Skip to content
Publicly Available Published by De Gruyter October 1, 2018

Acute anxiety disorder, major depressive disorder, bipolar disorder and schizophrenia are related to different patterns of nigrostriatal and mesolimbic dopamine dysfunction

  • Susanne Nikolaus EMAIL logo , Eduards Mamlins , Hubertus Hautzel and Hans-Wilhelm Müller

Abstract

Dopamine (DA) receptor and transporter dysfunctions play a major role in the pathophysiology of neuropsychiatric diseases including anxiety disorder (AD), major depressive disorder (MDD), bipolar disorder (BD) in the manic (BDman) or depressive (BDdep) state and schizophrenia (SZ). We performed a PUBMED search, which provided a total of 239 in vivo imaging studies with either positron emission tomography (PET) or single-proton emission computed tomography (SPECT). In these studies, DA transporter binding, D1 receptor (R) binding, D2R binding, DA synthesis and/or DA release in patients with the primary diagnosis of acute AD (n=310), MDD (n=754), BDman (n=15), BDdep (n=49) or SZ (n=1532) were compared to healthy individuals. A retrospective analysis revealed that AD, MDD, BDman, BDdep and SZ differed as to affected brain region(s), affected synaptic constituent(s) and extent as well as direction of dysfunction in terms of either sensitization or desensitization of transporter and/or receptor binding sites. In contrast to AD and SZ, in MDD, BDman and BDdep, neostriatal DA function was normal, whereas MDD, BDman, and BDdep were characterized by the increased availability of prefrontal and frontal DA. In contrast to AD, MDD, BDman and BDdep, DA function in SZ was impaired throughout the nigrostriatal and mesolimbocortical system with an increased availability of DA in the striatothalamocortical and a decreased availability in the mesolimbocortical pathway.

Introduction

A variety of neurotransmitters have been implied in the pathophysiology of anxiety disorder (AD), major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ). Among them are serotonin (5-HT; AD, Lowry et al., 2005; MDD, Di Giovanni et al., 2006; SZ, Di Pietro and Seamans, 2007; BD, Deeks and Keeting, 2008), acetylcholine (SZ, Hajos and Rogers, 2010; BD, McEvoy and Allen, 2002; MDD, Mineur and Picciotto, 2010; AD, Graef et al., 2011), glutamate (AD, Carlsson, 2001; SZ, Konradi and Heckers, 2003; BD, Lenox and Wang, 2003; MDD, Mitchell and Baker, 2010) and γ-aminobutyric acid (GABA; SZ, Taylor and Tso, 2014; AD, Nuss, 2015; MDD, Pehrson and Sanchez, 2015; BD, Romeo et al., 2018).

Furthermore, a pivotal role has been ascribed to dysfunctions of the nigrostriatal and mesolimbic dopamin(DA)ergic pathways (SZ, Seeman and Lee, 1975; MDD, Willner, 1983; AD, Stein et al., 2002; BD, Deeks and Keeting, 2008). In the nigrostriatal system, the neostriatum (STR) receives DAergic afferents from the pars compacta of the substantia nigra (SN) and sends DAergic efferents to the thalamus (THAL), neocortex and back to the SN (Afifi, 1994a). In the mesolimbic system, the ventral striatum (VS) is primarily innervated by DAergic fibers arising from the ventral tegmental area (VTA) and projects to the neocortex and limbic regions including amygdala (AMYG) and hippocampus (HIPP; Afifi, 1994b).

In recent surveys of all in vivo imaging studies, which, so far, had been conducted on DAergic neurotransmission in acute AD, MDD, BD and SZ using either positron emission tomography (PET) or single-proton emission computed tomography (SPECT) (Nikolaus et al., 2010, 2012, 2014a,b, 2016, 2017), we found (1) a significant reduction of DA D2 receptors (D2Rs) in the STR of AD patients relative to controls; (2) increases of DA synthesis in the prefrontal cortex (PFC) and frontal cortex (FC) of MDD patients relative to controls; (3) a reduction of DA D1 receptors (D1Rs) in the FC of acutely manic BD patients (BDman) relative to controls; (4) a reduction of D1Rs in the FC of acutely depressed BD patients (BDdep) relative to controls; (5) a reduction of DA transporter (DAT) density in the STR, a reduction of D1Rs in the STR and reductions of D2Rs in STR, THAL, FC and parietal cortex (PC) of SZ patients relative to controls, as well as (6) an increase of DA synthesis and DA release in the STR of SZ patients relative to controls.

In these analyses, however, AD, MDD, BDman, BDdep and SZ were considered separately, and no comparisons of regional DAT, D1R, D2R, DA synthesis and DA release were performed between the individual disturbances. In order to update the pool of studies, we performed a new PUBMED search, providing 38 additional investigations (AD: DAT, n=5, D2R, n=4; MDD: DAT, n=5, D2R, n=5; DA synthesis, n=1; DA release, n=1; SZ: D1R, n=3; D2R, n=11; DA synthesis, n=1; DA release, n=3). For this updated pool, we conducted a novel analysis, comparing (1) regional vesicular monoamine transporter type 2 (VMAT2) binding, DAT binding, D1R binding, D2R binding, DA synthesis and DA release separately in AD, MDD, BDman, BDdep and SZ patients relative to healthy controls, and (2) regional VMAT2 binding, DAT binding, D1R binding, D2R binding, DA synthesis and DA release between patients suffering from AD, MDD, BDdep, BDman and SZ.

Method

Selection of studies. A PubMed search was performed using the keywords ‘anxiety disorder’, ‘depression’, ‘bipolar disorder’, ‘schizophrenia’, ‘schizoaffective disorder’, ‘schizophreniform disorder’ and ‘psychosis’ in combination with either ‘VMAT2’, ‘DAT’, D1 receptor’, ‘D2 receptor’, ‘dopamine synthesis’ or ‘dopamine release’ and either ‘PET’ or ‘SPE(C)T’.

The search provided 27 investigations on acute AD including obsessive-compulsive disorder, panic disorder, post-traumatic stress disorder, social AD and generalized AD [310 patients, age: 36±8 years (mean±standard deviation), duration of disease: 15±8 years, Yale-Brown Obsessive-Compulsive Scale (Ybocs) score: 26±5; Hamilton Anxiety (HAMA) Rating Scale score: 21±6; 330 controls, age: 35±8 years], 51 investigations on acute MDD [667 patients, age: 41±9 years, duration of disease: 11±12 years, Hamilton Depression Rating Scale (HDRS) score: 21±5, Becks Depression Iventory (BDI) score: 21±6; 870 controls, age: 40±11 years], four investigations on acute BDman, [15 patients, age: 32±12 years, duration of disease: 1 year, Young Mania Raing Scale (YMRS) score: 27±7; 44 controls, age: 29±4 years], five investigations on acute BDdep [49 patients, age: 41±0.5 years, duration of disease: not specified (n.s.), HDRS score: 21±1; 207 controls, age: 38±2 years] and 145 investigations on acute SZ including schizoaffective and schizophreniform disorder [1532 patients, age: 33±8 years, duration of disease: 7±8 years, Positive and Negative Syndrome Scale (PANSS) score: 73±16, Brief Psychiatric Rating Scale (BPRS) score: 47±15; 1568 controls, age: 32±8 years] published in peer-reviewed journals between 1986 and December 2017.

In the present analysis, all available in vivo investigations on AD, MDD, BDdep, BDman and SZ patients in the acute stage of disease were enrolled irrespective of their medication state (Tables 14). The inclusion criterion was that patients with the primary diagnosis of AD, MDD, BDdep, BDman, or SZ had to be compared to healthy controls. Moreover, quantitative data of patients and controls had to be communicated in the original publication.

Table 1:

All in vivo investigations of synaptic constituents (VMAT2, DAT, D1 receptor, D2 receptor, DA release) on patients with acute anxiety disorder (AD) with either PET or SPECT.

