Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 3, 2020

Gut dysbiosis and serotonin: intestinal 5-HT as a ubiquitous membrane permeability regulator in host tissues, organs, and the brain

  • Henrik Szőke , Zoltán Kovács , István Bókkon EMAIL logo , Jan Vagedes , Attila Erdőfi Szabó , Gabriella Hegyi , Martin-Günther Sterner , Ágnes Kiss and Gábor Kapócs

Abstract

The microbiota and microbiome and disruption of the gut-brain axis were linked to various metabolic, immunological, physiological, neurodevelopmental, and neuropsychiatric diseases. After a brief review of the relevant literature, we present our hypothesis that intestinal serotonin, produced by intestinal enterochromaffin cells, picked up and stored by circulating platelets, participates and has an important role in the regulation of membrane permeability in the intestine, brain, and other organs. In addition, intestinal serotonin may act as a hormone-like continuous regulatory signal for the whole body, including the brain. This regulatory signal function is mediated by platelets and is primarily dependent on and reflects the intestine’s actual health condition. This hypothesis may partially explain why gut dysbiosis could be linked to various human pathological conditions as well as neurodevelopmental and neuropsychiatric disorders.

  1. Conflict of interest statement: The authors report no conflicts of interest. The authors alone are responsible for all the content presented in this review.

References

Abdulamir, H.A., Abdul-Rasheed, O.F., and Abdulghani, E.A. (2018). Serotonin and serotonin transporter levels in autistic children. Saudi Med. J. 39, 487–494.10.15537/smj.2018.5.21751Search in Google Scholar PubMed PubMed Central

Al Ahmad, A., Gassmann, M., and Ogunshola, O.O. (2012). Involvement of oxidative stress in hypoxia-induced blood-brain barrier breakdown. Microvasc. Res. 84, 222–225.10.1016/j.mvr.2012.05.008Search in Google Scholar PubMed

Ambrosini, Y.M., Borcherding, D., Kanthasamy, A., Kim, H.J., Willette, A.A., Jergens, A., Allenspach, K., and Mochel, J.P. (2019). The gut-brain axis in neurodegenerative diseases and relevance of the canine model: a review. Front. Aging Neurosci. 11, 130.10.3389/fnagi.2019.00130Search in Google Scholar PubMed PubMed Central

Amireault, P., Hatia, S., and Côté, F. (2011). Ineffective erythropoiesis with reduced red blood cell survival in serotonin-deficient mice. Proc. Natl. Acad. Sci. USA 108, 13141–13146.10.1073/pnas.1103964108Search in Google Scholar PubMed PubMed Central

Amireault, P., Bayard, E., Launay, J.M., Sibon, D., Le Van Kim, C., Colin, Y., Dy, M., Hermine, O., and Côté, F. (2013). Serotonin is a key factor for mouse red blood cell survival. PLoS One 8, e83010.10.1371/journal.pone.0083010Search in Google Scholar PubMed PubMed Central

Arreola, R., Becerril-Villanueva, E., Cruz-Fuentes, C.,Velasco-Velázquez, M.A., Garcés-Alvarez, M.E., Hurtado-Alvarado, G., Quintero-Fabian, S., and Pavón, L. (2015). Immunomodulatory effects mediated by serotonin. J. Immunol. Res. 2015, 354957.10.1155/2015/354957Search in Google Scholar PubMed PubMed Central

Azouzi, S., Santuz, H., Morandat, S., Pereira, C., Côté, F., Hermine, O., El Kirat, K., Colin, Y., Le Van Kim, C., Etchebest, C., et al. (2017). Antioxidant and membrane binding properties of serotonin protect lipids from oxidation. Biophys. J. 112, 1863–1873.10.1016/j.bpj.2017.03.037Search in Google Scholar PubMed PubMed Central

Balestrieri, M.L., Castaldo, D., Balestrieri, C., Quagliuolo, L., Giovane, A., and Servillo, L. (2003). Modulation by flavonoids of PAF and related phospholipids in endothelial cells during oxidative stress. J. Lipid Res. 44, 380–387.10.1194/jlr.M200292-JLR200Search in Google Scholar PubMed

Banks, W.A. (2008). The blood-brain barrier: connecting the gut and the brain. Regul. Pept. 149, 11–14.10.1016/j.regpep.2007.08.027Search in Google Scholar PubMed PubMed Central

Banks, W.A. (2012). Brain meets body: the blood-brain barrier as an endocrine interface. Endocrinology 153, 4111–4119.10.1210/en.2012-1435Search in Google Scholar PubMed PubMed Central

Banks, W.A. (2019). The blood-brain barrier as an endocrine tissue. Nat. Rev. Endocrinol. 15, 444–455.10.1038/s41574-019-0213-7Search in Google Scholar PubMed

Belkaid, Y., and Hand, T.W. (2014). Role of the microbiota in immunity and inflammation. Cell 157, 121–141.10.1016/j.cell.2014.03.011Search in Google Scholar PubMed PubMed Central

