Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 2, 2024

Oxidative stress involvement in the molecular pathogenesis and progression of multiple sclerosis: a literature review

  • Alfredo Sanabria-Castro ORCID logo EMAIL logo , Alberto Alape-Girón , Marietta Flores-Díaz , Ann Echeverri-McCandless and Alexander Parajeles-Vindas

Abstract

Multiple sclerosis (MS) is an autoimmune debilitating disease of the central nervous system caused by a mosaic of interactions between genetic predisposition and environmental factors. The pathological hallmarks of MS are chronic inflammation, demyelination, and neurodegeneration. Oxidative stress, a state of imbalance between the production of reactive species and antioxidant defense mechanisms, is considered one of the key contributors in the pathophysiology of MS. This review is a comprehensive overview of the cellular and molecular mechanisms by which oxidant species contribute to the initiation and progression of MS including mitochondrial dysfunction, disruption of various signaling pathways, and autoimmune response activation. The detrimental effects of oxidative stress on neurons, oligodendrocytes, and astrocytes, as well as the role of oxidants in promoting and perpetuating inflammation, demyelination, and axonal damage, are discussed. Finally, this review also points out the therapeutic potential of various synthetic antioxidants that must be evaluated in clinical trials in patients with MS.


Corresponding author: Alfredo Sanabria-Castro, Unidad de Investigación, Hospital San Juan de Dios, Caja Costarricense de Seguro Social, Barrio Araucaria 37, San Juan La Unión Tres Ríos, San José, 10103, Costa Rica; and Departamento de Farmacología, Toxicología y Farmacodependencia, Facultad de Farmacia, Universidad de Costa Rica, San Pedro de Montes de Oca, 11501, Costa Rica, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: All authors take responsibility for the conceptualization, accuracy, and integrity of the manuscript. Methodology, A.S.C.; Investigation, A.S.C., A.E.M; Writing—Original Draft, A.S.C.; Provided critical revision of the manuscript, M.F.D., A.A.G., A.E.M., A.P.V.; Writing—Review and Editing, A.S.C., A.E.M., A.P.V.; Visualization, A.S.C., A.P.V.; Supervision, M.F.D., A.P.V.; Project Administration, A.A.G.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

Abd El Aziz, A., Sayed, R., Sallam, N., and El Sayed, N. (2021). Neuroprotective effects of telmisartan and nifedipine against cuprizone-induced demyelination and behavioral dysfunction in mice: roles of NF-κB and Nrf2. Inflammation 44: 1629–1642, https://doi.org/10.1007/s10753-021-01447-6.Search in Google Scholar

Ahmed, S., Luo, L., Namani, A., Wang, X.J., and Tang, X. (2017). Nrf2 signaling pathway: pivotal roles in inflammation. Biochim. Biophys. Acta, Mol. Basis Dis. 1863: 585–597, https://doi.org/10.1016/j.bbadis.2016.11.005.Search in Google Scholar

Aktan, F. (2004). iNOS-mediated nitric oxide production and its regulation. Life Sci. 75: 639–653, https://doi.org/10.1016/j.lfs.2003.10.042.Search in Google Scholar

Allan, S. and Rothwell, J. (2001). Cytokines and acute neurodegeneration. Nat. Rev. Neurosci. 2: 734–744, https://doi.org/10.1038/35094583.Search in Google Scholar

Ames, A. (2000). CNS energy metabolism as related to function. Brain Res. Rev. 34: 42–68, https://doi.org/10.1016/s0165-0173(00)00038-2.Search in Google Scholar

Amin, J., Boche, D., and Rakic, S. (2017). What do we know about the inflammasome in humans? Brain Pathol. 27: 192–204, https://doi.org/10.1111/bpa.12479.Search in Google Scholar

Argueti-Ostrovsky, S., Alfahel, L., Kahn, J., and Israelson, A. (2021). All roads lead to Rome: Different molecular players converge to common toxic pathways in neurodegeneration. Cells 10: 2438, https://doi.org/10.3390/cells10092438.Search in Google Scholar

Aryanpour, R., Pasbakhsh, P., Zibara, K., Namjoo, Z., Beigi Boroujeni, F., Shahbeigi, S., Kashani, I.R., Beyer, C., and Zendehdel, A. (2017). Progesterone therapy induces an M1 to M2 switch in microglia phenotype and suppresses NLRP3 inflammasome in a cuprizone-induced demyelination mouse model. Int. Immunopharmacol. 51: 131–139, https://doi.org/10.1016/j.intimp.2017.08.007.Search in Google Scholar

Baerwald, K. and Popko, B. (1998). Developing and mature oligodendrocytes respond differently to the immune cytokine interferon-γ. J. Neurosci. Res. 52: 230–239, https://doi.org/10.1002/(sici)1097-4547(19980415)52:2<230::aid-jnr11>3.0.co;2-b.10.1002/(SICI)1097-4547(19980415)52:2<230::AID-JNR11>3.3.CO;2-PSearch in Google Scholar

Barnham, J., Masters, L., and Bush, I. (2004). Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discovery 3: 205–214, https://doi.org/10.1038/nrd1330.Search in Google Scholar

Bar-Or, A., Nuttall, R.K., Duddy, M., Alter, A., Kim, H.J., Ifergan, I., Pennington, C.J., Bourgoin, P., Edwards, D.R., and Yong, V.W. (2003). Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain 126: 2738–2749, https://doi.org/10.1093/brain/awg285.Search in Google Scholar PubMed

Beal, M.F. (1995). Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol. 38: 357–366, https://doi.org/10.1002/ana.410380304.Search in Google Scholar PubMed

Belarbi, K., Cuvelier, E., Destée, A., Gressier, B., and Chartier-Harlin, M.C. (2017). NADPH oxidases in Parkinson’s disease: a systematic review. Mol. Neurodegener. 12: 84, https://doi.org/10.1186/s13024-017-0225-5.Search in Google Scholar PubMed PubMed Central

Bernardo, A., Greco, A., Levi, G., and Minghetti, L. (2003). Differential lipid peroxidation, Mn superoxide, and bcl-2 expression contribute to the maturation-dependent vulnerability of oligodendrocytes to oxidative stress. J. Neuropathol. Exp. Neurol. 62: 509–519, https://doi.org/10.1093/jnen/62.5.509.Search in Google Scholar PubMed

Birmann, P.T., Casaril, A.M., Abenante, L., Penteado, F., Brüning, C.A., Savegnago, L., and Lenardão, E.J. (2023). Neuropharmacology of organoselenium compounds in mental disorders and degenerative diseases. Curr. Med. Chem. 30: 2357–2395, https://doi.org/10.2174/0929867329666220615124412.Search in Google Scholar PubMed

Black, J.A., Newcombe, J., Trapp, B.D., and Waxman, S.G. (2007). Sodium channel expression within chronic multiple sclerosis plaques. J. Neuropathol. Exp. Neurol. 66: 828–837, https://doi.org/10.1097/nen.0b013e3181462841.Search in Google Scholar PubMed

Block, M.L., Zecca, L., and Hong, J.S. (2007). Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8: 57–69, https://doi.org/10.1038/nrn2038.Search in Google Scholar PubMed

Bogie, J.F.J., Stinissen, P., and Hendriks, J.J.A. (2014). Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol. 128: 191–213, https://doi.org/10.1007/s00401-014-1310-2.Search in Google Scholar PubMed

Bolaños, J.P. (2016). Bioenergetics and redox adaptations of astrocytes to neuronal activity. J. Neurochem. 139: 115–125, https://doi.org/10.1111/jnc.13486.Search in Google Scholar PubMed PubMed Central

Boxer, M., Shen, M., Auld, D., Wells, J., and Thomas, C. (2010). A small molecule inhibitor of Caspase 1. 2010 Feb 25 [Updated 2011 Mar 3]. In: Probe Reports from the NIH Molecular Libraries Program [Internet]. National Center for Biotechnology Information (US), Bethesda (MD), pp. 1–19.Search in Google Scholar

Brambilla, R. (2019). The contribution of astrocytes to the neuroinflammatory response in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol. 137: 757–783, https://doi.org/10.1007/s00401-019-01980-7.Search in Google Scholar PubMed PubMed Central

Broz, P. and Dixit, V. (2016). Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16: 407–420, https://doi.org/10.1038/nri.2016.58.Search in Google Scholar PubMed

Burdo, J., Schubert, D., and Maher, P. (2008). Glutathione production is regulated via distinct pathways in stressed and non-stressed cortical neurons. Brain Res. 1189: 12–22, https://doi.org/10.1016/j.brainres.2007.10.077.Search in Google Scholar PubMed PubMed Central

Burton, G.J. and Jauniaux, E. (2011). Oxidative stress. Best Pract. Res. Clin. Obstet. Gynaecol. 25: 287–299, https://doi.org/10.1016/j.bpobgyn.2010.10.016.Search in Google Scholar PubMed PubMed Central

Butts, B.D., Houde, C., and Mehmet, H. (2008). Maturation-dependent sensitivity of oligodendrocyte lineage cells to apoptosis: implications for normal development and disease. Cell Death Differ. 15: 1178–1186, https://doi.org/10.1038/cdd.2008.70.Search in Google Scholar PubMed