StudySub-typeMean inventory scale score±SDConstituentLigandComorbidityPremedicationSmokingPatients (m/f)Mean age±SD (years)Controls (m/f)Mean age±SD (years)Mean duration±SD (years)Medication at the time of scanningDuration of withdrawal (days)
Broft et al., 2015AnxietyBDI: 33±11

BAI: 27±12

EDE: 4±1
D2Anorexia, depressionSleeping pills, no psychotropics for ≥4 weeks; current: n.s.y/n0/2125±70/2526±511±8y0
Denys et al., 2004OCDYbocs: 26±7

HDRS: 12±5
D2[123I]IBZMNone, MDD, personality disorderNone, SSRIsy/n3/736±123/734±1018±11n168
Erro et al., 2012AnxietyBDI: 6±7

HADS: >7

MMSE: 28±1

UPDRSIII: 16±9
DAT[123I]FP-CITM. ParkinsonNonen.s.4/559±918/760±81±0.3n.s.0
Figee et al., 2014OCDYbocs: 29±2

HAMA: 29±3

HDRS: 27±2
D2[123I]IBZMNone, MDD, PDNone, benzodizepines7/944±109/938±1826±n.s.01
Hesse et al., 2005OCDYbocs: 25±9

BDI: 7±4

DAT[123I]β-CITNoneNone, psychotropicsn.s.8/732±127/340±1316±9n168
Hoexter et al., 2012PTSDBDI: 28±10

BAI: 9±9

CAPS: 10±13
DAT[99mTc]TRODATNonen.s.n.s.4/1739±134/1740±13n.s.n.s.n.s.
Kim et al., 2003OCDYbocs: 30±7

Ybocsobs: 15±4

Ybocscomp: 15±3

CGI: 6±1
DAT[123I]IPTNoneNone, psychotropicsn.s.11/529±1111/818–50 y9±8n28
Lee et al., 2015GADHAMA: 23±7

HDRS: 11±4

RLCQ: 17±10
DAT[99mTc]TRODATNoneBenzodiazepines, non-benzodizepine

GABAA agonists
n.s.4/837±134/837±134±n.s.y0
Maron et al., 2010PDHAMA: 18±6

PDSS: 9±2
DAT[123I]nor-β-CITn.s.n.s.n.s.0/737±170/735±55±5n.s.n.s.
Meyer et al., 1999OCDn.s.VMAT2[11C]DTBZTS, ADHDα2 antagonists, D1/2 /5-HT7 antagonists, SSRIs, VMAT2 blockersn.s.7/130±922 (gender n.s.)34±828±n.s.y0
Moresco et al., 2007OCDYbocs: 29±5

Ybocsobs: 14±3

Ybocscomp: 15±3

CGI: 5±1

NIMH: 11±1
D2[11C]racloprideNoneNone, benzodiazepines; current: fluvoxamine for ≥2 weeksn.s.6/328±58/127±816±6y/n0
Moriyama et al., 2011SADUPDRSIII: 35±16

HY: 3±1

SE: 82±16

BSPS: 57±11
DAT[99mTc]TRODATM. Parkinsonn.s.y/n3/953±135/1551±117±4n.s.n.s.
Olver et al., 2009OCDYbocs: 22±8

Ybocsobs: 11±4

Ybocscomp: 11±4

HAMA: 15±9

HDRS: 12±5
D1[11C]SCH23390NoneNone, SSRIsn4/340±144/340±1219±n.s.n10
Perani et al., 2008OCDYbocs: 29±4

Ybocsobs: 14±2

Ybocscomp: 15±3

CGI: 5±1

NIMH: 11±1
D2[11C]racloprideNoneNone, benzodiazepinesn.s.6/331±712/321–55 y19±9n≥1
Schneier et al., 2000SADLSAS: n.s.D2[123I]IBZMNoneNone, psychotropicsn.s.5/533±105/533±n.s.n.s.n365
Schneier et al., 2008OCDYbocs: 23±6

LSAS: 24±13

STAI state: 42±11

HDRS: 10±6

TDS: 24±3
D2[123I]IBZMNone, GAD, PTSD, MDDNone, psychotropicsy/n6/233±124/330±11n.s.y/nn.s.
Same controlsOCD+SADYbocs: 21±6

LSAS: 72±24

STAI state: 38±10

HDRS: 15±6

TDS: 26±2
D2[123I]IBZMNone, MDDNone, psychotropics

y/n6/136±84/330±11n.s.y/nn.s.
Schneier et al., 2009SADLSAS: 79±9

TDS: 26±3
DAT[123I]β-CITNone, OCD, GAD, dystymian.s.y/n12 (gender n.s.)n.s.10 (gender n.s.)n.s.n.s.n252
Partly the same subjectsSADLSAS: 79±19D2[11C]racloprideNone, OCD, GAD, dystymian.s.y/n11/431±712 (gender n.s.)n.s.n.s.n252
Partly the same subjectsSADLSAS: 79±19DArel[11C]racloprideNone, OCD, GAD, dystymian.s.y/n12 (gender n.s.)12 (gender n.s.)n.s.n.s.n252
Tiihonen et al., 1997SADCGI: 6±2DAT[123I]β-CITNone, agoraphobiaNonen.s.3/841±53/840±1220±12nn.a.
Van der Wee et al., 2004SADYbocs: 23±4

Ybocsobs: 12±2

Ybocscomp: 11±3

LSAS: 74±14

HDRS: 8±4
DAT[11C]β-CITNonen.s., current: paroxetiney/n11/432±911/432±1012±7n1
Van der Wee et al., 2008SADHDRS: 8±2DAT[11C]β-CITNonen.s.y/n7/539±137/533±1024±15nn.s.
Vulink et al., 2016OCDYbocs: 34±6

BABS: 15±3
D2/3BBD, social phobiaNo psychotropics for ≥4 weeks;y/n9328±79/328±6n.s.n28
Wong et al., 2008OCDYbocs: n.s.

BPRS: n.s.

YGTSSmt: n.s.

YGTSSpt: n.s.
DAT[11C]WIN35,428TSNone, psychotropicsn.s.9/232±83/225±4n.s.n168
Partly the same subjectsOCDYbocs: n.s.

BPRS: n.s.

YGTSSmt: n.s.
D2[11C]racloprideTSNone, psychotropicsn.s.12 (gender n.s.)34±93 (gender n.s.)n.s.n.s.n168
Partly the same subjectsOCDYbocs: n.s.

BPRS: n.s.

YGTSSmt: n.s.

YGTSSpt: n.s.
DA release[11C]racloprideTSNone, psychotropicsn.s.12 (gender n.s.)6/426±7n.s.n168
  1. Given are the reference (in alphabetical order), the assessed disorder, mean rating scale scores (±SD), employed radioligands comorbidities, premedication, cigarette smoking habits, numbers of (male and female) patients and controls, mean age of patients and controls (±SD; years), mean duration of disease (±SD; years), medication state at the time of the investigation and duration of withdrawal (days). Abbreviations (in alphabetical order): α2, Adrenoreceptor of the α2 receptor subtype; ADHD, attention-deficit hyperactivity disorder; BABS, Brown Assessment of Beliefs Scale; BAI, Beck’s Anxiety Inventory; BDD, body dysmorphic disorder; BDI, Beck’s Depression Inventory; BSPS, Brief Socail Phobia Scale; CAPS, Clinician-administered PTSD Scale; CGI, Clinical Global Impression Scale; D1/2/5-HT7 antagonist, dopamine D1/2 receptor plus serotonin 5-HT7 receptor antagonist; D2/3, dopamine receptor of the D2 and D3 receptor subtype; DArel, dopamine release; EDE, Eating Disorder Examination; f, female; GABAA agonist, GABAA receptor agonist GAD, generalized anxiety disorder; HADS, Hospital Anxeiety Depression Scale; HAMA, Hamilton Anxiety Rating Scale; HDRS, Hamilton Depression Rating Scale; HY, Hoehn and Yahr Scale; LSAS, Liebowitz Social Anxiety Scale; M., morbus; m, male; MDD, major depressive disorder; MMSE, Mini-Mental State Examination; NIMHs, NIMH Obsessive-Compulsive Rating Scale; n, no; n.a., not applicable; n.s., not specified in the original investigation; OCD, obsessive-compulsive disorder; PD, panic disorder; PDSS, Shears Panic Disorder Severity Scale; PTSD, post-traumatic stress disorder; RLCQ, Recent Life Change Questionnaire; SAD, social anxiety disorder; SERT, serotonin transporter; SE, Schwab and England Scale; STAIstate, State Spielberger Anxiety Inventrory; SSRI, selective serotonin reuptake inhibitor; TDS, Karolinka Trait Detachment Scale; TS, Tourette syndrome; UPDRSIII, Unified Parkinson Disease Rating Scale (motor); y, yes; y/n, yes as well as no; Ybocs, Yale-Brown Obsessive-Compulsive Score; Ybocsobs, Yale-Brown Obsessive-Compulsive Score – obsessive score; Ybocscomp, Yale-Brown Obsessive-compulsive Score-Compulsive score.

Table 2:

All in vivo investigations of synaptic constituents (DAT, D1 receptor, D2 receptor, DA synthesis, DA release) on patients with acute major depressive disorder (MDD) with either PET or SPECT.