Bellono, N.W., Bayrer, J.R., Leitch, D.B., Castro, J., Zhang, C., O’Donnell, T.A., Brierley, S.M., Ingraham, H.A., and Julius, D. (2017). Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198.e16.10.1016/j.cell.2017.05.034Search in Google Scholar PubMed PubMed Central

Berger, M., Gray, J.A., and Roth, B.L. (2009). The expanded biology of serotonin. Ann. Rev. Med. 60, 355–366.10.1146/annurev.med.60.042307.110802Search in Google Scholar PubMed PubMed Central

Bianconi, E., Piovesan, A., Facchin, F., Beraudi, A., Casadei, R., Frabetti, F., Vitale, L., Pelleri, M.C., Tassani, S., Piva, F., et al. (2013). An estimation of the number of cells in the human body. Ann. Hum. Biol. 40, 463–471.10.3109/03014460.2013.807878Search in Google Scholar PubMed

Bischoff, S.C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J.D., Serino, M., Tilg, H., Watson, A., and Wells, J.M. (2014). Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterol. 14, 189.10.1186/s12876-014-0189-7Search in Google Scholar PubMed PubMed Central

Bornstein, J.C. (2012). Serotonin in the gut: what does it do? Front. Neurosci. 6, 16.10.3389/fnins.2012.00016Search in Google Scholar PubMed PubMed Central

Brust, P., Friedrich, A., Krizbai, I.A., Bergmann, R., Roux, F.,Ganapathy, V., and Johannsen, B. (2000). Functional expression of the serotonin transporter in immortalized rat brain microvessel endothelial cells. J. Neurochem. 74, 1241–1248.10.1046/j.1471-4159.2000.741241.xSearch in Google Scholar PubMed

Buhot, M.C., Martin, S., and Segu, L. (2000). Role of serotonin in memory impairment. Ann. Med. 32, 210–221.10.3109/07853890008998828Search in Google Scholar PubMed

Camilleri, M., Madsen, K., Spiller, R., Greenwood-Van Meerveld, B., and Verne, G.N. (2012). Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol. Motil. 24, 503–512.10.1111/j.1365-2982.2012.01921.xSearch in Google Scholar PubMed PubMed Central

Carabotti, M., Scirocco, A., Maselli, M.A., and Severi, C. (2015). The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 28, 203–209.Search in Google Scholar

Carding, S., Verbeke, K., Vipond, D.T., Corfe, B.M., and Owen, L.J. (2015). Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26, 26191.10.3402/mehd.v26.26191Search in Google Scholar PubMed PubMed Central

Cenit, M.C., Nuevo, I.C., Codoñer-Franch, P., Dinan, T.G., and Sanz, Y. (2017). Gut microbiota and attention deficit hyperactivity disorder: new perspectives for a challenging condition. Eur. Child Adolesc. Psychiatry 26, 1081–1092.10.1007/s00787-017-0969-zSearch in Google Scholar PubMed

Chassard, C., and Lacroix, C. (2013). Carbohydrates and the human gut microbiota. Curr. Opin. Clin. Nutr. Metab. Care. 16, 453–460.10.1097/MCO.0b013e3283619e63Search in Google Scholar PubMed

Claus, S.P., Guillou, H., and Ellero-Simatos, S. (2016). The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes 2, 16003.10.1038/npjbiofilms.2016.3Search in Google Scholar PubMed PubMed Central

Cloutier, N., Paré, A., Farndale, R.W., Schumacher, H.R., Nigrovic, P.A., Lacroix, S., and Boilard, E. (2012). Platelets can enhance vascular permeability. Blood 120, 1334–1343.10.1182/blood-2012-02-413047Search in Google Scholar PubMed

Conlon, M.A., and Bird, A.R. (2014). The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7, 17–44.10.3390/nu7010017Search in Google Scholar PubMed PubMed Central

Crowell, M.D., and Wessinger, S.B. (2007). 5-HT and the brain-gut axis: opportunities for pharmacologic intervention. Expert Opin. Investig. Drugs 16, 761–765.10.1517/13543784.16.6.761Search in Google Scholar PubMed

Cryan, J.F., and Dinan, T.G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712.10.1038/nrn3346Search in Google Scholar PubMed

Császár, N., and Bókkon, I. (2017). Mother-newborn separation at birth in hospitals: A possible risk for neurodevelopmental disorders? Neurosci. Biobehav. Rev. 84, 337–351.10.1016/j.neubiorev.2017.08.013Search in Google Scholar PubMed

Cussotto, S., Clarke, G., Dinan, T.G., Cryan, J.F. (2019). Psychotropics and the microbiome: a Chamber of secret. Psychopharmacology 236, 1411–1432.10.1007/s00213-019-5185-8Search in Google Scholar PubMed PubMed Central

Demopoulos, C.A., Pinckard, R.N., and Hanahan, D.J. (1979). Platelet-activating factor. Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators). J. Biol. Chem. 254, 9355–9358.10.1016/S0021-9258(19)83523-8Search in Google Scholar

Dinan, T.G., and Cryan, J.F. (2017). Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J. Physiol. 595, 489–503.10.1113/JP273106Search in Google Scholar PubMed PubMed Central