Caldeira, C., Oliveira, A.F., Cunha, C., Vaz, A.R., Falcão, A.S., Fernandes, A., and Brites, D. (2014). Microglia change from a reactive to an age-like phenotype with the time in culture. Front. Cell. Neurosci. 8: 152, https://doi.org/10.3389/fncel.2014.00152.Search in Google Scholar PubMed PubMed Central

Calkins, M., Johnson, D., Townsend, J., Vargas, M., Dowell, J., Williamson, T., Kraft, A., Lee, J., Li, J., and Johnson, J. (2009). The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid. Redox Signaling 11: 497–508, https://doi.org/10.1089/ars.2008.2242.Search in Google Scholar PubMed PubMed Central

Canning, P., Sorrell, F., and Bullock, A. (2015). Structural basis of Keap1 interactions with Nrf2. Free Radical Biol. Med. 88: 101–107, https://doi.org/10.1016/j.freeradbiomed.2015.05.034.Search in Google Scholar PubMed PubMed Central

Cannizzo, E.S., Clement, C.C., Sahu, R., Follo, C., and Santambrogio, L. (2011). Oxidative stress, inflamm-aging and immunosenescence. J. Proteomics 74: 2313–2323, https://doi.org/10.1016/j.jprot.2011.06.005.Search in Google Scholar PubMed

Carvalho, K. (2013). Mitochondrial dysfunction in demyelinating diseases. Semin. Pediatr. Neurol. 20: 194–201, https://doi.org/10.1016/j.spen.2013.09.001.Search in Google Scholar PubMed

Cha, S.J. and Kim, K. (2022). Effects of the edaravone, a drug approved for the treatment of amyotrophic lateral sclerosis, on mitochondrial function and neuroprotection. Antioxidants 11: 195, https://doi.org/10.3390/antiox11020195.Search in Google Scholar PubMed PubMed Central

Chen, X.-L., Dodd, G., Thomas, S., Zhang, X., Wasserman, M.A., Rovin, B.H., and Kunsch, C. (2006). Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am. J. Physiol. Heart Circ. Physiol. 290: H1862–H1870, https://doi.org/10.1152/ajpheart.00651.2005.Search in Google Scholar PubMed

Chen, X., Guo, C., and Kong, J. (2012). Oxidative stress in neurodegenerative diseases. Neural Regener. Res. 7: 376–385, https://doi.org/10.3969/j.issn.1673-5374.2012.05.009.Search in Google Scholar PubMed PubMed Central

Chertoff, M., Di Paolo, N., Schoeneberg, A., Depino, A., Ferrari, C., Wurst, W., Pfizenmaier, K., Eisel, U., and Pitossi, F. (2011). Neuroprotective and neurodegenerative effects of the chronic expression of tumor necrosis factor α in the nigrostriatal dopaminergic circuit of adult mice. Exp. Neurol. 227: 237–251, https://doi.org/10.1016/j.expneurol.2010.11.010.Search in Google Scholar PubMed

Chitnis, T. and Weiner, H.L. (2017). CNS inflammation and neurodegeneration. J. Clin. Invest. 127: 3577–3587, https://doi.org/10.1172/jci90609.Search in Google Scholar PubMed PubMed Central

Colton, C.A. and Gilbert, D.L. (1993). Microglia, an in vivo source of reactive oxygen species in the brain. Adv. Neurol. 59: 321–326.Search in Google Scholar

Compston, A. and Coles, A. (2008). Multiple sclerosis. Lancet 372: 1502–1517, https://doi.org/10.1016/s0140-6736(08)61620-7.Search in Google Scholar PubMed

Craner, M.J., Newcombe, J., Black, J.A., Hartle, C., Cuzner, M.L., and Waxman, S.G. (2004). Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc. Natl. Acad. Sci. U. S. A. 101: 8168–8173, https://doi.org/10.1073/pnas.0402765101.Search in Google Scholar PubMed PubMed Central

Cui, Y., Yu, H., Bu, Z., Wen, L., Yan, L., and Feng, J. (2022). Focus on the role of the NLRP3 inflammasome in multiple sclerosis: pathogenesis, diagnosis, and therapeutics. Front. Mol. Neurosci. 15: 894298, https://doi.org/10.3389/fnmol.2022.894298.Search in Google Scholar PubMed PubMed Central

Cunningham, C. (2013). Microglia and neurodegeneration: the role of systemic inflammation. Glia 61: 71–90, https://doi.org/10.1002/glia.22350.Search in Google Scholar PubMed

Dal Bianco, A., Bradl, M., Frischer, J., Kutzelnigg, A., Jellinger, K., and Lassmann, H. (2008). Multiple sclerosis and Alzheimer’s disease. Ann. Neurol. 63: 174–183, https://doi.org/10.1002/ana.21240.Search in Google Scholar PubMed

Dasuri, K., Zhang, L., and Keller, J.N. (2013). Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radical Biol. Med. 62: 170–185, https://doi.org/10.1016/j.freeradbiomed.2012.09.016.Search in Google Scholar PubMed

David, S. and Kroner, A. (2011). Repertoire of microglial and macrophage responses after spinal cord injury. Nat. Rev. Neurosci. 12: 388–399, https://doi.org/10.1038/nrn3053.Search in Google Scholar PubMed

de Barcelos, I., Troxell, R., and Graves, J. (2019). Mitochondrial dysfunction and multiple sclerosis. Biology 8: 37, https://doi.org/10.3390/biology8020037.Search in Google Scholar PubMed PubMed Central

de Oliveira, L., Angelo, Y., Iglesias, A., and Peron, J. (2021). Unraveling the link between mitochondrial dynamics and neuroinflammation. Front. Immunol. 12: 624919, https://doi.org/10.3389/fimmu.2021.624919.Search in Google Scholar PubMed PubMed Central

di Meo, S., Reed, T., Venditti, P., and Victor, V. (2016). Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longevity 2016: 1245049, https://doi.org/10.1155/2016/1245049.Search in Google Scholar PubMed PubMed Central

Dickinson, B. and Chang, C. (2011). Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7: 504–511, https://doi.org/10.1038/nchembio.607.Search in Google Scholar PubMed PubMed Central

Dierckx, T., Haidar, M., Grajchen, E., Wouters, E., Vanherle, S., Loix, M., Boeykens, A., Bylemans, D., Hardonnière, K., Kerdine-Römer, S., et al.. (2021). Phloretin suppresses neuroinflammation by autophagy-mediated Nrf2 activation in macrophages. J. Neuroinflammation 18: 148, https://doi.org/10.1186/s12974-021-02194-z.Search in Google Scholar PubMed PubMed Central

Dinkova-Kostova, A. and Abramov, A. (2015). The emerging role of Nrf2 in mitochondrial function. Free Radical Biol. Med. 88: 179–188, https://doi.org/10.1016/j.freeradbiomed.2015.04.036.Search in Google Scholar PubMed PubMed Central

Dinkova-Kostova, A., Kostov, R., and Canning, P. (2017). Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Arch. Biochem. Biophys. 617: 84–93, https://doi.org/10.1016/j.abb.2016.08.005.Search in Google Scholar PubMed PubMed Central

Dringen, R., Pawlowski, P., and Hirrlinger, J. (2005). Peroxide detoxification by brain cells. J. Neurosci. Res. 79: 157–165, https://doi.org/10.1002/jnr.20280.Search in Google Scholar PubMed

Duarte-Silva, E., Meuth, S.G., and Peixoto, C.A. (2023). The role of iron metabolism in the pathogenesis and treatment of multiple sclerosis. Front. Immunol. 14: 1137635, https://doi.org/10.3389/fimmu.2023.1137635.Search in Google Scholar PubMed PubMed Central

Elkjaer, M., Frisch, T., Reynolds, R., Kacprowski, T., Burton, M., Kruse, T., Thomassen, M., Baumbach, J., and Illes, Z. (2019). Molecular signature of different lesion types in the brain white matter of patients with progressive multiple sclerosis. Acta Neuropathol. Commun. 7: 205, https://doi.org/10.1186/s40478-019-0855-7.Search in Google Scholar PubMed PubMed Central

El Sharouny, S.H., Shaaban, M.H., Elsayed, R.M., Tahef, A.W., and Abd ElWahed, M.K. (2022). N-acetylcysteine protects against cuprizone-induced demyelination: histological and immunohistochemical study. Folia Morphol. 81: 280–293, https://doi.org/10.5603/fm.a2021.0044.Search in Google Scholar

Errea, O., Moreno, B., Gonzalez-Franquesa, A., Garcia-Roves, P.M., and Villoslada, P. (2015). The disruption of mitochondrial axonal transport is an early event in neuroinflammation. J. Neuroinflammation 12: 152, https://doi.org/10.1186/s12974-015-0375-8.Search in Google Scholar PubMed PubMed Central

Escribano, B.M., Luque, E., Aguilar-Luque, M., Feijóo, M., Caballero-Villarraso, J., Torres, L.A., Ramirez, V., García-Maceira, F.I., Agüera, E., Santamaria, A., et al.. (2017). Dose-dependent S-allyl cysteine ameliorates multiple sclerosis disease-related pathology by reducing oxidative stress and biomarkers of dysbiosis in experimental autoimmune encephalomyelitis. Eur. J. Pharmacol. 815: 266–273, https://doi.org/10.1016/j.ejphar.2017.09.025.Search in Google Scholar PubMed