StudyMean rating scale score±SDConstituentLigandComorbidityPremedicationSmokingPatients (m/f)Mean age±SD (years)Controls (m/f)Mean age±SD (years)Mean duration±SD (years)Medication at the time of scanningDuration of withdrawal (days)
Agren et al., 1992n.s.DAsyn[11C]DOPAn.s.n.s.n.s.6 (gender n.s.)40±98 (gender n.s.)35±7n.s.n.s.n.s.
Agren et al., 1993HDRS: 22±6DAsyn[11C]DOPAn.s.TCAs, TeCAs, lithiumn.s.4/337±611/031±6n.s.n23
Agren and Reibring, 1994n.s.DAsyn[11C]DOPAn.s.n.s.n.s.7 (gender n.s.)n.s.11 (gender n.s.)n.s.n.s.n.s.n.s.
Amsterdam and Newberg, 2007HDRS: >17DAT[99mTc]TRODATn.s.Psychotropicsn.s.7/339±n.s22/2440±n.s.n.s.y7
Amsterdam et al., 2012HDRS: n.s.DAT[99mTc]TRODATNonePsychotropicsn.s.24 (gender n.s.)n.s.43/4138±1524±11n180
Argyelan et al., 2005HDRS: 27±6DAT[99mTc]TRODATNoneNone, SSRIs, SNRIs, antipsychoticsn.s.6/1039±1312 (gender n.s.)34±14n.s.n14
Broft et al., 2015BDI: 33±11

BAI: 27±12

EDE: 4±1
D2[11C]racloprideAnorexia, ADSleeping pills, no psycho-tropics for ≥4 weeks; current: n.s.y/n0/2125±70/2526±511±8y0
Brunswick et al., 2003HDRS: 22±4DAT[99mTc]TRODATNoneAntidepressants (incl. SSRIs, MAOIs)n.s.9/640±1222/2440±11n.s.n7
Busto et al., 2009HDRS: 23±6D2[11C]racloprideNoneNoney/n2/836±133/828±4n.s.nn.a.
Same cohortsBDI: 24±7

HDRS: 23±6

BDI: 24±7
DArel[11C]racloprideNoneNoney/n2/836±133/828±4n.s.nn.a.
Camardese et al., 2014HDRS: 22±6

SHPS: 5±1
DAT[123I]FP-CITNoneAntidepressantsn.s.10/1048±1010/1044±13n.s.n.s.n.s.
Cannon et al., 2009MADRS: 22±5

IDS-C: 27±7
D1[11C]NNC-112None, ADAntipsychotics, antidepressantsn7/1131±118/1131±912±9n21
Chung et al., 2016BDI: 14±8

MMSE: 27±2

UPDRSIII: 21±9
DAT[123I]FP-CITM. ParkinsonNonen.s.17/1767±928/4667±9n.s.nn.a.
de Kwaasteniet et al., 2014HDRS: 21±1

MADRS: 34±3

MSM: 12±1
D2[123I]IBZMNoneTCAs, TeCAs, lithium, SNRIs, MAOIs, benzodiazepines, non-benzodiazepine GABAA agonists, D2 agonists, α1/2/D1-5/5-HT1/2/H1-4/mACh antagonistsn.s.7/1052±35/1055±224±5y0
D’haenen and Bossuyt, 1994n.s.D2[123I]IBZMn.s.Psychotropics (incl. benzodiazepines)n.s.4/1741±123/841±8n.s.n7
Dougherty et al., 2006HDRS: 16±n.s.D1[11C]SCH23390Anger attacksAntidepressants (incl. SSRIs)n.s.4/643±76/442±6n.s.n21
Ebert et al., 1994HDRS: 26±4D2[123I]IBZMNoneTCAsn.s.10/033±145/035±8n.s.y0
Ebert et al., 1996HDRS: 26±4D2[123I]IBZMNoneNoney/n20 (gender n.s.)40±1310/050±15n.s.nn.a.
Felicio et al., 2010BDI: 25±6DAT[99mTc]TRODATM. ParkinsonNone, antidepressantsn.s.5/563±96/465±55±2y/n0
Frosini et al., 2015BDI: 17±4

MMSE: 28±1

UPDRSII: 67±5

UPDRSIII: 7±3
DAT[123I]FP-CITM. ParkinsonAntidepressantsn.s.15 (gender n.s.)n.s.35 (gender n.s.)n.s.n.s.n10
Hirvonen et al., 2008HDRS: 19±3

BDI: 24±7
D2

[11C]racloprideNoneNone, SSRIsy/n10/1540±97/1239±10n.s.n1825
Klimke et al., 1999HDRS: 27±5D2[123I]IBZMn.s.Antipressants, benzodiazepinesn.s.7/852±1310/759±1610±n.s.y/n0
Laasonen-Balk et al., 1999HDRS: 16±7

BDI: 20±7

MADRS: 21±6

GAS: 58±7
DAT[123I]β-CITNoneNonen.s.5/1036±88/1035±6n.s.nn.a.
Ledermann et al., 2016aBDI: 17±9

MADRS: 16±9

SHPS: 2±1

PDI: 25±7
D2[11C]racloprideFibromyalgiaSSRIs, TCAs, NSAIDsn.s.0/1145±100/1743±1411±12y0
Ledermann et al., 2017

Same cohorts as

Ledermann et al., 2016
BDI: 17±9

MADRS: 16±9

SHPS: 2±1

PDI: 25±7
DArel[11C]racloprideFibromyalgiaSSRIs, TCAs, NSAIDsn.s.0/1145±100/1743±1411±12y0
Lehto et al., 2006HDRS: 30±8DAT[123I]nor-β-CITNoneNonen.s.5/2429±92/1631±9n.s.nn.a.
Lehto et al., 2008aHDRS: 10±5D2[123I]epideprideNone, dysthymiaBenzodiazepines, antidepressantsn.s.4/653±74/652±77±n.s.n90
Lehto et al., 2008bHDRS: 19±5DAT[123I]nor-β-CITNone, dysthymiaNoney/n2/1727±53/1631±9n.s.nn.a.
Majurim et al., 2017BDI: 15±9

BES: 31±5

YFAS: 31±5

DEBQem: 50±8

DEBQext: 38±6

DEBQrest: 35±3
DAsyn[18F]DOPABED, pathological gambling, anxietyNone, SSRIsy/n8/1446±88/943±11n.s.y/n0
Malison et al., 1998YDI: >17DAT[123I]β-CITNone, dysthymia, PD, ADHD, substance abuseNone, TCAs, SSRIs, 5-HT2A antagonists, NA/DA reuptake inhibitorsn.s.7/844±107/845±11n.s.n21
Martinot et al., 2001MADRS: 29±4

DRRS: 17±4

DMSloc: 10±4

DMSaf: 12±4

TAS: 14±5
DAsyn[18F]DOPANoneSSRIsn.s.3/946±84/642±12n.s.y/n0
Meyer et al., 2001HDRS: 17±n.s.DAT[11C]RTI-32Nonen.s.y/n5/435±812/1137±10n.s.n84
Meyer et al., 2006HDRS: 20±3D2[11C]racloprideNoneNone, antidepressantsn9/1225±109/1234±11>2n180
Montgomery et al., 2007HDRS: 17±4

BDI: 28±9
D2[11C]FLB 457NonePsychotropicsy/n2/544±96/136±11n.s.n120
Neumeister et al., 2001SIGHsad: 33±5DAT[123I]β-CITNonen.s.n1/1031±81/1031±10n.s.n.s.n.s.
Parsey et al., 2001HDRS: 21±15

BPRS: 23±13
D2[123I]IBZMNoneBenzodiazepines, neuroleptics, SSRIsy/n7/236±127/330±10n.s.n3
Same cohortsHDRS: 21±15

BPRS: 23±13
DArel[123I]IBZMNoneBenzodiazepines, neuroleptics, SSRIsy/n7/236±1127/330±10n.s.n3
Remy et al., 2005BDI: 19±8DAT[11C]RTI-32M. ParkinsonEnhancers of DA

release, D2 agonists, MAOIs
n.s.5/357±99/460±73±2n84
Ryding et al., 2006BSIC: >18DAT[123I]β-CITNone, self-harm, adjustment isorder, substance abuseAntidepressants, antipsychoticsn.s.10/239±1410/239±14n.s.n180
Saijo et al., 2010HDRS: 19±6

GAS: 42±9
D2[11C]FLB457AD, insomniaSSRIs, benzodiazepines, ECTn.s.5/243±1111/041±112±2y0
Sarchiapone et al., 2006HDRS: 20±6

MADRS: 22±2

SHPS: 10±2
DAT[123I]FP-CITNone, dysthymiaPsychoactive drugsn.s.6/541±125/536±12n.s.n120
Savitz et al., 2013MADRS: 25±7D2[11C]racloprideNonePsychotropicsn4/838±1111/1335±8n.s.n21
Shah et al., 1997HDRS: 24±8

NS: 7±2
D2[123I]IBZMNone, BDNone, antidepressants (incl. lithium), benzodiazepinesn.s.9/645±149/641±10n.s.y/n84
Staley et al., 2006BDI: 28±7