Donohoe, D.R., Garge, N., Zhang, X., Sun, W., O’Connell, T.M., Bunger, M.K., and Bultman, S.J. (2011). The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526.10.1016/j.cmet.2011.02.018Search in Google Scholar PubMed PubMed Central

Doran, K.S., Banerjee, A., Disson, O., and Lecuit, M. (2013). Concepts and mechanisms: crossing host barriers. Cold Spring Harb Perspect. Med. 3, a010090.10.1101/cshperspect.a010090Search in Google Scholar PubMed PubMed Central

Eloe-Fadrosh, E.A. and Rasko, D.A. (2013). The human microbiome: from symbiosis to pathogenesis. Annu. Rev. Med. 64, 145–163.10.1146/annurev-med-010312-133513Search in Google Scholar PubMed PubMed Central

Evans, J.M., Morris, L.S., and Marchesi, J.R. (2013). The gut microbiome: the role of a virtual organ in the endocrinology of the host. J. Endocrinol. 218, R37–47.10.1530/JOE-13-0131Search in Google Scholar PubMed

Fang, W., Zhang, R., Sha, L., Lv, P., Shang, E., Han, D., Wei, J., Geng, X., Yang, Q., and Li, Y. (2014). Platelet activating factor induces transient blood-brain barrier opening to facilitate edaravone penetration into the brain. J. Neurochem. 128, 662–671.10.1111/jnc.12507Search in Google Scholar PubMed

Fidalgo, S., Ivanov, D.K., and Wood, S.H. (2013). Serotonin: from top to bottom. Biogerontology 14, 21–45.10.1007/s10522-012-9406-3Search in Google Scholar PubMed

Fiorentino, M., Sapone, A., Senger, S., Camhi, S.S., Kadzielski, S.M., Buie, T.M., Kelly, D.L., Cascella, N., and Fasano, A. (2016). Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol. Autism 7, 49.10.1186/s13229-016-0110-zSearch in Google Scholar PubMed PubMed Central

Flint, H.J. (2012). The impact of nutrition on the human microbiome. Nutr. Rev. 70 (Suppl 1), S10–13.10.1111/j.1753-4887.2012.00499.xSearch in Google Scholar PubMed

Foster, J.A. and McVey Neufeld, K.A. (2013). Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36. 305–312.10.1016/j.tins.2013.01.005Search in Google Scholar PubMed

Fowlie, G., Cohen, N., and Ming, X. (2018). The perturbance of microbiome and gut-brain axis in autism spectrum disorders. Int. J. Mol. Sci. 19, E2251.10.3390/ijms19082251Search in Google Scholar PubMed PubMed Central

Franco, A.T., Corken, A., and Ware, J. (2015). Platelets at the interface of thrombosis, inflammation, and cancer. Blood 126, 582–588.10.1182/blood-2014-08-531582Search in Google Scholar PubMed PubMed Central

Fraser, P.A. (2011). The role of free radical generation in increasing cerebrovascular permeability. Free Radic. Biol. Med. 51, 967–977.10.1016/j.freeradbiomed.2011.06.003Search in Google Scholar PubMed

Frazier, T.H., DiBaise, J.K., and McClain, C.J. (2011). Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. JPEN. J. Parenter Enteral. Nutr. 35 (5 Suppl.), 14S–20S.10.1177/0148607111413772Search in Google Scholar PubMed

Friedman, M. and Levin, C.E. (2012). Nutritional and medicinal aspects of D-amino acids. Amino Acids 42, 1553–1582.10.1007/s00726-011-0915-1Search in Google Scholar PubMed

Fu, B.M. (2012). Experimental methods and transport models for drug delivery across the blood-brain barrier. Curr. Pharm. Biotechnol. 13, 1346–1359.10.2174/138920112800624409Search in Google Scholar PubMed PubMed Central

Fu, B.M. (2018). Transport across the blood-brain barrier. Adv. Exp. Med. Biol. 1097, 235–259.10.1007/978-3-319-96445-4_13Search in Google Scholar PubMed

Fukui, H. (2016). Increased intestinal permeability and decreased barrier function: does it really influence the risk of inflammation? Inflamm. Intest. Dis. 1, 135–145.10.1159/000447252Search in Google Scholar PubMed PubMed Central

Ganong, W.F. (2000). Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin. Exp. Pharmacol. Physiol. 27, 422–427.10.1046/j.1440-1681.2000.03259.xSearch in Google Scholar PubMed

Ge, X., Ding, C., Zhao, W., Xu, L., Tian, H., Gong, J., Zhu, M., Li, J., and Li, N. (2017). Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J. Transl. Med. 15, 13.10.1186/s12967-016-1105-4Search in Google Scholar PubMed PubMed Central

Gershon, M.D. and Tack, J. (2007). The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132, 397–414.10.1053/j.gastro.2006.11.002Search in Google Scholar PubMed