Esteras, N., Dinkova-Kostova, A., and Abramov, A. (2016). Nrf2 activation in the treatment of neurodegenerative diseases: a focus on its role in mitochondrial bioenergetics and function. Biol. Chem. 397: 383–400, https://doi.org/10.1515/hsz-2015-0295.Search in Google Scholar PubMed

Fani Maleki, A. and Rivest, S. (2019). Innate immune cells: monocytes, monocyte-derived macrophages and microglia as therapeutic targets for Alzheimer’s disease and multiple sclerosis. Front. Cell. Neurosci. 13: 355, https://doi.org/10.3389/fncel.2019.00355.Search in Google Scholar PubMed PubMed Central

Ferretti, G., Bacchetti, T., Principi, F., Di Ludovico, F., Viti, B., Angeleri, V., Danni, M., and Provinciali, L. (2005). Increased levels of lipid hydroperoxides in plasma of patients with multiple sclerosis: a relationship with paraoxonase activity. Mult. Scler. 11: 677–682, https://doi.org/10.1191/1352458505ms1240oa.Search in Google Scholar PubMed

Fetisova, E., Chernyak, B., Korshunova, G., Muntyan, M., and Skulachev, V. (2017). Mitochondria-targeted antioxidants as a prospective therapeutic strategy for multiple sclerosis. Curr. Med. Chem. 24: 2086–2114, https://doi.org/10.2174/0929867324666170316114452.Search in Google Scholar PubMed

Fidalgo, M., Ricardo Pires, J., Viseu, I., Magalhães, P., Gregório, H., Afreixo, V., and Gregório, T. (2022). Edaravone for acute ischemic stroke – systematic review with meta-analysis. Clin. Neurol. Neurosurg. 219: 107299, https://doi.org/10.1016/j.clineuro.2022.107299.Search in Google Scholar PubMed

Fischer, R. and Maier, O. (2015). Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid. Med. Cell. Longevity 2015: 610813, https://doi.org/10.1155/2015/610813.Search in Google Scholar PubMed PubMed Central

Fischer, M., Sharma, R., Lim, J., Haider, L., Frischer, J., Drexhage, J., Mahad, D., Bradl, M., van Horssen, J., and Lassmann, H. (2012). NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain 135: 886–899, https://doi.org/10.1093/brain/aws012.Search in Google Scholar PubMed PubMed Central

Fletcher, J.M., Lalor, S.J., Sweeney, C.M., Tubridy, N., and Mills, K. (2010). T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin. Exp. Immunol. 162: 1–11, https://doi.org/10.1111/j.1365-2249.2010.04143.x.Search in Google Scholar PubMed PubMed Central

Frank-Cannon, T., Alto, L., McAlpine, F., and Tansey, M.G. (2009). Does neuroinflammation fan the flame in neurodegenerative diseases? Mol. Neurodegener. 4: 47, https://doi.org/10.1186/1750-1326-4-47.Search in Google Scholar PubMed PubMed Central

Franklin, R. and Ffrench-Constant, C. (2008). Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9: 839–855, https://doi.org/10.1038/nrn2480.Search in Google Scholar PubMed

Friese, M., Schattling, B., and Fugger, L. (2014). Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol. 10: 225–238, https://doi.org/10.1038/nrneurol.2014.37.Search in Google Scholar PubMed

Frischer, J., Bramow, S., Dal-Bianco, A., Lucchinetti, C., Rauschka, H., Schmidbauer, M., Laursen, H., Sorensen, P., and Lassmann, H. (2009). The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132: 1175–1189, https://doi.org/10.1093/brain/awp070.Search in Google Scholar PubMed PubMed Central

Fulp, J., He, L., Toldo, S., Jiang, Y., Boice, A., Guo, C., Li, X., Rolfe, A., Sun, D., Abbate, A., et al.. (2018). Structural insights of benzenesulfonamide analogues as NLRP3 inflammasome inhibitors: design, synthesis, and biological characterization. J. Med. Chem. 61: 5412–5423, https://doi.org/10.1021/acs.jmedchem.8b00733.Search in Google Scholar PubMed PubMed Central

Gandhi, S. and Abramov, A. (2012). Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longevity 2012: 428010, https://doi.org/10.1155/2012/428010.Search in Google Scholar PubMed PubMed Central

Ganesh Yerra, V., Negi, G., Sharma, S., and Kumar, A. (2013). Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biol. 1: 394–397, https://doi.org/10.1016/j.redox.2013.07.005.Search in Google Scholar PubMed PubMed Central

Gard, A.L., Solodushko, V.G., Waeg, G., and Majic, T. (2001). 4-Hydroxynonenal, a lipid peroxidation byproduct of spinal cord injury, is cytotoxic for oligodendrocyte progenitors and inhibits their responsiveness to PDGF. Microsc. Res. Tech. 52: 709–718, https://doi.org/10.1002/jemt.1055.Search in Google Scholar PubMed

Gazaryan, I. and Thomas, B. (2016). The status of Nrf2-based therapeutics: current perspectives and future prospects. Neural Regener. Res. 11: 1708–1711, https://doi.org/10.4103/1673-5374.194706.Search in Google Scholar PubMed PubMed Central

Gilgun-Sherki, Y., Melamed, E., and Offen, D. (2004). The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J. Neurol. 251: 261–268, https://doi.org/10.1007/s00415-004-0348-9.Search in Google Scholar PubMed

Gkekas, I., Gioran, A., Boziki, M., Grigoriadis, N., Chondrogianni, N., and Petrakis, S. (2021). Oxidative stress and neurodegeneration: interconnected processes in PolyQ diseases. Antioxidants 10: 1450, https://doi.org/10.3390/antiox10091450.Search in Google Scholar PubMed PubMed Central

Gonçalves, R., Costa, A., and Grzeskowiak, L. (2021). Oxidative stress and tissue repair: mechanism, biomarkers, and therapeutics. Oxid. Med. Cell. Longevity 2021: 6204096, https://doi.org/10.1155/2021/6204096.Search in Google Scholar PubMed PubMed Central

Gonsette, R. (2008). Neurodegeneration in multiple sclerosis: the role of oxidative stress and excitotoxicity. J. Neurol. Sci. 274: 48–53, https://doi.org/10.1016/j.jns.2008.06.029.Search in Google Scholar PubMed

Gopal, S., Mikulskis, A., Gold, R., Fox, R., Dawson, K., and Amaravadi, L. (2017). Evidence of activation of the Nrf2 pathway in multiple sclerosis patients treated with delayed-release dimethyl fumarate in the phase 3 DEFINE and CONFIRM studies. Mult. Scler. 23: 1875–1883, https://doi.org/10.1177/1352458517690617.Search in Google Scholar PubMed

Grajchen, E., Hendriks, J., and Bogie, J. (2018). The physiology of foamy phagocytes in multiple sclerosis. Acta Neuropathol. Commun. 6: 124, https://doi.org/10.1186/s40478-018-0628-8.Search in Google Scholar PubMed PubMed Central

Gray, E., Thomas, T.L., Betmouni, S., Scolding, N., and Love, S. (2008). Elevated activity and microglial expression of myeloperoxidase in demyelinated cerebral cortex in multiple sclerosis. Brain Pathol. 18: 86–95, https://doi.org/10.1111/j.1750-3639.2007.00110.x.Search in Google Scholar PubMed PubMed Central

Guo, C., Sun, L., Chen, X., and Zhang, D. (2013). Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regener. Res. 8: 2003–2014, https://doi.org/10.3969/j.issn.1673-5374.2013.21.009.Search in Google Scholar PubMed PubMed Central

Gutteridge, J. and Halliwell, B. (1993). Free radicals in disease processes: a compilation of cause and consequence. Free Radical Res. Commun. 19: 141–158, https://doi.org/10.3109/10715769309111598.Search in Google Scholar PubMed

Haider, L., Fischer, M., Frischer, J., Bauer, J., Höftberger, R., Botond, G., Esterbauer, H., Binder, C., Witztum, J., and Lassmann, H. (2011). Oxidative damage in multiple sclerosis lesions. Brain 134: 1914–1924.10.1093/brain/awr128Search in Google Scholar PubMed PubMed Central

Halliwell, B. and Gutteridge, J.M. (Eds.) (2015). Free radicals in biology and medicine. Oxford University Press, Oxford.10.1093/acprof:oso/9780198717478.001.0001Search in Google Scholar

Halliwell, B., Gutteridge, J., and Cross, C. (1992). Free radicals, antioxidants, and human disease: where are we now? J. Lab. Clin. Med. 119: 598–620.Search in Google Scholar

Hametner, S., Wimmer, I., Haider, L., Pfeifenbring, S., Brück, W., and Lassmann, H. (2013). Iron and neurodegeneration in the multiple sclerosis brain. Ann. Neurol. 74: 848–861, https://doi.org/10.1002/ana.23974.Search in Google Scholar PubMed PubMed Central

Harrison, D.A. (2012). The Jak/STAT pathway. Cold Spring Harbor Perspect. Biol. 4: a011205, https://doi.org/10.1101/cshperspect.a011205.Search in Google Scholar PubMed PubMed Central