YDI: 25±5

DAT[123I]β-CITn.s.None, benzodiazepinesy/n16/1639±1016/1639±1011±n.s.n.s.n.s.
Tolmunen et al., 2004HDRS: 18±3DAT[123I]nor-β-CITn.s.n.s.n.s.0/627±610 (gender n.s.)26±61±1n.s.n.s.
Viinamäki et al., 1998HDRS: 27DAT[123I]β-CITBPD, substance abuseBenzodiazepinesn.s.1/0345/034±1n.s.n.s.n.s.
Wing et al., 2015BDI: 11±6

UPDRSIII: 2±1

RBDQ: 45±15
DAsyn[11C]DOPAREM sleep behavior disorderAntidepressants incl. SSRIsy/n8/348±810/347±1140±9y0
Same cohortsBDI: 11±6

UPDRSIII: 2±1

RBDQ: 45±1


D2


[11C]raclopride




REM sleep behavior disorder


Antidepressants incl. SSRIs


y/n


8/3


48±8


10/3


47±11


40±9


y


0
Yang et al., 2008

Same cohorts
HDRS: 25±8

HDRS: 25±8
DAT

D2
[99mTc]TRODAT



[123I]IBZM
None

None
Antidepressants

Antidepressants
y/n

y/n
3/7

3/7
51±7



51±7
3/7



3/7
53±6



53±6
3±7



3±7
n



n
84



84
Yen et al., 2016HDRS: 19±5DAT[99mTc]TRODATAlcohol abuseNone-DAergic medicationy/n21/039±724/039±9n.s.n.s.n.s.
  1. Given are the reference (in alphabetical order), the assessed disorder, mean rating scale scores (±SD), employed radioligands comorbidities, premedication, cigarette smoking habits, numbers of (male and female) patients and controls, mean age of patients and controls (±SD; years), mean duration of disease (±SD; years), medication state at the time of the investigation and duration of withdrawal (days). Abbreviations (in alphabetical order): α1/2, α1/2 adrenoreceptor; AD, anxiety disorder; ADHD, attention-deficit hyperactivity disorder; BAI, Beck’s Anxiety Inventory; BD, bipolar disorder; BDI, Beck Depression Inventory; BED, binge eating disorder; BES, Binge Eating Scale; BHS, Beck Hopelessness Scale; BPD, borderline personaliy disorder; BPRS, Brief Psychiatric Rating Scale; BSIC, Beck Suicidal Intent Scale; CD, conduct disorder; CGIS, clinical global impression scale; DA, dopamine; DAT, dopamine transporter; D1-5, dopamine D1-5 receptor; DArel, dopamine release; DAsyn, dopamine synthesis; DEBQem, Dutch Eating Behavior Questionnaire emotional; DEBQext, Dutch Eating Behavior Questionnaire (external scale); DEBQresr, Dutch Eating Behavior Questionnaire (restrained scale); DMSloc, Depressive Mood Scale (loss of control subscale); DMSaf, Depressive Mood Scale (affective flattening subscale); Dn.s., depression not specified; DRRS, Depression Retardation Raing Scale; ECT, electroconvulsive therapy; EDE, Eating Disorder Examination; f, female; GABAA, GABAA receptor; GAS, Endicott’s Global Assessment Scale; H1-4, histamine H1-4 receptor; HAMA, Hamilton Anxiety Scale; HDRS, Hamilton Depression Rating Scale; 5-HT1/2, serotonin 5-HT1/2 receptor; 5-HT2A, serotonin 5-HT2A receptor; IDS-C, Inventory of Depressive Symptoms Clinician Rated; M., Morbus; m, male; mACh, muscarinic acetylcholine receptor; MADRS, Montgomery-Asberg Depression Rating Scale; MAOI, monoamine oxidase inhibitor; MDD, major depressive disorder; MMSE, Mini-Mental State Examination; MSM, Maudsley Staging Method; n, no; n.a., not applicable; NA, noradrenaline; n.s., not specified; NS, Newcastle Scale; NSAID, non-steroidal anti-inflammatory drugs; PD, panic disorder; REM, rapid eye movement; RLCQ, Recent Life Change Questionnaire; SAD, seasonl affective disorder; SNRI, 5-serotonin/noradrenaline reuptake inhibitors; SHPS, Snaith-Hamilton Pleasure Scale; SIGHsad, Structured Interview Guide for the Hamilton Depression Rating Scale- Seasonal Affective Disorder Version; SSRI; selective serotonin reuptake inhibitors; TAS, Tyrer Anxiety Scale; TCA, tricyclic antidepressants; TeCA, tetracyclic antidepressants; UPDRSII, Unified Parkinson Disease Rating Scale (self-evaluation of the activities of daily life), UPDRSIII, Unified Parkinson Disease Rating Scale (motor scale); y, yes; y/n, yes/no; YDI, Yale Depression Inventory; YFAS, Yale Food Addication Scale.

Table 3:

All in vivo investigations of synaptic constituents (DAT, D1 receptor, D2 receptor, DA synthesis) on patients with acute bipolar disorder (BD) with either PET or SPECT.

StudyStateMean rating scale score±SDConstituentLigandComorbidityPremedicationSmokingPatients (m/f)Mean age±SD (years)Controls (m/f)Mean age±SD (years)Mean duration±SD (years)Medication at the time of scanningDuration of withdrawal (days)
Amsterdam and Newberg, 2007DepHDRS: >17DAT[99mTc]TRODATn.s.Psychotropicsn.s.2/341±n.s.22/2440±n.s.n.s.n7
Amsterdam et al., 2012DepHDRS: n.s.DAT[99mTc]TRODATNoneNone, psychotropicsn.s.15 (n.s.)n.s.43/4138±14n.s.n180
Brunswick et al., 2003DepHDRS: 22±4DAT[99mTc]TRODATMDDAntidepressants (incl. SSRIs, MAOIs)n.s.9/640±1222/2440±11n.s.n7
Sarchiapone et al., 2006DepHDRS: 20±6

MADRS: 22±2

SHPS: 10±2
DAT[123I]FP-CITMDD, dysthymiaPsychoactive drugsn.s.6/541±125/536±12n.s.n120
Suhara et al., 1992DepHDRS: 21±12D1[11C]SCH23390n.s.Antidepressants (incl. TCAs, TeCAs, D2/D3 antagonists, lithium)n.s.3/041±621/020–72n.s.n15
Same controlsMann.s.D1[11C]SCH23390n.s.n.s.n.s.1/03721/020–72n.s.n8
Tolmunen et al., 2004ManHDRS: 15DAT[123I]nor-β-CITn.s.n.s.n.s.0/12510 (n.s.)26±6n.s.n.s.n.s.
Yatham et al., 2002a

Same cohorts as

Yatham et al., 2002b
ManYMRS: 27±7DAsyn[18F]DOPANoneNone, benzodiazepinesn.s.6/733±126/732±12n.s.nn.a.
Yatham et al., 2002b

Same cohorts as

Yatham et al., 2002a
ManYMRS: 27±7D2[11C]racloprideNoneNone, benzodiazepinesn.s.6/733±126/732±12n.s.nn.a.
  1. Given are the reference (in alphabetical order), the state (manic or depressed) at the time of in vivo measurement, mean rating scale scores (±SD), employed radioligands comorbidities, premedication, cigarette smoking habits, numbers of (male and female) patients and controls, mean age of patients and controls (±SD; years), mean duration of disease (±SD; years), medication state at the time of the investigation and duration of withdrawal (days). Abbreviations (in alphabetical order): D1 dopamine D1 receptor; D2, dopamine D2 receptor; D2/3, dopamine D2/3 receptor; DAsyn, dopamine synthesis; dep, depressed; DAT, dopamine transporter; f, female; HDRS, Hamilton Depression Rating Scale; m, male; MADRS, Montgomery-Asberg Depression Rating Scale; man, manic; MAOI, monoamine oxidase inhibitor; n, no; n.s., not specified; SHPS, Snaith-Hamilton Pleasure Scale; SSRI, selective serotonin reuptake inhibitor; TCA, tricyclic antidepressants; TeCA, tetracyclic antidepressants; YMRS, Young Mania Rating Scale.

Table 4:

All in vivo investigations of synaptic constituents (DAT, D1 receptor, D2 receptor, DA synthesis, DA release) on patients with acute schizophrenia (SZ) with either PET or SPECT.