Giau, V.V., Wu, S.Y., Jamerlan, A., An, S.S.A., Kim, S.Y., and Hulme, J. (2018). Gut microbiota and their neuroinflammatory implications in alzheimer’s disease. Nutrients 10, E1765.10.3390/nu10111765Search in Google Scholar PubMed PubMed Central

Gomez-Eguilaz, M., Ramon-Trapero, J.L., Perez-Martinez, L., and Blanco, J.R. (2019). The microbiota-gut-brain axis and its great projections. Rev. Neurol. 68, 111–117.Search in Google Scholar

Guo, Y., Yang, X., Qi, Y., Wen, S., Liu, Y., Tang, S., Huang, R., and Tang, L. (2017). Long-term use of ceftriaxone sodium induced changes in gut microbiota and immune system. Sci. Rep. 7, 43035.10.1038/srep43035Search in Google Scholar PubMed PubMed Central

Halmos, T. and Suba, I. (2016). Physiological patterns of intestinal microbiota. The role of dysbacteriosis in obesity, insulin resistance, diabetes and metabolic syndrome. Orv. Hetil. 157, 13–22.10.1556/650.2015.30296Search in Google Scholar PubMed

Hasan, N. and Yang, H. (2019). Factors affecting the composition of the gut microbiota, and its modulation. Peer J. 7, e7502.10.7717/peerj.7502Search in Google Scholar PubMed PubMed Central

Hasegawa, H. and Ichiyama, A. (2005). Distinctive iron requirement of tryptophan 5-monooxygenase: TPH1 requires dissociable ferrous iron. Biochem. Biophys. Res. Commun. 338, 277–284.10.1016/j.bbrc.2005.09.045Search in Google Scholar PubMed

Hasegawa, H., Oguro, K., Naito, Y., and Ichiyama, A. (1999). Iron dependence of tryptophan hydroxylase activity in RBL2H3 cells and its manipulation by chelators. Eur. J. Biochem. 261, 734–739.10.1046/j.1432-1327.1999.00316.xSearch in Google Scholar PubMed

Holmes, E., Li, J.V., Marchesi, J.R., and Nicholson, J.K. (2012). Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab. 16, 559–564.10.1016/j.cmet.2012.10.007Search in Google Scholar PubMed

Hsiao, E.Y., McBride, S.W., Hsien, S., Sharon, G., Hyde, E.R., McCue, T., Codelli, J.A., Chow, J., Reisman, S.E., Petrosino, J.F., et al. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463.10.1016/j.cell.2013.11.024Search in Google Scholar PubMed PubMed Central

Kaelberer, M.M., Buchanan, K.L., Klein, M.E., Barth, B.B.,Montoya, M.M., Shen, X., and Bohórquez, D.V. (2018). A gut-brain neural circuit for nutrient sensory transduction. Science 361, eaat5236.10.1126/science.aat5236Search in Google Scholar PubMed PubMed Central

Karl, J.P., Hatch, A.M., Arcidiacono, S.M., Pearce, S.C., Pantoja-Feliciano, I.G., Doherty, L.A., and Soares, J.W. (2018). Effects of Psychological, Environmental and physical stressors on the gut microbiota. Front. Microbiol. 9, 2013.10.3389/fmicb.2018.02013Search in Google Scholar PubMed PubMed Central

Kealy, J., Greene, C., and Campbell, M. (2018). Blood-brain barrier regulation in psychiatric disorders. Neurosci. Lett. 133664.10.1016/j.neulet.2018.06.033Search in Google Scholar PubMed

Keely, S.J. (2017). Decoding host-microbiota communication in the gut – now we’re flying! J. Physiol. 595, 417–418.10.1113/JP272980Search in Google Scholar PubMed PubMed Central

Kelesidis, T., Papakonstantinou, V., Detopoulou, P., Fragopoulou, E., Chini, M., Lazanas, M.C., and Antonopoulou, S. (2015). The role of platelet-activating factor in chronic inflammation, immune activation, and comorbidities associated with HIV infection. AIDS Rev. 17, 191–201.Search in Google Scholar

Kelly, J.R., Minuto, C., Cryan, J.F., Clarke, G., and Dinan, T.G. (2017). Cross talk: The microbiota and neurodevelopmental disorders. Front. Neurosci. 11, 490.10.3389/fnins.2017.00490Search in Google Scholar PubMed PubMed Central

Kho, Z.Y. and Lal, S.K. (2018). The human gut microbiome – a potential controller of wellness and disease. Front. Microbiol. 9, 1835.10.3389/fmicb.2018.01835Search in Google Scholar PubMed PubMed Central

Kranich, J., Maslowski, K.M., and Mackay, C.R. (2011). Commensal flora and the regulation of inflammatory and autoimmune responses. Semin. Immunol. 23, 139–145.10.1016/j.smim.2011.01.011Search in Google Scholar PubMed

Lange, K., Buerger, M., Stallmach, A., and Bruns, T. (2016). Effects of antibiotics on gut microbiota. Dig. Dis. 34, 260–268.10.1159/000443360Search in Google Scholar PubMed