Haslund-Vinding, J., McBean, G., Jaquet, V., and Vilhardt, F. (2017). NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease. Br. J. Pharmacol. 174: 1733–1749, https://doi.org/10.1111/bph.13425.Search in Google Scholar PubMed PubMed Central

Hassan, W., Noreen, H., Castro-Gomes, V., Mohammadzai, I., Batista Teixeira da Rocha, J., and Landeira-Fernandez, J. (2016). Association of oxidative stress with psychiatric disorders. Curr. Pharm. Des. 22: 2960–2974, https://doi.org/10.2174/1381612822666160307145931.Search in Google Scholar PubMed

He, L., He, T., Farrar, S., Ji, L., Liu, T., and Ma, X. (2017). Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell. Physiol. Biochem. 44: 532–553, https://doi.org/10.1159/000485089.Search in Google Scholar PubMed

Hefendehl, J., Neher, J., Sühs, R., Kohsaka, S., Skodras, A., and Jucker, M. (2014). Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell 13: 60–69, https://doi.org/10.1111/acel.12149.Search in Google Scholar PubMed PubMed Central

Heneka, M., Kummer, M., and Latz, E. (2014). Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 14: 463–477, https://doi.org/10.1038/nri3705.Search in Google Scholar PubMed

Heneka, M., McManus, R., and Latz, E. (2018). Inflammasome signalling in brain function and neurodegenerative disease. Nat. Rev. Neurosci. 19: 610–621, https://doi.org/10.1038/s41583-018-0055-7.Search in Google Scholar PubMed

Higgins, G., Beart, P., Shin, Y., Chen, M., Cheung, N., and Nagley, P. (2010). Oxidative stress: emerging mitochondrial and cellular themes and variations in neuronal injury. J. Alzheimer’s Dis. 20: S453–S473, https://doi.org/10.3233/jad-2010-100321.Search in Google Scholar PubMed

Hsieh, H. and Yang, C. (2013). Role of redox signaling in neuroinflammation and neurodegenerative diseases. BioMed Res. Int. 2013: 484613, https://doi.org/10.1155/2013/484613.Search in Google Scholar PubMed PubMed Central

Hu, C., Nydes, M., Shanley, K., Morales Pantoja, I., Howard, T., and Bizzozero, O. (2019). Reduced expression of the ferroptosis inhibitor glutathione peroxidase-4 in multiple sclerosis and experimental autoimmune encephalomyelitis. J. Neurochem. 148: 426–439, https://doi.org/10.1111/jnc.14604.Search in Google Scholar PubMed PubMed Central

Hu, C., Wu, S., Lin, G., Shieh, C., Hsu, C., Chen, J., Chen, S., Hong, J., and Chen, S. (2021). Microglial Nox2 plays a key role in the pathogenesis of experimental autoimmune encephalomyelitis. Front. Immunol. 12: 638381, https://doi.org/10.3389/fimmu.2021.638381.Search in Google Scholar PubMed PubMed Central

Huang, C., Wu, J., Chen, D., Jin, J., Wu, Y., and Chen, Z. (2019). Effects of sulforaphane in the central nervous system. Eur. J. Pharmacol. 853: 153–168, https://doi.org/10.1016/j.ejphar.2019.03.010.Search in Google Scholar PubMed

Jack, C., Antel, J., Brück, W., and Kuhlmann, T. (2007). Contrasting potential of nitric oxide and peroxynitrite to mediate oligodendrocyte injury in multiple sclerosis. Glia 55: 926–934, https://doi.org/10.1002/glia.20514.Search in Google Scholar PubMed

Jhelum, P.J., Santos-Nogueira, E., Teo, W., Haumont, A., Lenoël, I., Stys, P.K., and David, S. (2020). Ferroptosis mediates cuprizone-induced loss of oligodendrocytes and demyelination. Neurosci 40: 9327–9341, https://doi.org/10.1523/jneurosci.1749-20.2020.Search in Google Scholar

Johnson, D. and Johnson, J. (2015). Nrf2—a therapeutic target for the treatment of neurodegenerative diseases. Free Radical Biol. Med. 88: 253–267, https://doi.org/10.1016/j.freeradbiomed.2015.07.147.Search in Google Scholar PubMed PubMed Central

Johnson, D., Amirahmadi, S., Ward, C., Fabry, Z., and Johnson, J. (2009). The absence of the pro-antioxidant transcription factor Nrf2 exacerbates experimental autoimmune encephalomyelitis. Toxicol. Sci. 114: 237–246, https://doi.org/10.1093/toxsci/kfp274.Search in Google Scholar PubMed PubMed Central

Johri, A. and Beal, M. (2012). Mitochondrial dysfunction in neurodegenerative diseases. J. Pharmacol. Exp. Ther. 342: 619–630, https://doi.org/10.1124/jpet.112.192138.Search in Google Scholar PubMed PubMed Central

Joller, N., Peters, A., Anderson, A., and Kuchroo, V. (2012). Immune checkpoints in central nervous system autoimmunity. Immunol. Rev. 248: 122–139, https://doi.org/10.1111/j.1600-065x.2012.01136.x.Search in Google Scholar PubMed PubMed Central

Juliana, C., Fernandes-Alnemri, T., Wu, J., Datta, P., Solorzano, L., Yu, J.W., Meng, R., Quong, A., Latz, E., Scott, C., et al.. (2010). Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J. Biol. Chem. 285: 9792–9802, https://doi.org/10.1074/jbc.m109.082305.Search in Google Scholar PubMed PubMed Central

Katarina, V., Gordana, T., Svetlana, M., and Milica, B. (2020). Oxidative stress and neuroinflammation should be both considered in the occurrence of fatigue and depression in multiple sclerosis. Acta Neurol. Belg. 120: 853–861, https://doi.org/10.1007/s13760-018-1015-8.Search in Google Scholar PubMed

Kayagaki, N., Warming, S., Lamkanfi, M., Vande Walle, L., Louie, S., Dong, J., Newton, K., Qu, Y., Liu, J., Heldens, S., et al.. (2011). Non-canonical inflammasome activation targets caspase-11. Nature 479: 117–121, https://doi.org/10.1038/nature10558.Search in Google Scholar PubMed

Keane, R., Dietrich, W., and de Rivero Vaccari, J. (2018). Inflammasome proteins as biomarkers of multiple sclerosis. Front. Neurol. 9: 135, https://doi.org/10.3389/fneur.2018.00135.Search in Google Scholar PubMed PubMed Central

Keaney, J., Gasser, J., Gillet, G., Scholz, D., and Kadiu, I. (2019). Inhibition of Bruton’s tyrosine kinase modulates microglial phagocytosis: therapeutic implications for Alzheimer’s disease. J. Neuroimmune Pharmacol. 14: 448–461, https://doi.org/10.1007/s11481-019-09839-0.Search in Google Scholar PubMed PubMed Central

Kennedy, P.G.E., George, W., and Yu, X. (2022). The possible role of neural cell apoptosis in multiple sclerosis. Int. J. Mol. Sci. 23: 7584, https://doi.org/10.3390/ijms23147584.Search in Google Scholar PubMed PubMed Central

Khalatbari Mohseni, G., Hosseini, S.A., Majdinasab, N., and Cheraghian, B. (2023). Effects of N-acetylcysteine on oxidative stress biomarkers, depression, and anxiety symptoms in patients with multiple sclerosis. Neuropsychopharmacol. Rep. 43: 382–390, https://doi.org/10.1002/npr2.12360.Search in Google Scholar PubMed PubMed Central

Kim, J., Na, H., Kim, C., Kim, J., Ha, K., Lee, H., Chung, H., Kwon, H., Kwon, Y., and Kim, Y. (2008). The non-provitamin A carotenoid, lutein, inhibits NF-κB-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-κB-inducing kinase pathways: role of H2O2 in NF-κB activation. Free Radical Biol. Med. 45: 885–896, https://doi.org/10.1016/j.freeradbiomed.2008.06.019.Search in Google Scholar PubMed

Kim, G., Kim, J., Rhie, S., and Yoon, S. (2015). The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol. 24: 325–340, https://doi.org/10.5607/en.2015.24.4.325.Search in Google Scholar PubMed PubMed Central

Kobayashi, E., Suzuki, T., Funayama, R., Nagashima, T., Hayashi, M., Sekine, H., Tanaka, N., Moriguchi, T., Motohashi, H., Nakayama, K., et al.. (2016). Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7: 11624, https://doi.org/10.1038/ncomms11624.Search in Google Scholar PubMed PubMed Central

Kornek, B., Storch, M., Bauer, J., Djamshidian, A., Weissert, R., Wallstroem, E., Stefferl, A., Zimprich, F., Olsson, T., Linington, C., et al.. (2001). Distribution of a calcium channel subunit in dystrophic axons in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain 124: 1114–1124, https://doi.org/10.1093/brain/124.6.1114.Search in Google Scholar PubMed

Krämer, J., Bar-Or, A., Turner, T., and Wiendl, H. (2023). Bruton tyrosine kinase inhibitors for multiple sclerosis. Nat. Rev. Neurol. 19: 289–304, https://doi.org/10.1038/s41582-023-00800-7.Search in Google Scholar PubMed PubMed Central