StudyDisorderMean inventory scale score±SDConstituentLigandComorbidityPremedicationSmokingPatients (m/f)Mean age±SD (years)Controls (m/f)Mean age±SD (years)Mean duration±SD (years)Medication at the time of scanningDuration of withdrawal (days)
Abi-Dargham et al., 1998SZPANSSpos: 19±5

PANSSneg: 20±7

BPRS: 44±11
D2[123I]IBZMNoneNone, neuroleptics, benzodiazepinen.s.12/341±912/340±11n.s.n169
Same patients and controlsSZPANSSpos: 19±5

PANSSneg: 20±7

BPRS: 44±11
DArel[123I]IBZMNoneNone, neuroleptics, benzodiazepinen.s.12/341±912/340±11n.s.n169
Abi-Dargham et al., 2000

Partly the same patients and controls as Abi-Dargham et al., 2009
SZPANSS: 67±12D2[123I]IBZMNoneNone, antipsychotics, benzodiazepiney/n11/731±811/731±8n.s.n1
Abi-Dargham et al., 2002SZ, SFDPANSS: 71±7

PANSSpos: 19±7
D1[11C]NNC212NoneAntipsychotics, benzodiazepiney/n13/333±1211/534±10n.s.n1
Partly the same controls as Abi-Dargham et al., 2012 and Thompson et al., 2014PANSSneg: 18±6

PANSSgen: 34±7
Abi-Dargham, 2003SZ, SFDPANSS: 34±7

PANSSpos: 19±7

PANSSneg: 18±6
D1[11C]NNC212NoneAntipsychoticsy/n16 (gender n.s.)n.s.16 (gender n.s.)n.s.n.s.n21
Abi-Dargham et al., 2009

Partly the same patients and controls as Abi-Dargham et al., 2000
SZn.s.D2[123I]IBZMn.s.Nonen2/429±66/228±8n.s.nn.a.
Same patients and controlsSZn.s.DArel[123I]IBZMn.s.Nonen2/429±66/228±8n.s.nn.a.
Abi-Dargham et al., 2012

Partly the same controls as Abi-Dargham et al., 2002 and Thompson et al., 2014
SZ, SADPANSS: 67±22

PANSSpos: 18±6

PANSSneg: 17±6

PANSSgen: 32±12
D1[11C]NNC212NoneNoney/n5/725±512/1226±5n.s.nn.a.
Different collectives; partly the same controls as Abi-Dargham et al., 2002 and Thompson et al., 2014SZ, SADPANSS: 62±13

PANSSpos: 16±5

PANSSneg: 14±6

PANSSgen: 32±7
D1[11C]NNC212NoneAntipsychotics, benzodiazepiney/n11/231±1020/430±10n.s.n1
Agid et al., 2007SZPANSS: 88±11

PANSSpos: 21±4

PANSSneg: 17±5

CGI: 5±1

D2[11C]FLB457NonePrevious: none, antipsychotics; current: risperidone or olanzapine for ≥13 daysn.s.13/127±n.s.13 (gender n.s.)27±2n.s.y0
Arakawa et al., 2009SZPANSS: 78±19

PANSSpos: 18±5

PANSSneg: 19±7

PANSSgen: 41±11
DAT[11C]PE21NoneNone, antipsychotics incl. benzodiazepinesn.s.6/237±1010/233±123±4y/n0
Arakawa et al., 2010SZ, SFDPANSS: 66±13D2[11C]FLB457n.s.Previous: n.s., current: perospirone for 2 weeksn.s.2/435±710/035±7n.s.y0
Barnas et al., 2001

Partly the same patients as Küfferle et al., 1996, 1997 and Kasper et al., 1998 and the same controls as Küfferle et al., 1996, 1997, Kasper et al., 1998 and Brücke et al., 1991
SZPANSS: 102±23

CGI: n.s.

BAS: n.s.
D2[123I]IBZMn.s.Previous: antipsychotics; current: zolpidem for ≥4 weeks; co-medication: bendiazepine, anticholinergicn.s.7/533±96/251±17n.s.n.s.n.s.
Bertolino et al., 2000

Partly the same patients as Breier et al., 1997

SZBPRS: 38±n.s.DArel[11C]raclopriden.s.None, antipsychoticsn.s.6/340±95/236±716±11n14
Bigliani et al., 1999SZBPRS: 46±11

SAPS: 31±23

SANS: 34±17

GAS: 45±13

AIMS: 2±4

SA: 3±4

BAS: 3±4
D2[123I]epideprideNoneTypical neuroleptics for ≥3 monthsn.s.11/140±1111/036±10n.s.y0
Bose et al., 2008

Partly the same patients as McGowan et al., 2004
SZ paranoidn.s.DAsyn[18F]DOPANoneNone, typical and atypical neurolepticsn.s.18/135±1222/932±107±n.s.n.s.n.s.
Breier et al., 1997

Same patients and controls; partly the same patients as Bertolino et al., 2000
SZ

SZ
BPRS: 29±7

BPRS: 29±7
D2

DArel
[11C]raclopride

[11C]raclopride
None

None
None, antipsychotics

None, antipsychotics
n.s.

n.s.
8/3

8/3
32±3

32±3
9/3

9/3
29±3

29±3
7±2

7±2
n

n
1095

1095
Bressan et al., 2003SZPANSS: 65±n.s.

PANSSpos: 14±3

PANSSneg: 18±3

PANSSgen: 33±10

CDSS: 6±6

AIMS: 2±5

SA: 1±3

BAS: 3±4
D2[123I]epideprideNoneTypical and atypical neuroleptics, SNRI, sodium channel blocker, anticholinergicsn.s.7/131±85/130±3n.s.y0
Brücke et al., 1991

Partly the same patients as Küfferle et al., 1996, 1997 and Kasper et al., 1998 and the same controls as Küfferle et al., 1996, 1997, Kasper et al., 1998 and Barnas et al., 2001
SZ, manian.s.D2[123I]IBZMNone, chronic painTypical and atypical neurolepticsn.s.12 (gender n.s.)39±1912 (gender n.s.)53±16n.s.y0
Buchsbaum et al., 2006SAD, SFD; SZ paranoid, undiff.BPRS: 53±9

AIMS: 2±n.s.

CASHtotal: n.s.

GAF: 30±10
D2[11C]fallyprideNone, alcohol abuseNone, neurolepticsy/n12/329±99/627±8n.s.nn.s.
Caravaggio et al., 2015SZn.s.D2/3[11C](+)PHNOn.s.Atypical neuroleptic (olanzapine)n.s.3/030±166/429±8n.s.y0
Catafau et al., 2009SZn.s.D2[123I]IBZM, [11C]raclopriden.s.Current: risperidone, olanzapine or clozapine for ≥1 month; co-medication: benzodiazepines, SSRIs, anticholinergics, lithium, anticonvulsant sodium

channel blockers
n.s.10/1036±105/526±6n.s.y0
Catafau et al., 2011SZn.s.D2[123I]IBZMn.s.Previous: n.s. current: SB-773812 for 16–18 daysn.s.10/433±727/026±5n.s.y0
Same controlsn.s.D2[123I]IBZMn.s.Previous: n.s. current: SB-773812 or risperidone for 16–18 daysn.s.12/036±827/026±5n.s.y0
Chen et al., 2013SZPANSS: 79±22

PANSSpos: 22±6

PANSSneg: 20±7

PANSSgen: 37±11

CGI: 5±1

GAF: 41±15
DAT[99mTc]TRO-DATNoneNonen.s.26/2127±959/5334±121±3y0
Corripio et al., 2006

Partly the same patients as Perez et al., 2003
SZPANSS: 71±11

PAS: 63±24
D2[123I]IBZMNoneNonen.s.3/824±410/824±5n.s.nn.a.
Corripio et al., 2011SZPANSS: 86±16

PAS: 1±0
D2[123I]IBZMNone, substance abuseNoney/n18/728±810/824±51±n.s.nn.a.
Dao-Castellana et al., 1997SAD, SZ disorg., undiff., catatonicPANSSpos: 21±12

PANSSneg: 33±7

PANSSgen: 43±13
DAsyn[18F]DOPANoneNone, neurolepticsn.s.6/0226±97/025±56±8n84
de Haan et al., 2003SZ paranoid, disorg., undiff.PANSS: n.s.

MADRS: n.s.

SA: n.s.

