changes in thalamus and basal ganglia in subjects with mild cognitive impairment, Neuroimage, 2012, 60, 489-496 10.1016/j.neuroimage.2011.11.086Search in Google Scholar PubMed

[108]Moretti D.V., Prestia A., Fracassi C., Binetti G., Zanetti O., Frisoni G.B., Specific EEG changes associated with atrophy of hippocampus in subjects with mild cognitive impairment and Alzheimer’s disease, Int. J. Alzheimers Dis., 2012,253153 10.1155/2012/253153Search in Google Scholar PubMed PubMed Central

[109]Moretti D.V., Zanetti O., Binetti G., Frisoni G.B., Quantitative EEG markers in mild cognitive impairment: degenerative versus vascular brain impairment, Int. J. Alzheimers Dis., 2012, 917537 10.1155/2012/917537Search in Google Scholar PubMed PubMed Central

[110]Moretti D.V., Paternicò D., Binetti G., Zanetti O., Frisoni G.B., Analysis of grey matter in thalamus and basal ganglia based on EEG alpha3/alpha2 frequency ratio reveals specific changes in subjects with mild cognitive impairment, ASN Neuro, 2012, 4, e00103 10.1042/AN20120058Search in Google Scholar PubMed PubMed Central

[111]Moretti D.V., Paternicò D., Binetti G., Zanetti O., Frisoni G.B., Relationship between EEG alpha3/alpha2 ratio and the nuclues accumbens in subjects with mild cognitive impairment, J. Neurol. Neurophysiol., 2013, 4, 149 Search in Google Scholar

[112]Moretti D.V., Paternicò D., Binetti G., Zanetti O., Frisoni G.B., Theta/gamma frequency ratio is associated to grey matter changes in basal ganglia in subjects with mild cognitive impairment, J. Radiol. Diagn. Imaging, 2013, 1, 10-18 10.14205/2309-4427.2013.01.01.3Search in Google Scholar

[113]Moretti D.V., Paternicò D., Binetti G., Zanetti O., Frisoni G.B., Temporo-parietal brain network impairment is related to EEG alpha3/alpha2 power ratio in prodromal Alzheimer’s disease, J. Neurol. Neurophysiol., 2013, 4, 160 Search in Google Scholar

[114]Moretti D.V., Paternicò D., Binetti G., Zanetti O., Frisoni G.B., EEG upper/low alpha frequency power ratio relates to temporo-parietal brain atrophy and memory performances in mild cognitive impairment, Front. Aging Neurosci., 2013, 5, 63 10.3389/fnagi.2013.00063Search in Google Scholar PubMed PubMed Central

[115]Moretti D.V., Prestia A., Binetti G., Zanetti O., Frisoni G.B., Increase of theta frequency is associated with reduction in regional cerebral blood flow only in subjects with mild cognitive impairment with higher upper alpha/low alpha EEG frequency power ratio, Front. Behav. Neurosci., 2013, 7, 188 10.3389/fnbeh.2013.00188Search in Google Scholar PubMed PubMed Central

[116]Moretti D.V., Prestia A., Binetti G., Zanetti O., Frisoni G.B., Correlation between regional cerebral blood flow and EEG upper/low alpha frequency power ratio in mild cognitive impairment, J. Radiol. Diagn. Imaging, 2013, 1, 49-59 10.14205/2309-4427.2013.01.02.4Search in Google Scholar

[117]Moretti D.V., Paternicò D., Binetti G., Zanetti O., Frisoni G.B., Electroencephalographic upper/low alpha frequency power ratio relates to cortex thinning in mild cognitive impairment, Neurodegener. Dis., 2014, 14, 18-30 10.1159/000354863Search in Google Scholar PubMed

Received: 2014-10-02
Accepted: 2014-12-01
Published Online: 2015-02-06
Published in Print: 2015-01-01

© 2015 Davide Vito Moretti

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.5.2024 from https://www.degruyter.com/document/doi/10.1515/tnsci-2015-0005/html
Scroll to top button