Lawrence, K. and Hyde, J. (2017). Microbiome restoration diet improves digestion, cognition and physical and emotional wellbeing. PLoS One 12, e0179017.10.1371/journal.pone.0179017Search in Google Scholar PubMed PubMed Central

Lehmann, M.L., Weigel, T.K., Cooper, H.A., Elkahloun, A.G., Kigar, S.L., and Herkenham, M. (2018). Decoding microglia responses to psychosocial stress reveals blood-brain barrier breakdown that may drive stress susceptibility. Sci Rep. 8, 11240.10.1038/s41598-018-28737-8Search in Google Scholar PubMed PubMed Central

Leslie, M. (2010). Cell biology. Beyond clotting: the powers of platelets. Science 328, 562–564.10.1126/science.328.5978.562Search in Google Scholar PubMed

Li, N., Wallén, N.H., Ladjevardi, M., and Hjemdahl, P. (1997). Effects of serotonin on platelet activation in whole blood. Blood Coagul. Fibrinolysis 8, 517–523.10.1097/00001721-199711000-00006Search in Google Scholar PubMed

Liang, D., Leung, R.K., Guan, W., and Au, W.W. (2018). Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut Pathog. 10, 3.10.1186/s13099-018-0230-4Search in Google Scholar PubMed PubMed Central

Liu, P., Peng, G., Zhang, N., Wang, B., and Luo, B. (2019). Crosstalk Between the Gut Microbiota and the Brain: An Update on Neuroimaging Findings. Front. Neurol. 10, 883.10.3389/fneur.2019.00883Search in Google Scholar PubMed PubMed Central

Lochhead, J.J., McCaffrey, G., Quigley, C.E., Finch, J., DeMarco, K.M., Nametz, N., and Davis, T.P. (2010). Oxidative stress increases blood-brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. J. Cereb. Blood Flow Metab. 30, 1625–1636.10.1038/jcbfm.2010.29Search in Google Scholar PubMed PubMed Central

Lopez-Vilchez, I., Diaz-Ricart, M., White, J.G., Escolar, G., and Galan, A.M. (2009). Serotonin enhances platelet procoagulant properties and their activation induced during platelet tissue factor uptake. Cardiovasc. Res. 84, 309–316.10.1093/cvr/cvp205Search in Google Scholar PubMed

Lynch, S.V. and Pedersen, O. (2016). The Human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379.10.1056/NEJMra1600266Search in Google Scholar PubMed

Macedo, D., Filho, A.J.M.C., Soares de Sousa, C.N., Quevedo, J.,Barichello, T., Júnior, H.V.N., and Freitas de Lucena, D. (2017). Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J. Affect. Disord. 208, 22–32.10.1016/j.jad.2016.09.012Search in Google Scholar PubMed

Magnusson, J.L. and Cummings, K.J. (2018). Central serotonin and the control of arterial blood pressure and heart rate in infant rats: influence of sleep state and sex. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R313–R321.10.1152/ajpregu.00321.2017Search in Google Scholar PubMed PubMed Central

Manchia, M., Carpiniello, B., Valtorta, F., and Comai, S. (2017). Serotonin dysfunction, aggressive behavior, and mental illness: exploring the link using a dimensional approach. ACS Chem. Neurosci. 8, 961–972.10.1021/acschemneuro.6b00427Search in Google Scholar PubMed

Martin, A.M., Yabut, J.M., Choo, J.M., Page, A.J., Sun, E.W., Jessup, C.F., Wesselingh, S.L., Khan, W.I., Rogers, G.B., Steinberg, G.R., et al. (2019). The gut microbiome regulates host glucose homeostasis via peripheral serotonin. Proc. Natl. Acad. Sci. USA 116, 19802–19804.10.1073/pnas.1909311116Search in Google Scholar PubMed PubMed Central

Mayer, E.A. (2011). Gut feelings: the emerging biology of gut-brain communication. Nat. Rev. Neurosci. 12, 453–466.10.1038/nrn3071Search in Google Scholar PubMed PubMed Central

Mohajeri, M.H., Brummer, R.J.M., Rastall, R.A., Weersma, R.K., Harmsen, H.J.M., Faas, M., and Eggersdorfer, M. (2018). The role of the microbiome for human health: from basic science to clinical applications. Eur. J. Nutr. 57 (Suppl 1), 1–14.10.1007/s00394-018-1703-4Search in Google Scholar PubMed PubMed Central

Mück-Seler, D. and Pivac, N. (2011). Serotonin. Periodicum Biologorum 113, 29–41.Search in Google Scholar

Muller, C.L., Anacker, A.M.J., and Veenstra-VanderWeele, J. (2016). The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience 321, 24–41.10.1016/j.neuroscience.2015.11.010Search in Google Scholar PubMed PubMed Central

Nakamura, K. and Hasegawa, H. (2009). Production and peripheral roles of 5-HTP, a precursor of serotonin. Int. J. Tryptophan Res. 2, 37–43.10.4137/IJTR.S1022Search in Google Scholar PubMed PubMed Central