BAS: 0±0
D2[123I]IBZMNonePrevious: typical and atypical neuroleptics; current: haloperidol, olanzapine for 6 weeks; co-medication: benzodiazepinen.s.19/119±69 (gender n.s.24±n.s.n.s.y0
Demjaha et al., 2013



SZ paranoidPANSS: 104±11

PANSSpos: 26±4

GAF: 48±4
DAsyn[18F]DOPANoneTypical and atypical neurolepticsy/n5/946±105/744±916±9y0
Same controlsSZ paranoidPANSS: 51±6

PANSSpos: 12±2

GAF: 68±5
DAsyn[18F]DOPANoneTypical and atypical neurolepticsy/n6/644±125/744±916±9y0
Elkashef et al., 2000SZ n.s.n.s.DAsyn[18F]DOPANoneTypical and atypical neurolepticsn.s.15/436±88/535±1117±8y/n0
Fagerlund et al., 2013

Partly the same patients as Glenthoj et al., 2006 and Norbak-Emig et al., 2016
SZ paranoid, undiff., unspec.PANSS: 70±13

PANSSpos: 20±4

PANSSneg: 20±5

PANSSgen: 30±7
D2/3[123I]epideprideSubstance abuseNonen.s.16/827±613/728±5n.s.nn.a.
Farde et al., 1987SZn.s.D2[11C]raclopriden.s.Nonen.s.9/624±410/429±5<1 yearnn.a.
Farde et al., 1990

Same patients as Nordström et al., 1992
SZ paranoid, disorg., undiff., hebephrenicCPRS: 12±4D2[11C]racloprideNoneNone, benzodiazepinesn.s.10/824±310/1028±5>6 monthsn1
Gefvert et al., 1998

Partly same controls as Nordström et al., 1992
SZ, SFDPANSS: 56±n.s

CGI: 4±n.s
D1[11C]SCH23390n.s.Previous: neuroleptics incl. clozapine, benzo diazepines; current: quetiapine for 29 daysn.s.11/034±n.s.n.s.n.s.n.s.n1
Glenthoj et al., 2006

Partly the same patients as

Fagerlund et al., 2013 and

Norbak-Emig et al., 2016
SZPANSS: 70±n.s.

PANSSpos: 20±n.s.

PANSSneg: 18±n.s.

PANSSgen: 30±n.s.
D2[123I]epideprideNone, substance abuseNone, benzodiazepinesn.s.17/827±n.s.13/727±n.s.n.s.n1
Graff-Guerrero et al., 2009Z, SFDPANSS: 75±n.s.

PANSSpos: 21±7

PANSSneg: 14±6

PANSSgen: 40±5
D2/D3[11C](+)PHNONoneNone, neurolepticsy/n9/426±69/427±62±n.s.n14
Gray et al., 1995

Partly the same patients as Pilowsky et al., 1994
SFD, SZ paranoid, disorg., undiff.BPRS: 53±23D2[123I]IBZMn.s.None, antipsychoticsn.s.5/829±512 (gender n.s.)31±21±1n180
Hietala et al., 1994SFD, SZ paranoid, disorg., undiff., catatonicBPRS: 51±19D2[11C]racloprideNoneNone, neuroleptics, benzodiazepinesn.s.9/425±76/427±71±1n1
Hietala et al., 1995SAD, SZ disorg., catatonicPANSS: 81±14DAsyn[18F]DOPAn.s.None, benzodiazepinesn.s.4/326±76/227±74±n.s.n14
Hietala et al., 1999

Partly the same patients as Hietala et al., 1995
SAD, SZ disorg., catatonicPANSS: 78±14DAsyn[18F]DOPAn.s.None, benzodiazepinesn.s.4/630±98/530±94±3n14
Howes et al., 2009

Same controls as Valli et al., 2008
n.s.PANSS: 62±3

PANSSpos: 17±7

PANSSneg: 16±10

PANSSgen: 29±17

HDRS: 9±12

HAMA: 8±13

CAARMStot: 50±41

CAARMSpos: 11±8
DAsyn[18F]DOPANonen.s.n.s.7 (gender n.s.)36±158/424±5n.s.n56
Hsiao et al., 2003SZPANSSpos: n.s.

PANSSneg: n.s.

PANSSgen: n.s.
DAT[99mTc]TRO-DATNoneNonen.s.2/1026±82/1030±91±1nn.a.
Joo et al., 2018SZPANSS: 59±18D2[18F]fallyprideNoneAtypical neuroleptics for ≥4 weeksn.s.6/1037±118/932±107±4n.s.n.s.
Karlsson et al., 2002SZ, SFDBPRS: 33–60D1[11C]SCH23390NoneNonen.s.8/225±28/226±4n.s.nn.a.
Kasper et al., 1998

Partly the same patients as Küfferle et al., 1996, 1997, and Tauscher et al., 1999 and same controls as Küfferle et al., 1996, 1997, Tauscher et al., 1997, 1999, Barnas et al., 2001 and Brücke et al., 1991
SZPANSS: 73±22

BAS: 0±0

EPS: 1±1
D2[123I]IBZMNoneTypical and atypical neuroleptics, benzodiazepines, anticholinergicn.s.5/531±76/251±17n.s.y0
Kim et al., 2011SZ paranoid, undiff., residualPANSS: 75±17

PANSSpos: 17±5

PANSSneg: 19±5

PANSSgen: 39±9

SA: 2±2

BAS: 1±1

LUNSERS: 47±26
D2[11C]racloprideNoneTypical and atypical neuroleptics; co-medication: benzodiazepinesn.s.7/1435±107/1435±108±5y0
Kim et al., 2017SZPANSS: 50±10

PANSSpos: 11±3

PANSSneg: 13±4

PANSSgen: 26±5
Dasyn[18F]DOPAn.s.Atypical neurolepticsn.s.17/731±98/430±89±9y0
Kosaka et al., 2010SZPANSS: 94±18

PANSSpos: 19±4

PANSSneg: 29±8

PANSSgen: 46±9
D1[11C]SCH23390

[11C]NNC112
n.s.Antipsychotics incl. sulpiriden.s.5/147±86/643±918±4n.s.n.s.
Küfferle et al., 1996

Partly the same patients as Kasper et al., 1998 and

Küfferle et al., 1997 and same controls as Brücke et al., 1991, Tauscher et al., 1997, Küfferle et al., 1997 and Barnas et al., 2001
SZ, SAD, DD, psychotic disorder not otherwise specifiedPANSS: 74±24

PANSSpos: 13±6

PANSSneg: 25±8

PANSSgen: 36±12

SA: 7±5

BAS: 2±2
D2[123I]IBZMOCDTypical neuroleptics for 14–80 daysn.s.11/632±96/251±17n.s.y0
Küfferle et al., 1997

Partly the same patients as Küfferle et al., 1996, Kasper et al., 1998, and Tauscher et al., 1999 and same controls as Barnas et al., 2001, Brücke et al., 1991, and Küfferle et al., 1996
SZ, SADCGI: 6±2

SA: 4±7

BAS: 1±1
D2[123I]IBZMn.s.Typical and atypical neuroleptics for 14 to 90 days; co-medication: benzodiazepines, anticholinergicsn.s.12/631±106/251±17n.s.y0
Kubota et al., 2017SZPANSS: 78±23

PANSSpos: 14±3

PANSSneg: 12±6

PANSSgen: 52±n.s.
D2[11C]racloprideNoneNone, aripiprazol, benzodiazepinesy/n4/734±78/934±103±4y/n0
Same patients and controlsSZPANSS: 78±23

PANSSpos: 14±3

PANSSneg: 12±6

PANSSgen: 52±n.s.
D2[11C]MNPANoneNone, aripiprazol, benzodiazepinesy/n4/734±78/934±103±4y/n0
Kumakura et al., 2007n.s.PANSS: 80±5

PANSSpos: 15±4

PANSSneg: 24±40
DAsyn[18F]DOPANoneNone, neurolepticsn.s.8/037±615/037±6n.s.n180
Künstler et al., 2000SZ paranoidn.s.D2[123I]IBZMn.s.Typical and atypical neuroleptics; co-medication: benzodiazepinen.s.10/1338±115/740±n.s.Months to yearsy0
Laakso et al., 2000SZPANSS: 73±23DAT[11C]CFTNoneNonen.s.6/330±76/330±62±n.s.nn.a.
Laruelle et al., 1996SZPANSSpos: 17±2

PANSSneg: 15±2

BPRS: 37±3
D2[123I]IBZMNoneNone, antipsychotics incl. benzodiazepinesn.s.14/142±214/141±214±2n1
Partly same patients and controls as Laruelle and Abi-Dargham 1999, Laruelle et al., 1999, 2000SZPANSSpos: 17±2

PANSSneg: 15±2

BPRS: 37±3
DArel[123I]IBZMNoneNone, antipsychotics incl. benzodiazepinesn.s.14/142±214/141±214±2n1
Laruelle et al., 1999

Partly same patients and controls as Laruelle et al., 1996, 2000, Laruelle and Abi-Dargham 1999
SZPANSSpos: 18±6

PANSSneg: 17±7
D2[123I]IBZMNoneNone, antipsychotics incl. benzodiazepinesn.s.28/640±932/440±9n.s.n142
Partly same patients and controls as Laruelle et al., 1996, 2000, Laruelle and Abi-Dargham 1999SZPANSSpos: 18±6

PANSSneg: 17±7
DArel[123I]IBZMnoneNone, antipsychotics incl. benzodiazepinesn.s.28/640±932/440±9n.s.n142
Laruelle and Abi-Dargham 1999