Kuhlmann, T., Lingfeld, G., Bitsch, A., Schuchardt, J., and Brück, W. (2002). Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125: 2202–2212, https://doi.org/10.1093/brain/awf235.Search in Google Scholar PubMed

Kunkl, M., Frascolla, S., Amormino, C., Volpe, E., and Tuosto, L. (2020). T helper cells: the modulators of inflammation in multiple sclerosis. Cells 9: 482, https://doi.org/10.3390/cells9020482.Search in Google Scholar PubMed PubMed Central

Kutzelnigg, A., Lucchinetti, C., Stadelmann, C., Brück, W., Rauschka, H., Bergmann, M., Schmidbauer, M., Parisi, J., and Lassmann, H. (2005). Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128: 2705–2712, https://doi.org/10.1093/brain/awh641.Search in Google Scholar PubMed

Kwon, H. and Koh, S. (2020). Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener. 9: 42, https://doi.org/10.1186/s40035-020-00221-2.Search in Google Scholar PubMed PubMed Central

Land, W.G. (2023). Role of DAMPs and cell death in autoimmune diseases: the example of multiple sclerosis. Genes Immun. 24: 57–70, https://doi.org/10.1038/s41435-023-00198-8.Search in Google Scholar PubMed

Lassmann, H. (2011). Mechanisms of neurodegeneration shared between multiple sclerosis and Alzheimer’s disease. J. Neural Transm. 118: 747–752, https://doi.org/10.1007/s00702-011-0607-8.Search in Google Scholar PubMed

Lassmann, H. (2014a). Mechanisms of white matter damage in multiple sclerosis. Glia 62: 1816–1830, https://doi.org/10.1002/glia.22597.Search in Google Scholar PubMed

Lassmann, H. (2014b). Multiple sclerosis: lessons from molecular neuropathology. Exp. Neurol. 262: 2–7, https://doi.org/10.1016/j.expneurol.2013.12.003.Search in Google Scholar PubMed

Li, X., Chu, Y., Ma, R., Dou, M., Li, S., Song, Y., Lv, Y., and Zhu, L. (2022). Ferroptosis as a mechanism of oligodendrocyte loss and demyelination in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 373: 577995, https://doi.org/10.1016/j.jneuroim.2022.577995.Search in Google Scholar PubMed

Liddell, J. (2017). Are astrocytes the predominant cell type for activation of Nrf2 in aging and neurodegeneration? Antioxidants 6: 65, https://doi.org/10.3390/antiox6030065.Search in Google Scholar PubMed PubMed Central

Lin, M. and Beal, M. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443: 787–795, https://doi.org/10.1038/nature05292.Search in Google Scholar PubMed

Lingappan, K. (2018). NF-κB in oxidative stress. Curr. Opin. Toxicol. 7: 81–86, https://doi.org/10.1016/j.cotox.2017.11.002.Search in Google Scholar PubMed PubMed Central

Liu, X., Zhang, Z., Ruan, J., Pan, Y., Magupalli, V., Wu, H., and Lieberman, J. (2016). Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535: 153–158, https://doi.org/10.1038/nature18629.Search in Google Scholar PubMed PubMed Central

London, A., Cohen, M., and Schwartz, M. (2013). Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front. Cell. Neurosci. 7: 34, https://doi.org/10.3389/fncel.2013.00034.Search in Google Scholar PubMed PubMed Central

Losy, J. and Niezgoda, A. (2001). IL-18 in patients with multiple sclerosis. Acta Neurol. Scand. 104: 171–173, https://doi.org/10.1034/j.1600-0404.2001.00356.x.Search in Google Scholar PubMed

Luca, A., Calandra, C., and Luca, M. (2018). Molecular bases of Alzheimer’s disease and neurodegeneration: the role of neuroglia. Aging Dis. 9: 1134–1152, https://doi.org/10.14336/ad.2018.0201.Search in Google Scholar PubMed PubMed Central

Luo, C., Jian, C., Liao, Y., Huang, Q., Wu, Y., Liu, X., Zou, D., and Wu, Y. (2017). The role of microglia in multiple sclerosis. Neuropsychiatr. Dis. Treat. 13: 1661–1667, https://doi.org/10.2147/ndt.s140634.Search in Google Scholar PubMed PubMed Central

Luoqian, J., Yang, W., Ding, X., Tuo, Q.Z., Xiang, Z., Zheng, Z., Guo, Y.J., Li, L., Guan, P., Ayton, S., et al.. (2022). Ferroptosis promotes T-cell activation-induced neurodegeneration in multiple sclerosis. Cell. Mol. Immunol. 19: 913–924, https://doi.org/10.1038/s41423-022-00883-0.Search in Google Scholar PubMed PubMed Central

Lushchak, V. (2014). Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 224: 164–175, https://doi.org/10.1016/j.cbi.2014.10.016.Search in Google Scholar PubMed

Ma, M., Wang, J., Zhang, Q., Wang, R., Dhandapani, K., Vadlamudi, R., and Brann, D. (2017). NADPH oxidase in brain injury and neurodegenerative disorders. Mol. Neurodegener. 12: 7, https://doi.org/10.1186/s13024-017-0150-7.Search in Google Scholar PubMed PubMed Central

Magnani, L., Colantuoni, M., and Mortellaro, A. (2022). Gasdermins: new therapeutic targets in host defense, inflammatory diseases, and cancer. Front. Immunol. 13: 898298, https://doi.org/10.3389/fimmu.2022.898298.Search in Google Scholar PubMed PubMed Central

Mahad, D., Trapp, B., and Lassmann, H. (2015). Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 14: 183–193, https://doi.org/10.1016/s1474-4422(14)70256-x.Search in Google Scholar

Mcnamara, R., Asch, R., Lindquist, D., and Krikorian, R. (2018). Role of polyunsaturated fatty acids in human brain structure and function across the lifespan: an update on neuroimaging findings. Prostaglandins, Leukotrienes Essent. Fatty Acids 136: 23–34, https://doi.org/10.1016/j.plefa.2017.05.001.Search in Google Scholar PubMed PubMed Central

Michalska, P. and León, R. (2020). When it comes to an end: oxidative stress crosstalk with protein aggregation and neuroinflammation induce neurodegeneration. Antioxidants 9: 740, https://doi.org/10.3390/antiox9080740.Search in Google Scholar PubMed PubMed Central

Mills, E., Dong, X., Wang, F., and Xu, H. (2010). Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Med. Chem. 2: 51–64, https://doi.org/10.4155/fmc.09.140.Search in Google Scholar PubMed PubMed Central

Mittal, M., Siddiqui, M., Tran, K., Reddy, S., and Malik, A. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signaling 20: 1126–1167, https://doi.org/10.1089/ars.2012.5149.Search in Google Scholar PubMed PubMed Central

Mortezaee, K., Goradel, N., Amini, P., Shabeeb, D., Musa, A., Najafi, M., and Farhood, B. (2019). NADPH oxidase as a target for modulation of radiation response; implications to carcinogenesis and radiotherapy. Curr. Mol. Pharmacol. 12: 50–60, https://doi.org/10.2174/1874467211666181010154709.Search in Google Scholar PubMed

Mossakowski, A., Pohlan, J., Bremer, D., Lindquist, R., Millward, J., Bock, M., Pollok, K., Mothes, R., Viohl, L., Radbruch, M., et al.. (2015). Tracking CNS and systemic sources of oxidative stress during the course of chronic neuroinflammation. Acta Neuropathol. 130: 799–814, https://doi.org/10.1007/s00401-015-1497-x.Search in Google Scholar PubMed PubMed Central

Müller, W., Eckert, A., Kurz, C., Eckert, G., and Leuner, K. (2010). Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer’s disease—therapeutic aspects. Mol. Neurobiol. 41: 159–171, https://doi.org/10.1007/s12035-010-8141-5.Search in Google Scholar PubMed

Murphy, M. (2009). How mitochondria produce reactive oxygen species. Biochem. J. 417: 1–13, https://doi.org/10.1042/bj20081386.Search in Google Scholar

Nadeem, A., Ahmad, S., Al-Harbi, N., Ibrahim, K., Alqahtani, F., Alanazi, W., Mahmood, H.M., Alsanea, S., and Attia, S. (2021). Bruton’s tyrosine kinase inhibition attenuates oxidative stress in systemic immune cells and renal compartment during sepsis-induced acute kidney injury in mice. Int. Immunopharmacol. 90: 107123, https://doi.org/10.1016/j.intimp.2020.107123.Search in Google Scholar PubMed

Neis, V., Rosa, P., Moretti, M., and Rodrigues, A. (2018). Involvement of heme oxygenase-1 in neuropsychiatric and neurodegenerative diseases. Curr. Pharm. Des. 24: 2283–2302, https://doi.org/10.2174/1381612824666180717160623.Search in Google Scholar PubMed

Nie, X., Liang, L., Xi, H., Jiang, S., Jiang, J., Tang, C., Liu, X., Liu, S., Wan, C., Zhao, J., et al.. (2015). 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin induces premature senescence of astrocytes via WNT/β-catenin signaling and ROS production. J. Appl. Toxicol. 35: 851–860, https://doi.org/10.1002/jat.3084.Search in Google Scholar PubMed