Navale, A.M. and Paranjape, A.N. (2016). Glucose transporters: physiological and pathological roles. Biophys. Rev. 8, 5–9.10.1007/s12551-015-0186-2Search in Google Scholar PubMed PubMed Central

Nemkov, T., Reisz, J.A., Xia, Y., Zimring, J.C., and D’Alessandro, A. (2018). Red blood cells as an organ? How deep omics characterization of the most abundant cell in the human body highlights other systemic metabolicfunctions beyond oxygentransport. Expert Rev. Proteomics 15, 855–864.10.1080/14789450.2018.1531710Search in Google Scholar PubMed

Oldendorf, W.H., Cornford, M.E., and Brown, W.J. (1977). The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann. Neurol. 1, 409.10.1002/ana.410010502Search in Google Scholar PubMed

O’Mahony, S.M., Clarke, G., Borre, Y.E., Dinan, T.G., and Cryan, J.F. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 277, 32–48.10.1016/j.bbr.2014.07.027Search in Google Scholar PubMed

Patzelt, J. and Langer, H.F. (2012). Platelets in angiogenesis. Curr. Vasc. Pharmacol. 10, 570–577.10.2174/157016112801784648Search in Google Scholar PubMed

Pietraforte, D., Vona, R., Marchesi, A., de Jacobis, I.T., Villani, A., Del Principe, D., and Straface, E. (2014). Redox control of platelet functionsn in physiology and pathophysiology. Antioxid. Redox Signal. 21, 177–193.10.1089/ars.2013.5532Search in Google Scholar

Portas, C.M., Bjorvatn, B., and Ursin, R. (2000). Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Prog. Neurobiol. 60, 13–35.10.1016/S0301-0082(98)00097-5Search in Google Scholar

Pun, P.B., Lu, J., and Moochhala, S. (2009). Involvement of ROS in BBB dysfunction. Free Radic. Res. 43, 348–364.10.1080/10715760902751902Search in Google Scholar PubMed

Rahman, S., Khan, I.A., and Thomas, P. (2011). Tryptophan hydroxylase: a target for neuroendocrine disruption. J. Toxicol. Environ. Health B. Crit. Rev. 14, 473–494.10.1080/10937404.2011.578563Search in Google Scholar PubMed

Randriamboavonjy, V. and Fleming, I. (2018). Platelet communication with the vascular wall: role of platelet-derived microparticles and non-coding RNAs. Clin. Sci. (Lond.) 132, 1875–1888.10.1042/CS20180580Search in Google Scholar PubMed

Rhee, S.H., Pothoulakis, C., and Mayer, E.A. (2009). Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat. Rev. Gastroenterol. Hepatol. 6, 306–314.10.1038/nrgastro.2009.35Search in Google Scholar PubMed PubMed Central

Rogers, G.B., Keating, D.J., Young, R.L., Wong, M.L., Licinio, J., and Wesselingh, S. (2016). From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol. Psychiatry 21, 738–748.10.1038/mp.2016.50Search in Google Scholar PubMed PubMed Central

Rojo, D., Méndez-García, C., Raczkowska, B.A., Bargiela, R., Moya, A., Ferrer, M., and Barbas, C. (2017). Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiol. Rev. 41, 453–478.10.1093/femsre/fuw046Search in Google Scholar PubMed PubMed Central

Rose, D.R., Yang, H., Serena, G., Sturgeon, C., Ma, B., Careaga, M., Hughes, H.K., Angkustsiri, K., Rose, M., Hertz-Picciotto, I., et al. (2018). Differential immune responses and microbiota profiles in children with autism spectrum disorders and co-morbid gastrointestinal symptoms. Brain. Behav. Immun. 70, 354–368.10.1016/j.bbi.2018.03.025Search in Google Scholar PubMed PubMed Central

Roth, B.L. (2011). Irving Page Lecture: 5-HT(2A) serotonin receptor biology: interacting proteins, kinases and paradoxical regulation. Neuropharmacology 61, 348–354.10.1016/j.neuropharm.2011.01.012Search in Google Scholar PubMed PubMed Central

Sakakibara, Y., Katoh, M., Kawayanagi, T., and Nadai, M. (2016). Species and tissue differences in serotonin glucuronidation. Xenobiotica 46, 605–611.10.3109/00498254.2015.1101509Search in Google Scholar PubMed

Sántha, P., Veszelka, S., Hoyk, Z., Mészáros, M., Walter, F.R., Tóth, A.E., Kiss, L., Kincses, A., Oláh, Z., Seprényi, G., et al. (2016). Restraint stress-induced morphological changes at the blood-brain barrier in adult rats. Front. Mol. Neurosci. 8, 88.10.3389/fnmol.2015.00088Search in Google Scholar PubMed PubMed Central

Sarchielli, P. and Gallai, V. (2001). Platelets in migraine. J. Headache Pain 2, S61–S66.10.1007/s101940170012Search in Google Scholar

Sarikaya, S. and Gulcin, I. (2013). Radical scavenging and antioxidant capacity of serotonin. Curr. Bioact. Compd. 9, 143–152.10.2174/22115528112019990006Search in Google Scholar