Same patients and controls as Laruelle et al., 1996, 1999, 2000
SZPANSSpos: 18±6

PANSSneg: 17±7
D2[123I]IBZMNoneNone, antipsychotics incl. benzodiazepinesn.s.28/640±932/440±9n.s.n142
Same patients and controls as Laruelle et al., 1996, 1999, 2000SZPANSSpos: 18±6

PANSSneg: 17±7
DArel[123I]IBZMNoneNone, antipsychotics incl. benzodiazepinesn.s.28/640±932/440±9n.s.n142
Laruelle et al., 2000

Partly same patients and controls as Laruelle et al., 1996, 1999, Laruelle and Abi-Dargham 1999
SZPANSSpos: 18±6

PANSSneg: 17±7
DAT[123I]β-CITNoneNone, antipsychotics incl. benzodiazepinesn.s.22/241±820/239±8n.s.n142
Lavalaye et al., 2001SAD, SZ paranoid, disorg., undiff.PANSS: 44±8

PANSSpos: 23±4

PANSSneg: 19±7

MADRS: 23±10
DAT[123I]FP-CITn.s.Nonen.s.9/122±47/320±13±1nn.a.
Lehrer et al., 2010SZ, SADBPRS: 52±12D2[11C]fallypriden.s.None, neurolepticsn.s.25/829±1111/729±94±5n30
Lindström et al., 1999SZ, SFDCGIS: 5±1DAsyn[18F]DOPAn.s.None, typical neurolepticsn.s.10/231±88/2n.s.n.s.n730
Mamo et al., 2007SZ, SADPANSS: 51±12

AIMS: 1±5

SA: 0±1

BAS: 0±1

CGI: 3±1
D2[11C]raclopriden.s.Previous: typical and atypical neuroleptics; current: aripriprazole for ≥14 daysn.s.9/331±760 (gender n.s.)n.s.8±n.s.y0
Mane et al., 2011SZ, SFD, SADPANSS: 89±16

PANSSpos: 26±6

PANSSneg: 25±9
DAT[123I]FP-CITNoneNoney/n10 (gender n.s.)n.s10 (gender n.s.)n.s.n.s.nn.a.
Partly same patients and controlsSZ, SFD, SADPANSS: 56±16

PANSSpos: 14±6

PANSSneg: 13±4

GAF: 66±16
DAT[123I]FP-CITNoneAtypical neurolepticsy/n9/527±64/330±5n.s.n.s.n.s.
Martinot et al., 1989SZSAPS: n.s.

CPRS: n.s.
D2[76Br]SPn.s.None, neurolepticsn.s.12/0n.s.12/0n.s.n.s.n.s.n.s.
Martinot et al., 1991SZ paranoid, disorg., undiff., catatonicSAPS: n.s.

SANS: n.s.
D2[76Br]lisuriden.s.None, neuroleptics, benzodiazepinesn.s.12/723±514/023±42±n.s.y/n0
Martinot et al., 1994SZ disorg., undiff.SAPS: 19±14

SANS: 87±14

MADRS: 12±3

DRS: 16±4

PEF: 32±11

PPS: 17±7
D2[76Br]lisuriden.s.None, neurolepticsn.s.7/320±210/021±2n.s.n120
Mateos et al., 2005SZ, SFDPANSS: 48±6

PANSSpos: 28±5

PANSSneg: 25±6

SA: 1±1
DAT[123I]FP-CITNone, cannabis abuseCurrent: risperidone for 4 weeksn.s.14/626±56/427±40.3±0.2n0
Mateos et al., 2006

Partly same patients and controls as Mateos et al., 2006
SZ, SFDPANSS: 46±7

PANSSpos: 26±7

PANSSneg: 25±7

SA: 1±1

CGI: 6±1
DAT[123I]FP-CITNonePrevious: none; current: risperidone for 4 weeksn.s.20/1026±68/729±40.4±0.2n0
Mateos et al., 2007

Partly same patients and controls as Mateos et al., 2006
SZ, SFDPANSS: 41±8

PANSSpos: 30±7

PANSSneg: 23±8

SA: 1±1

CGI: 5±1
DAT[123I]FP-CITNone, cannabis abuseNonen.s.14/626±38/729±70.3±0.2nn.a.
Partly the same patients and controls as Mateos et al., 2006SZ, SFDPANSS: 41±8

PANSSpos: 30±7

PANSSneg: 23±8

SA: 1±1

CGI: 5±1
DAT[123I]FP-CITNone, cannabis abuseCurrent: risperidone for 4 weeksn.s.14/626±38/729±70.3±0.2y0
McGowan et al., 2004

Subgroup of the subjects assessed by Bose et al., 2008
n.s.AIMS: 0.1

CASHtotal: 11

CASHpos: 4

CASHtneg: 6
DAsyn[18F]DOPANoneNone, typical and atypical neurolepticsn.s.16 (gender n.s.)40±1112 (gender n.s.)38±7n.s.n.s.n.s.
Meisenzahl et al., 2000SAD, SZ paranoid, disorgEPSpark: 3±4

EPSdysk: 0±1

EPSdsyt: 1±4
D2[123I]IBZMn.s.Previous: antipsychotics; current: olanzapine for at least 2 weeksn.s.12/834±126/432±13n.s.y0
Meisenzahl et al., 2008SZ, SADPANSS: 106±18

SANS: 58±17

BPRS: 64±10

EPSpark: n.s.

EPSdysk: n.s.

EPSdsyt: n.s.
D2[123I]IBZMNonePrevious: none, anti-psychotics; current: typical and atypical neuroleptics for 2 weeks; co-mediacation: benzodiazepine, non-benzodiazepine GABAA agonist, anticholinergicn.s.19/1032±12n.s.n.s.n.s.n0.5
Mizrahi et al., 2012

Partly the same patients as Suridjan et al., 2013 and Tseng et al., 2017
SZ, SFDPANSSpos: 19±4D2[11C](+)PHNONone, AD, substance abusePsychotropics incl. antidepressantsy/n7/324±57/526±4n.s.y0
Nakajima et al., 2015SZ, SADPANSS: 83±29

PANSSpos: 23±9

PANSSneg: 20±8

PANSSgen: 40±14

BPRS: 55±19

AIMS: 1±2

SA: 1±1

BAS: 0±0

CIRS-G: 2±1
D2[11C]racloprideNoneNone, antipsychoticsn.s.5/566±125/563±935±17n90
Norbak-Emig et al., 2016

Partly the same patients as Glenthoj et al., 2006 and Fagerlund et al., 2013
SZ paranoid, undiff., unspec.PANSS: 70±13

PANSSpos: 20±4

PANSSneg: 20±6

PANSSgen: 30±7
D2/3[123I]epideprideSubstance abuseNone, SSRIsn.s.18/727±512/726±42±2n.s.n.s.
Nordström et al., 1992

Same patients as Farde et al., 1990; partly the same controls as Gefvert et al., 1998
SZCPRS: 12±4D2[11C]raclopriden.s.Nonen.s.10/824±325 (gender n.s.)n.s.n.s.nn.a.
Nordström et al., 1995aSZ, SFDCGI: n.s.D2[11C]raclopriden.s.Previous: classical neuroleptics; current: clozapine for 2 months to 7 yearsn.s.9/736±1134 (gender n.s.)18–50 yearsn.s.y0
Nordström et al., 1995bSFD, SZ undiff.BPRS: 33±4D2[11C]MSPNoneNone, benzodiazepinesn.s.5/228±67/728±72 months to >3 yearsnn.s.
Same patients and controlsSFD, SZ undiff.BPRS: 33±4D2[11C]MSPNoneCurrent: haloperidoln.s.5/228±67/728±72 months to >3 yearsnn.s.
Nozaki et al., 2009SZ, SFDPANSS: 79±21

PANSSpos: 23±7

PANSSneg: 17±7

PANSSgen: 40±11
DAsyn[18F]DOPANoneNone, antipsychoticsy/n10/836±710/1035±10n.s.n120
Paquet et al., 2004SZ paranoid, disorg., undiff., residual

PANSS: 50±n.s.