Nijland, P.G., Witte, M.E., van het Hof, B., van der Pol, S., Bauer, J., Lassmann, H., van der Valk, P., de Vries, H.E., and van Horssen, J. (2014). Astroglial PGC-1α increases mitochondrial antioxidant capacity and suppresses inflammation: implications for multiple sclerosis. Acta Neuropathol. Commun. 2: 170, https://doi.org/10.1186/s40478-014-0170-2.Search in Google Scholar PubMed PubMed Central

Nita, M. and Grzybowski, A. (2016). The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid. Med. Cell. Longevity 2016: 3164734, https://doi.org/10.1155/2016/3164734.Search in Google Scholar PubMed PubMed Central

Nourelden, A.Z., Kamal, I., Hagrass, A.I., Tawfik, A.G., Elhady, M.M., Fathallah, A.H., Eshag, M.M.E., and Zaazouee, M.S. (2023). Safety and efficacy of edaravone in patients with amyotrophic lateral sclerosis: a systematic review and meta-analysis. Neurol. Sci. 44: 3429–3442, https://doi.org/10.1007/s10072-023-06869-8.Search in Google Scholar PubMed PubMed Central

Ofengeim, D., Ito, Y., Najafov, A., Zhang, Y., Shan, B., DeWitt, J.P., Ye, J., Zhang, X., Chang, A., Vakifahmetoglu-Norberg, H., et al.. (2015). Activation of necroptosis in multiple sclerosis. Cell Rep. 10: 1836–1849, https://doi.org/10.1016/j.celrep.2015.02.051.Search in Google Scholar PubMed PubMed Central

Ohl, K., Tenbrock, K., and Kipp, M. (2016). Oxidative stress in multiple sclerosis: central and peripheral mode of action. Exp. Neurol. 277: 58–67, https://doi.org/10.1016/j.expneurol.2015.11.010.Search in Google Scholar PubMed PubMed Central

Ohta, S., Matsuda, S., Gunji, M., and Kamogawa, A. (2007). The role of nitric oxide in radiation damage. Biol. Pharm. Bull. 30: 1102–1107, https://doi.org/10.1248/bpb.30.1102.Search in Google Scholar PubMed

Olude, M., Mouihate, A., Mustapha, O., Farina, C., Quintana, F., and Olopade, J. (2022). Astrocytes and microglia in stress-induced neuroinflammation: the African perspective. Front. Immunol. 13: 795089, https://doi.org/10.3389/fimmu.2022.795089.Search in Google Scholar PubMed PubMed Central

Ortiz, G., Macías-Islas, M., Pacheco-Moisés, F., Cruz-Ramos, J., Sustersik, S., Barba, E., and Aguayo, A. (2009). Oxidative stress is increased in serum from Mexican patients with relapsing-remitting multiple sclerosis. Dis. Markers 26: 35–39, https://doi.org/10.1155/2009/325847.Search in Google Scholar

Ortiz, G., Pacheco-Moisés, F., Bitzer-Quintero, O., Ramírez-Anguiano, A., Flores-Alvarado, L., Ramírez-Ramírez, V., Macias-Islas, M., and Torres-Sánchez, E. (2013). Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clin. Dev. Immunol. 2013: 708659, https://doi.org/10.1155/2013/708659.Search in Google Scholar PubMed PubMed Central

Ortiz, G., Pacheco-Moisés, F., Macías-Islas, M., Flores-Alvarado, L., Mireles-Ramírez, M., González-Renovato, E., Hernández-Navarro, V., Sánchez-López, A., and Alatorre-Jiménez, M. (2014). Role of the blood–brain barrier in multiple sclerosis. Arch. Med. Res. 45: 687–697, https://doi.org/10.1016/j.arcmed.2014.11.013.Search in Google Scholar PubMed

Pacher, P., Beckman, J., and Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87: 315–424, https://doi.org/10.1152/physrev.00029.2006.Search in Google Scholar PubMed PubMed Central

Pal Singh, S., Dammeijer, F., and Hendriks, R. (2018). Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol. Cancer 17: 57, https://doi.org/10.1186/s12943-018-0779-z.Search in Google Scholar PubMed PubMed Central

Parsa, R., Lund, H., Tosevski, I., Zhang, X., Malipiero, U., Beckervordersandforth, J., Merkler, D., Prinz, M., Gyllenberg, A., James, T., et al.. (2016). TGFβ regulates persistent neuroinflammation by controlling Th1 polarization and ROS production via monocyte-derived dendritic cells. Glia 64: 1925–1937, https://doi.org/10.1002/glia.23033.Search in Google Scholar PubMed PubMed Central

Patel, J. and Balabanov, R. (2012). Molecular mechanisms of oligodendrocyte injury in multiple sclerosis and experimental autoimmune encephalomyelitis. Int. J. Mol. Sci. 13: 10647–10659, https://doi.org/10.3390/ijms130810647.Search in Google Scholar PubMed PubMed Central

Pawate, S., Shen, Q., Fan, F., and Bhat, N.R. (2004). Redox regulation of glial inflammatory response to lipopolysaccharide and interferon. J. Neurosci. Res. 77: 540–551, https://doi.org/10.1002/jnr.20180.Search in Google Scholar PubMed

Pegoretti, V., Swanson, K., Bethea, J., Probert, L., Eisel, U., and Fischer, R. (2020). Inflammation and oxidative stress in multiple sclerosis: consequences for therapy development. Oxid. Med. Cell. Longevity 2020: 719080, https://doi.org/10.1155/2020/7191080.Search in Google Scholar PubMed PubMed Central

Perez-Pinzon, M., Anne Stetler, R., and Fiskum, G. (2012). Novel mitochondrial targets for neuroprotection. J. Cereb. Blood Flow Metab. 32: 1362–1376, https://doi.org/10.1038/jcbfm.2012.32.Search in Google Scholar PubMed PubMed Central

Piantadosi, C. and Zhang, J. (1996). Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke 27: 327–331, https://doi.org/10.1161/01.str.27.2.327.Search in Google Scholar PubMed

Pisoschi, A. and Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: a review. Eur. J. Med. Chem. 97: 55–74, https://doi.org/10.1016/j.ejmech.2015.04.040.Search in Google Scholar PubMed

Poser, C. (2006). The multiple sclerosis trait and the development of multiple sclerosis: genetic vulnerability and environmental effect. Clin. Neurol. Neurosurg. 108: 227–233, https://doi.org/10.1016/j.clineuro.2005.11.019.Search in Google Scholar PubMed

Radi, R. (2018). Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine. Proc. Natl. Acad. Sci. U.S.A. 115: 5839–5848, https://doi.org/10.1073/pnas.1804932115.Search in Google Scholar PubMed PubMed Central

Radi, E., Formichi, P., Battisti, C., and Federico, A. (2014). Apoptosis and oxidative stress in neurodegenerative diseases. J. Alzheimer’s Dis. 42: S125–S152, https://doi.org/10.3233/jad-132738.Search in Google Scholar

Rahim, T., Becquart, P., Baeva, M., and Quandt, J. (2018). Expression of the neuroprotective protein aryl hydrocarbon receptor nuclear translocator 2 correlates with neuronal stress and disability in models of multiple sclerosis. J. Neuroinflammation 15: 270, https://doi.org/10.1186/s12974-018-1290-6.Search in Google Scholar PubMed PubMed Central

Ramos-González, E., Bitzer-Quintero, O., Ortiz, G., Hernández-Cruz, J., and Ramírez-Jirano, L. (2021). Relationship between inflammation and oxidative stress and its effect on multiple sclerosis. Neurología, Article in Press, https://doi.org/10.1016/j.nrl.2021.10.003.Search in Google Scholar

Redza-Dutordoir, M. and Averill-Bates, D. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta 1863: 2977–2992, https://doi.org/10.1016/j.bbamcr.2016.09.012.Search in Google Scholar PubMed

Reeve, A., Krishnan, K., and Turnbull, D. (2008). Age related mitochondrial degenerative disorders in humans. Biotechnol. J. 3: 750–756, https://doi.org/10.1002/biot.200800066.Search in Google Scholar PubMed

Réus, G., Fries, G., Stertz, L., Badawy, M., Passos, I., Barichello, T., Kapczinski, F., and Quevedo, J. (2015). The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience 300: 141–154, https://doi.org/10.1016/j.neuroscience.2015.05.018.Search in Google Scholar PubMed

Reynolds, A., Laurie, C., Lee Mosley, R., and Gendelman, H. (2007). Oxidative stress and the pathogenesis of neurodegenerative disorders. Int. Rev. Neurobiol. 82: 297–325, https://doi.org/10.1016/S0074-7742(07)82016-2.Search in Google Scholar PubMed

Riley, P. (1994). Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int. J. Radiat. Biol. 65: 27–33, https://doi.org/10.1080/09553009414550041.Search in Google Scholar PubMed

Rüther, B., Scheld, M., Dreymueller, D., Clarner, T., Kress, E., Brandenburg, L., Swartenbroekx, T., Hoornaert, C., Ponsaerts, P., Fallier-Becker, P., et al.. (2017). Combination of cuprizone and experimental autoimmune encephalomyelitis to study inflammatory brain lesion formation and progression. Glia 65: 1900–1913, https://doi.org/10.1002/glia.23202.Search in Google Scholar PubMed