Schroeder, B.O., and Bäckhed, F. (2016). Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22, 1079–1089.10.1038/nm.4185Search in Google Scholar PubMed

Scriven, M., Dinan, T.G., Cryan, J.F., and Wall, M. (2018). Neuropsychiatric disorders: influence of gut microbe to brain signalling. Diseases 6, 78.10.3390/diseases6030078Search in Google Scholar PubMed PubMed Central

Seekatz, A.M. and Young, V.B. (2014). Clostridium difficile and the microbiota. J. Clin. Invest. 124, 4182–4189.10.1172/JCI72336Search in Google Scholar PubMed PubMed Central

Semple, J.W., and Freedman, J. (2010). Platelets and innate immunity. Cell. Mol. Life Sci. 67, 499–511.10.1007/s00018-009-0205-1Search in Google Scholar PubMed

Sender, R., Fuchs, S., and Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533.10.1371/journal.pbio.1002533Search in Google Scholar PubMed PubMed Central

Shalev, H., Serlin, Y., and Friedman, A. (2009). Breaching the blood-brain barrier as a gate to psychiatric disorder. Cardiovasc. Psychiatry Neurol. 2009, 278531.10.1155/2009/278531Search in Google Scholar PubMed PubMed Central

Sharma, H.S. and Dey, P.K. (1981). Impairment of blood-brain barrier (BBB) in rat by immobilization stress: role of serotonin (5-HT). Ind. J. Physiol. Pharmacol. 25, 111–122.Search in Google Scholar

Sharma, H.S. and Dey, P.K. (1984). Role of 5-HT on increased permeability of blood-brain barrier under heat stress. Indian J. Physiol. Pharmacol. 28, 259–267.Search in Google Scholar

Sharma, H.S. and Dey, P.K. (1986). Influence of long-term immobilization stress on regional blood-brain barrier permeability, cerebral blood flow and 5-HT level in conscious normotensive young rats. J. Neurol. Sci. 72, 61–76.10.1016/0022-510X(86)90036-5Search in Google Scholar

Sharma, H.S., Olsson, Y., and Dey, P.K. (1990). Changes in blood-brain barrier and cerebral blood flow following elevation of circulating serotonin level in anesthetized rats. Brain Res. 517, 215–223.10.1016/0006-8993(90)91029-GSearch in Google Scholar

Sharma, H.S., Cervós-Navarro, J., and Dey, P.K. (1991). Increased blood-brain barrier permeability following acute short-term swimming exercise in conscious normotensive young rats. Neurosci. Res. 10, 211–221.10.1016/0168-0102(91)90058-7Search in Google Scholar

Sharma, H.S., Olsson, Y., and Dey, P.K. (1995a). Serotonin as a mediator of increased microvascular permeability of the brain and spinal cord. New Concepts of a Blood-Brain Barrier. D.J. Begley, J. Greenwood and M. Segal, eds. (New York: Plenum Press), pp. 75–80.10.1007/978-1-4899-1054-7_8Search in Google Scholar

Sharma, H.S., Westman, J., Navarro, J.C., Dey, P.K., and Nyberg, F. (1995b). Probable involvement of serotonin in the increased permeability of the blood-brain barrier by forced swimming. An experimental study using Evans blue and 131I-sodium tracers in the rat. Behav. Brain Res. 72, 189–196.10.1016/0166-4328(96)00170-2Search in Google Scholar

Sibon, D., Coman, T., Rossignol, J., Lamarque, M., Kosmider, O., Bayard, E., Fouquet, G., Rignault, R., Topçu, S., Bonneau, P., et al. (2019). Enhanced renewal of erythroid progenitors in myelodysplastic anemia by peripheral serotonin. Cell Rep. 26, 3246–3256.10.1016/j.celrep.2019.02.071Search in Google Scholar PubMed

Siniscalco, D., Brigida, A.L., and Antonucci, N. (2018). Autism and neuro-immune-gut link. Mol. Sci. 5, 166–172.10.3934/molsci.2018.2.166Search in Google Scholar

Skonieczna-Żydecka, K., Marlicz, W., Misera, A., Koulaouzidis, A., and Łoniewski, I. (2018). Microbiome-the missing link in the gut-brain axis: focus on its role in gastrointestinal and mental health. J. Clin. Med. 7, E521.10.3390/jcm7120521Search in Google Scholar PubMed PubMed Central

Spielman, L.J., Gibson, D.L., and Klegeris, A. (2018). Unhealthy gut, unhealthy brain: the role of the intestinal microbiota in neurodegenerative diseases. Neurochem. Int. 120, 149–163.10.1016/j.neuint.2018.08.005Search in Google Scholar PubMed

Stamatovic, S.M., Keep, R.F., and Andjelkovic, A.V. (2008). Brain endothelial cell-cell junctions: how to "open" the blood brain barrier. Curr. Neuropharmacol. 6, 179–192.10.2174/157015908785777210Search in Google Scholar PubMed PubMed Central