Saha, S., Buttari, B., Panieri, E., Profumo, E., and Saso, L. (2020). An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 25: 5474, https://doi.org/10.3390/molecules25225474.Search in Google Scholar PubMed PubMed Central

Sahu, M., Rani, L., Subba, R., and Mondal, A. (2022). Cellular senescence in the aging brain: a promising target for neurodegenerative diseases. Mech. Ageing Dev. 204: 111675, https://doi.org/10.1016/j.mad.2022.111675.Search in Google Scholar PubMed

Saijo, K. and Glass, C. (2011). Microglial cell origin and phenotypes in health and disease. Nat. Rev. Immunol. 11: 775–787, https://doi.org/10.1038/nri3086.Search in Google Scholar PubMed

Sanabria-Castro, A., Flores-Díaz, M., and Alape-Girón, A. (2020). Biological models in multiple sclerosis. J. Neurosci. Res. 98: 491–508, https://doi.org/10.1002/jnr.24528.Search in Google Scholar PubMed

Sanadgol, N., Barati, M., Houshmand, F., Hassani, S., Clarner, T., Shahlaei, M., and Golab, F. (2020). Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrogenesis during brain self-repairing period. Pharmacol. Rep. 72: 641–658, https://doi.org/10.1007/s43440-019-00019-8.Search in Google Scholar PubMed

Saxena, S. and Caroni, P. (2011). Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71: 35–48, https://doi.org/10.1016/j.neuron.2011.06.031.Search in Google Scholar PubMed

Sayre, L., Perry, G., and Smith, M. (2008). Oxidative stress and neurotoxicity. Chem. Res. Toxicol. 21: 172–188, https://doi.org/10.1021/tx700210j.Search in Google Scholar PubMed

Schwartz, M. and Deczkowska, A. (2016). Neurological disease as a failure of brain–immune crosstalk: the multiple faces of neuroinflammation. Trends Immunol. 37: 668–679, https://doi.org/10.1016/j.it.2016.08.001.Search in Google Scholar PubMed

Sharma, B., Satija, G., Madan, A., Garg, M., Alam, M., Shaquiquzzaman, M., Khanna, S., Tiwari, P., Parvez, S., Iqubal, A., et al.. (2023). Role of NLRP3 inflammasome and its inhibitors as emerging therapeutic drug candidate for Alzheimer’s disease: a review of mechanism of activation, regulation, and inhibition. Inflammation 46: 56–87, https://doi.org/10.1007/s10753-022-01730-0.Search in Google Scholar PubMed PubMed Central

Sheikh, S., SafiaHaque, E., and Mir, S. (2013). Neurodegenerative diseases: multifactorial conformational diseases and their therapeutic interventions. J. Neurodegener. Dis. 2013: 563481, https://doi.org/10.1155/2013/563481.Search in Google Scholar PubMed PubMed Central

Shen, H., Yang, Y., Meng, X., Luo, X., Li, X., Shuai, Z., Ye, D., and Pan, H. (2018). NLRP3: a promising therapeutic target for autoimmune diseases. Autoimmun. Rev. 17: 694–702, https://doi.org/10.1016/j.autrev.2018.01.020.Search in Google Scholar PubMed

Shi, H., Jing, X., Wei, X., Perez, R.G., Ren, M., Zhang, X., and Lou, H.J. (2015a). S-allyl cysteine activates the Nrf2-dependent antioxidant response and protects neurons against ischemic injury in vitro and in vivo. Neurochemistry 133: 298–308, https://doi.org/10.1111/jnc.12986.Search in Google Scholar PubMed

Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., Zhuang, Y., Cai, T., Wang, F., and Shao, F. (2015b). Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526: 660–665, https://doi.org/10.1038/nature15514.Search in Google Scholar PubMed

Shi, J., Gao, W., and Shao, F. (2017). Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci. 42: 245–254, https://doi.org/10.1016/j.tibs.2016.10.004.Search in Google Scholar PubMed

Sierra, A., Beccari, S., Diaz-Aparicio, I., Encinas, J.M., Comeau, S., and Tremblay, M. (2014). Surveillance, phagocytosis, and inflammation: how never-resting microglia influence adult hippocampal neurogenesis. Neural Plast. 2014: 610343, https://doi.org/10.1155/2014/610343.Search in Google Scholar PubMed PubMed Central

Sies, H. (1991). Oxidative stress: from basic research to clinical application. Am. J. Med. 91: S31–S38, https://doi.org/10.1016/0002-9343(91)90281-2.Search in Google Scholar PubMed

Singh, A., Kukreti, R., Saso, L., and Kukreti, S. (2019). Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 24: 1583, https://doi.org/10.3390/molecules24081583.Search in Google Scholar PubMed PubMed Central

Siotto, M., Filippi, M., Simonelli, I., Landi, D., Ghazaryan, A., Vollaro, S., Ventriglia, M., Pasqualetti, P., Rongioletti, M., Squitti, R., et al.. (2019). Oxidative stress related to iron metabolism in relapsing remitting multiple sclerosis patients with low disability. Front. Neurosci. 13: 86, https://doi.org/10.3389/fnins.2019.00086.Search in Google Scholar PubMed PubMed Central

Ślusarczyk, J., Trojan, E., Głombik, K., Piotrowska, A., Budziszewska, B., Kubera, M., Popiołek-Barczyk, K., Lasoń, W., Mika, J., and Basta-Kaim, A. (2018). Targeting the NLRP3 inflammasome-related pathways via tianeptine treatment-suppressed microglia polarization to the M1 phenotype in lipopolysaccharide-stimulated cultures. Int. J. Mol. Sci. 19: 1965, https://doi.org/10.3390/ijms19071965.Search in Google Scholar PubMed PubMed Central

Smith, K. (2007). Sodium channels and multiple sclerosis: roles in symptom production, damage and therapy. Brain Pathol. 17: 230–242, https://doi.org/10.1111/j.1750-3639.2007.00066.x.Search in Google Scholar PubMed PubMed Central

Sofroniew, M. and Vinters, H. (2010). Astrocytes: biology and pathology. Acta Neuropathol. 119: 7–35, https://doi.org/10.1007/s00401-009-0619-8.Search in Google Scholar PubMed PubMed Central

Solleiro-Villavicencio, H. and Rivas-Arancibia, S. (2018). Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+ T cells in neurodegenerative diseases. Front. Cell. Neurosci. 12: 114, https://doi.org/10.3389/fncel.2018.00114.Search in Google Scholar PubMed PubMed Central

Stephenson, E., Nathoo, N., Mahjoub, Y., Dunn, J., and Yong, V. (2014). Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat. Rev. Neurol. 10: 459–468, https://doi.org/10.1038/nrneurol.2014.118.Search in Google Scholar PubMed

Stephenson, J., Nutma, E., van der Valk, P., and Amor, S. (2018). Inflammation in CNS neurodegenerative diseases. Immunology 154: 204–219, https://doi.org/10.1111/imm.12922.Search in Google Scholar PubMed PubMed Central

Stojanovic, I.R., Kostic, M., and Ljubisavljevic, S. (2014). The role of glutamate and its receptors in multiple sclerosis. J. Neural Transm. 121: 945–955, https://doi.org/10.1007/s00702-014-1188-0.Search in Google Scholar PubMed

Takeuchi, H., Mizuno, T., Zhang, G., Wang, J., Kawanokuchi, J., Kuno, R., and Suzumura, A. (2005). Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport. J. Biol. Chem. 280: 10444–10454, https://doi.org/10.1074/jbc.m413863200.Search in Google Scholar

Tang, D., Kang, R., Berghe, T.V., Vandenabeele, P., and Kroemer, G. (2019). The molecular machinery of regulated cell death. Cell Res. 29: 347–364, https://doi.org/10.1038/s41422-019-0164-5.Search in Google Scholar PubMed PubMed Central

Tay, T., Savage, J., Hui, C., Bisht, K., and Tremblay, M. (2017). Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. J. Physiol. 595: 1929–1945, https://doi.org/10.1113/jp272134.Search in Google Scholar PubMed PubMed Central

Teleanu, D., Niculescu, A., Lungu, I., Radu, C., Vladâcenco, O., Roza, E., Costăchescu, B., Grumezescu, A., and Teleanu, R.I. (2022). An overview of oxidative stress, neuroinflammation and neurodegenerative diseases. Int. J. Mol. Sci. 23: 5938, https://doi.org/10.3390/ijms23115938.Search in Google Scholar PubMed PubMed Central

Thorburne, S. and Juurlink, B. (1996). Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J. Neurochem. 67: 1014–1022, https://doi.org/10.1046/j.1471-4159.1996.67031014.x.Search in Google Scholar PubMed

Thygesen, C., Larsen, M., and Finsen, B. (2019). Proteomic signatures of neuroinflammation in Alzheimer’s disease, multiple sclerosis and ischemic stroke. Expert Rev. Proteomics 16: 601–611, https://doi.org/10.1080/14789450.2019.1633919.Search in Google Scholar PubMed

Tilokani, L., Nagashima, S., Paupe, V., and Prudent, J. (2018). Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem. 62: 341–360, https://doi.org/10.1042/ebc20170104.Search in Google Scholar PubMed PubMed Central

Toyokuni, S. (1999). Reactive oxygen species-induced molecular damage and its application in pathology. Pathol. Int. 49: 91–102, https://doi.org/10.1046/j.1440-1827.1999.00829.x.Search in Google Scholar PubMed

Trapp, B. and Stys, P. (2009). Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol. 8: 280–291, https://doi.org/10.1016/s1474-4422(09)70043-2.Search in Google Scholar PubMed

Uttara, B., Singh, A., Zamboni, P., and Mahajan, R. (2009). Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 7: 65–74, https://doi.org/10.2174/157015909787602823.Search in Google Scholar PubMed PubMed Central

van der Valk, P. and De Groot, C. (2000). Staging of multiple sclerosis (MS) lesions: pathology of the time frame of MS. Neuropathol. Appl. Neurobiol. 26: 2–10, https://doi.org/10.1046/j.1365-2990.2000.00217.x.Search in Google Scholar PubMed

van Horssen, J., Schreibelt, G., Drexhage, J., Hazes, T., Dijkstra, C., van der Valk, P., and de Vries, H. (2008). Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radical Biol. Med. 45: 1729–1737, https://doi.org/10.1016/j.freeradbiomed.2008.09.023.Search in Google Scholar PubMed

van Horssen, J., Witte, M., Schreibelt, G., and de Vries, H. (2011). Radical changes in multiple sclerosis pathogenesis. Biochim. Biophys. Acta 1812: 141–150, https://doi.org/10.1016/j.bbadis.2010.06.011.Search in Google Scholar PubMed

Van San, E., Debruyne, A.C., Veeckmans, G., Tyurina, Y.Y., Tyurin, V.A., Zheng, H., Choi, S.M., Augustyns, K., van Loo, G., Michalke, B., et al.. (2023). Ferroptosis contributes to multiple sclerosis and its pharmacological targeting suppresses experimental disease progression. Cell Death Differ. 30: 2092–2103, https://doi.org/10.1038/s41418-023-01195-0.Search in Google Scholar PubMed PubMed Central

Villavicencio Tejo, F. and Quintanilla, R. (2021). Contribution of the Nrf2 pathway on oxidative damage and mitochondrial failure in Parkinson and Alzheimer’s disease. Antioxidants 10: 1069, https://doi.org/10.3390/antiox10071069.Search in Google Scholar PubMed PubMed Central

Wagener, F., Volk, H., Willis, D., Abraham, N., Soares, M., Adema, G., and Figdor, C. (2003). Different faces of the heme-heme oxygenase system in inflammation. Pharmacol. Rev. 55: 551–571, https://doi.org/10.1124/pr.55.3.5.Search in Google Scholar PubMed

Wang, P., Xie, K., Wang, C., and Bi, J. (2014). Oxidative stress induced by lipid peroxidation is related with inflammation of demyelination and neurodegeneration in multiple sclerosis. Eur. Neurol. 72: 249–254, https://doi.org/10.1159/000363515.Search in Google Scholar PubMed

Wang, J., Wang, P., Dong, C., Zhao, Y., Zhou, J., Yuan, C., and Zou, L. (2020). Mechanisms of ebselen as a therapeutic and its pharmacology applications. Future Med. Chem. 12: 2141–2160, https://doi.org/10.4155/fmc-2019-0218.Search in Google Scholar PubMed

Wedel, S., Manola, M., Cavinato, M., Trougakos, I., and Jansen-D, P. (2018). Targeting protein quality control mechanisms by natural products to promote healthy ageing. Molecules 23: 1219, https://doi.org/10.3390/molecules23051219.Search in Google Scholar PubMed PubMed Central

Wei, J., Wang, B., Wang, H., Meng, L., Zhao, Q., Li, X., Xin, Y., and Jiang, X. (2019). Radiation-induced normal tissue damage: oxidative stress and epigenetic mechanisms. Oxid. Med. Cell. Longevity 2019: 3010342, https://doi.org/10.1155/2019/3010342.Search in Google Scholar PubMed PubMed Central

Wendimu, M. and Hooks, S. (2022). Microglia phenotypes in aging and neurodegenerative diseases. Cells 11: 2091, https://doi.org/10.3390/cells11132091.Search in Google Scholar PubMed PubMed Central

Winter, A., Ross, E., Daliparthi, V., Sumner, W., Kirchhof, D., Manning, E., Wilkins, H., and Linseman, D. (2017). A cystine-rich whey supplement (Immunocal®) provides neuroprotection from diverse oxidative stress-inducing agents in vitro by preserving cellular glutathione. Oxid. Med. Cell. Longevity 2017: 3103272, https://doi.org/10.1155/2017/3103272.Search in Google Scholar PubMed PubMed Central

Witte, M., Geurts, J., de Vries, H., van der Valk, P., and van Horssen, J. (2010). Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion 10: 411–418, https://doi.org/10.1016/j.mito.2010.05.014.Search in Google Scholar PubMed

Witte, M., Mahad, D., Lassmann, H., and van Horssen, J. (2014). Mitochondrial dysfunction contributes to neurodegeneration in multiple sclerosis. Trends Mol. Med. 20: 179–187, https://doi.org/10.1016/j.molmed.2013.11.007.Search in Google Scholar PubMed

Xu, Y., Xu, Y., Wang, Y., Wang, Y., He, L., Jiang, Z., Huang, Z., Liao, H., Li, J., Saavedra, J., et al.. (2015). Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation. Brain, Behav., Immun. 50: 298–313, https://doi.org/10.1016/j.bbi.2015.07.015.Search in Google Scholar PubMed

Yamasaki, R., Lu, H., Butovsky, O., Ohno, N., Rietsch, A., Cialic, R., Wu, P., Doykan, C., Lin, J., Cotleur, A., et al.. (2014). Differential roles of microglia and monocytes in the inflamed central nervous system. J. Exp. Med. 211: 1533–1549, https://doi.org/10.1084/jem.20132477.Search in Google Scholar PubMed PubMed Central

Yin, J., Zhao, F., Chojnacki, J., Fulp, J., Klein, W., Zhang, S., and Zhu, X. (2018). NLRP3 inflammasome inhibitor ameliorates Amyloid pathology in a mouse model of Alzheimer’s disease. Mol. Neurobiol. 55: 1977–1987, https://doi.org/10.1007/s12035-017-0467-9.Search in Google Scholar PubMed PubMed Central

Yong, H., Chartier, G., and Quandt, J. (2018). Modulating inflammation and neuroprotection in multiple sclerosis. J. Neurosci. Res. 96: 927–950, https://doi.org/10.1002/jnr.24090.Search in Google Scholar PubMed

Zeinali, H., Baluchnejadmojarad, T., Fallah, S., Sedighi, M., Moradi, N., and Roghani, M. (2018). S-allyl cysteine improves clinical and neuropathological features of experimental autoimmune encephalomyelitis in C57BL/6 mice. Biomed. Pharmacother. 97: 557–563, https://doi.org/10.1016/j.biopha.2017.10.155.Search in Google Scholar PubMed

Zelic, M., Pontarelli, F., Woodworth, L., Zhu, C., Mahan, A., Ren, Y., LaMorte, M., Gruber, R., Keane, A., Loring, P., et al.. (2021). RIPK1 activation mediates neuroinflammation and disease progression in multiple sclerosis. Cell Rep. 35: 109112, https://doi.org/10.1016/j.celrep.2021.109112.Search in Google Scholar PubMed PubMed Central

Zgorzynska, E., Dziedzic, B., and Walczewska, A. (2021). An overview of the Nrf2/ARE pathway and its role in neurodegenerative diseases. Int. J. Mol. Sci. 22: 9592, https://doi.org/10.3390/ijms22179592.Search in Google Scholar PubMed PubMed Central

Zhang, Q., Li, Z., Wu, S., Li, X., Sang, Y., Li, J., Niu, Y., and Ding, H. (2016). Myricetin alleviates cuprizone-induced behavioral dysfunction and demyelination in mice by Nrf2 pathway. Food Funct. 7: 4332–4342, https://doi.org/10.1039/c6fo00825a.Search in Google Scholar PubMed

Zhang, N., Jin, L., Liu, C., Zhang, R., Siebert, H., Li, Y., Loers, G., Petridis, A., Xia, Z., Dong, H., et al.. (2021). An antarctic krill oil-based diet elicits neuroprotective effects by inhibiting oxidative stress and rebalancing the M1/M2 microglia phenotype in a cuprizone model for demyelination. J. Funct. Foods 76: 104309, https://doi.org/10.1016/j.jff.2020.104309.Search in Google Scholar

Zhou, Y., Wang, H.D., Zhou, X.M., Fang, J., Zhu, L., and Ding, K. (2018). N-acetylcysteine amide provides neuroprotection via Nrf2-ARE pathway in a mouse model of traumatic brain injury. Drug Des., Dev. Ther. 12: 4117–4127, https://doi.org/10.2147/dddt.s179227.Search in Google Scholar

Zorov, D., Juhaszova, M., and Sollott, S. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94: 909–950, https://doi.org/10.1152/physrev.00026.2013.Search in Google Scholar PubMed PubMed Central

Received: 2023-08-16
Accepted: 2023-11-26
Published Online: 2024-01-02
Published in Print: 2024-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2023-0091/html
Scroll to top button