Sweatt, J.D., Schwartzberg, M.S., Frazer, M., Cragoe, E.J. Jr., Blair, I.A., Reed, P.W., and Limbird, L.E. (1987). Evidence for a role for Na+-H+ exchange in activation of human platelets by PAF. Circ. Res. 61, II6–11.10.1161/res.61.5_supplement.ii-6Search in Google Scholar

Tecott, L.H. (2007). Serotonin and the orchestration of energy balance. Cell. Metab. 6, 352–361.10.1016/j.cmet.2007.09.012Search in Google Scholar PubMed

Terry, N. and Margolis, K.G. (2017). Serotonergic mechanisms regulating the GI tract: Experimental evidence and therapeutic relevance. Handb. Exp. Pharmacol. 239, 319–342.10.1007/164_2016_103Search in Google Scholar PubMed PubMed Central

Tidemand, K.D., Peters, G.H., Harris, P., Stensgaard, E., andChristensen, H.E.M. (2017). Isoform-specific substrate inhibition mechanism of human tryptophan hydroxylase. Biochemistry 56, 6155–6164.10.1021/acs.biochem.7b00763Search in Google Scholar PubMed

Valdes, A.M., Walter, J., Segal, E., and Spector, T.D. (2018). Role of the gut microbiota in nutrition and health. Br. Med. J. 361, k2179.10.1136/bmj.k2179Search in Google Scholar PubMed PubMed Central

Van Den Berge, N., Ferreira, N., Gram, H., Mikkelsen, T.W., Alstrup, A.K.O., Casadei, N., Tsung-Pin, P., Riess, O., Nyengaard, J.R., Tamgüney, G., et al. (2019). Evidence for bidirectional and trans-synaptic parasympathetic and sympathetic propagation of alpha-synuclein in rats. Acta Neuropathol. 138, 535–550.10.1007/s00401-019-02040-wSearch in Google Scholar PubMed PubMed Central

Varon, D. and Shai, E. (2015). Platelets and their microparticles as key players in pathophysiological responses. J Thromb Haemost. 13 (Suppl 1), S40–S46.10.1111/jth.12976Search in Google Scholar PubMed

Wakefield, A.J. (2002). The gut-brain axis in childhood developmental disorders. J. Pediatr. Gastroenterol. Nutr. 34 (Suppl 1), S14–S17.10.3109/9780203007648-22Search in Google Scholar

Warner, B.B. (2018). The contribution of the gut microbiome to neurodevelopment and neuropsychiatric disorders. Pediatr. Res. 85, 216–224.10.1038/s41390-018-0191-9Search in Google Scholar PubMed

Wazna, E. (2006). Platelet-mediated regulation of immunity. Postepy Hig. Med. Dosw. (Online) 60, 265–277.Search in Google Scholar

Willoughby, S., Holmes, A., and Loscalzo, J. (2002). Platelets and cardiovascular disease. Eur. J. Cardiovasc. Nurs. 1, 273–288.10.1016/S1474-51510200038-5Search in Google Scholar

Winkler, T., Sharma, H.S., Stålberg, E., Olsson, Y., and Dey, P.K. (1995). Impairment of blood-brain barrier function by serotonin induces desynchronization of spontaneous cerebral cortical activity: experimental observations in the anaesthetized rat. Neuroscience 68, 1097–1104.10.1016/0306-4522(95)00194-NSearch in Google Scholar

Xu, G., Li, Y., Ma, C., Wang, C., Sun, Z., Shen, Y., Liu, L., Li, S., Zhang, X., and Cong, B. (2019). Restraint stress induced hyperpermeability and damage of the blood-brain barrier in the amygdala of adult rats. Front. Mol. Neurosci. 12, 32.10.3389/fnmol.2019.00032Search in Google Scholar PubMed PubMed Central

Yarandi, S.S., Peterson, D.A., Treisman, G.J., Moran, T.H., andPasricha, P.J. (2016). Modulatory effects of gut microbiota on the central nervous system: how gut could play a role in neuropsychiatric health and diseases. J. Neurogastroenterol. Motil. 22, 201–212.10.5056/jnm15146Search in Google Scholar PubMed PubMed Central

Yoon, M.Y., and Yoon, S.S. (2018). Disruption of the gut ecosystem by antibiotics. Yonsei Med. J. 59, 4–12.10.3349/ymj.2018.59.1.4Search in Google Scholar PubMed PubMed Central

Young, L.W., Darios, E.S., and Watts, S.W. (2015). An immunohistochemical analysis of SERT in the blood-brain barrier of the male rat brain. Histochem. Cell Biol. 144, 321–329.10.1007/s00418-015-1343-1Search in Google Scholar PubMed PubMed Central

Zhu, B., Wang, X., and Li, L. (2010). Human gut microbiome: the second genome of human body. Protein Cell 1, 718–725.10.1007/s13238-010-0093-zSearch in Google Scholar PubMed PubMed Central

Received: 2019-10-09
Accepted: 2019-12-16
Published Online: 2020-02-03
Published in Print: 2020-05-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2019-0095/html
Scroll to top button