PANSSpos: 12±5

PANSSneg: 13±4

PANSSgen: 25±6

BAS: 1±1

EPSpark: 2±3

EPSdysk: 1±2

EPSdsyt: 0±0
D2[123I]IBZMNoneHaloperidol or olazapine for ≥3 months; co-medication: anticholinergicsy/n30 (gender n.s.)35±1030 (gender n.s.)33±9n.s.y0
Pedro et al., 1994

Same patients and controls as Pilowsky et al., 1994
SFD, SZ paranoid, disorg., undiff.,BPRS: 56±10

BPRSpos: 22±7

BPRSneg: 9±5
D2[123I]IBZMn.s.None, antipsychoticsn.s.6/634±109/633±n.s.2±4n180
Perez et al., 2003SZ, SFDPANSS: 69±10

BPRS: 25±6

PAS: 27±13
D2[123I]IBZMNoneNoney/n4/523±44/5n.s.n.s.nn.a.
Pickar et al., 1996SZBPRS: 42±9D2[123I]IBZMn.s.Current: clozapine for ≥4 monthsn.s.9/436±712 (gender n.s.)36±7n.s.y0
Pilowsky et al., 1992SZ.BPRS: 45±11

GAS: 31±10
D2[123I]IBZMn.s.Typical neurolepticsn.s.11/331±714 (gender n.s.)n.s.9±5y0
Pilowsky et al., 1993SZBPRS: 45±12

GAS: 31±9
D2[123I]IBZMNoneTypical and atypical neurolepticsn.s.12/631±612 (gender n.s.)n.s.9±8y0
Pilowsky et al., 1994

Partly the same patients and controls as Pedro et al., 1994

Partly the same patients as Gray et al., 1995
SFD, SZ paranoid, disorg., undiff., catatonicBPRS: 60±10D2[123I]IBZMn.s.None, antipsychoticsn.s.11/931±811/931±83±4n180
Poels et al., 2013SZ, SADPANSS: 64±15D1[11C]SCH23390NoneNone, antipsychotics incl. benzodiazepinesn.s.4/328±116/531±107±n.s.n1
Same patients and controlsSZ, SADPANSS: 64±15D1[11C]NNC212NoneNone, antipsychotics incl. benzodiazepinesn.s.4/328±116/531±107±n.s.n1
Pogarell et al., 2012

Same patients and controls
SZ



SZ
PANSS: 76±18

PANSS: 76±18
D2



DArel
[123I]IBZM



[123I]IBZM
None



None
n.s.



n.s.
n.s.



n.s.
7/1



7/1
25±6



25±6
4/3



4/3
24±3



24±3
2±1



2±1
n



n
7



7
Reith et al., 1994SZ paranoid, residual undiff. psychosisPANSSpos: 14±3

PANSSneg: 12±2

BPRS: 24±4
DAsyn[18F]DOPANoneNone, neurolepticsn.s.5/038±49/436±13n.s.n1095
Same controlsn.s.DAsyn[18F]DOPAEpilepsyNeuroleptics, anticonvulsantsn.s.1/439±59/436±13n.s.y0
Ring et al., 1994PsychosisPSE: n.s.D2[123I]IBZMEpilepsyAnticonvulsant sodium channel blockers, anticonvulsant carbonic anhydrase inhibitors, barbituratesn.s.5/235±n.s.3/441±n.s.n.s.y0
Safont et al., 2011PsychosisPANSS: 82±14

PANSSpos: 25±5

PANSSneg: 15±7

PANSSgen: 41±7
D2[123I]IBZMNone, cannabis or nicotine abuseNoney/n25/1228±710/824±5<1 yearnn.a.
Schmitt et al., 2002SAD, SZ paranoid, disorg.n.s.D2[123I]IBZMn.s.Previous: none, neuroleptics; current: risperdidone, olanzapine for ≥1 week; co-medication: TCAs, anticholinergics, benzodiazepinesn.s.16/1737±1310 (gender n.s.)n.s.n.s.y0
Schmitt et al., 2005SZ

paranoid
PANSS: 60±n.s.

PANSSpos: 29±n.s.

PANSSneg: 25±n.s.

BPRS: 73±n.s.

SANS: 62±n.s.

CGI: 6±n.s.

GAF: 78±n.s.
DAT[99mTc]TRODATn.s.None, non-GABAA agonistsn.s.6/435±126/438±111±1y/n0
Schmitt et al., 2006SZ paranoidPANSS: 60±n.s.

PANSSpos: 30±n.s.

PANSSneg: 28±n.s.

CGI: 6±n.s.

GAF: 74±n.s.
DAT[99mTc]TRODATn.s.Nonen.s.23/531±910/232±8n.s.nn.a.
Schmitt et al., 2008SZ paranoid, disorg., undiff.PANSSpos: 31±8

PANSSneg: 30±6
DAT[99mTc]TRODATNoneNonen.s.18/229±69/331±8n.s.nn.a.
Same patients and controlsSZ paranoid, disorg., undiff.PANSSpos: 31±8

PANSSneg: 30±6
D2[123I]IBZMNoneNonen.s.18/229±69/331±8n.s.nn.a.
Schmitt et al., 2009SZPANSS: 118±n.s.

PANSSpos: 29±n.s.

PANSSneg: 29±n.s.

PANSSgen: 60±n.s.

BPRS: 73±n.s.

CGI: 6±n.s.

GAF: 74±n.s.
D2[123I]IBZMn.s.None, benzodiazepines, non-GABAA agonistsn.s.19/428±65/532±13n.s.y/n0
Schwarz et al., 1998SZ paranoidn.s.D2[123I]IBZMParkinson’s

disease
Antiparkinson agents, typical and atypical neurolepticsn.s.1/152±138 (gender n.s.)57±n.s.19±22n.s.n.s.
Shotbolt et al., 2011SZPANSS: 57±25

PANSSpos: 14±7

PANSSneg: 15±5

PANSSgen: 28±11
DAsyn[18F]DOPAn.s.Typical and atypical neuroleptics, SSRIs, benzodiazepnes, anticholinergicsn.s.8/443±1220/1039±14n.s.n1
Slifstein et al., 2015SZ, SADPANSS: 59±18

PANSSpos: 15±5

PANSSneg: 14±6

PANSSgen: 30±8
D2[11C]racloprideNoneNone, antipsychoticsy/n10/1033±1011/1033±817±8n1075±n.s.
Same patients and controlsSZ, SADPANSS: 59±18PANSSpos: 15±5PANSSneg: 14±6PANSSgen: 30±8DArel[11C]racloprideNoneNone, antipsychoticsy/n10/1033±1011/1033±817±8n1075±n.s.
Smith et al., 1988SZn.s.D2[18F]MSPNonePrevious: antipsychotics; current: haloperidol for ≥1 weekn.s.10 (gender n.s.)19–56 years5 (gender n.s.)25–34 yearsn.s.n0.08
Same controlsSZn.s.D2[18F]MSPNoneCurrent: haloperidol or chlorpromazine for ≥4 weeksn.s.6 (gender n.s.)22–41 years5 (gender n.s.)25–34 yearsn.s.y/n1
Suhara et al., 2002

Partly the same patients as Yasuno et al., 2004
SZ, SFDBPRSpos: n.s.

BPRSneg: n.s.
D2[18F]FLB457NoneNonen.s.11/028±918/027±62±n.s.nn.a.
Suridjan et al., 2013

Partly the same patients as Mizrahi et al., 2012 and Tseng et al., 2017
SZPANSSpos: 19±5D2/D3[11C](+)PHNONone, substance abuseNoney/n10/323±57/526±4n.s.nn.a.
Talvik et al., 2003SZ paranoidPANSS: 83±23

PANSSpos: 23±7

PANSSneg: 19±11

PANSSgen: 40±11
D2/D3[11C]FLB457NoneNone, benzodiazepinen.s.3/636±128 (gender n.s.)n.s.3±2y/n0
Talvik et al., 2006SFD, SZ

paranoid, disorg.
PANSS: 80±21

PANSSpos: 22±5

PANSSneg: 20±10

PANSSgen: 38±11
D2[11C]racloprideNoneNonen.s.9/929±1113/417–50 years3±2nn.a.
Tauscher et al., 1997

Partly the same controls as Tauscher et al., 1999, Küfferle et al., 1996, 1997, Kasper et al., 1998, Barnas et al., 2001 and Brücke et al., 1991
SZ paranoid, disorg.PANSS: 76±21

PANSSpos: 17±9

PANSSneg: 23±10

PANSSgen: 36±4

EPS: 4±3
D2[123I]IBZMn.s.Previous: typical neuroleptics; current: quetiapine for ≥14 daysn.s.2/034±16/251±17n.s.y0
Tauscher et al., 1999

Partly the same patients as Küfferle et al., 1997 and Kasper et al., 1998 and partly the same controls as Tauscher et al., 1999, Küfferle et al., 1996, 1997, Kasper et al., 1998, Barnas et al., 2001 and Brücke et al., 1991
SAD, SZ paranoid, undiff.CGI: 7±2

EPS: 2±3

BAS: 2±2
D2[123I]IBZMn.s.Current: haloperidol, olazapine or clozapine for ≥14 days; co-medication: benzodiazepines, anticholinergicsn.s.2/433±146/251±17n.s.y0
Thompson et al., 2014

Partly the same controls as Abi-Dargham et al., 2002, 2012
SPDn.s.D1[11C]NNC212None, substance abuseNone, antipsychoticsy/n12/642±714/741±6n.s.n21
Tibbo et al., 1997SZBPRS: 18±3

GAF: 65±3
D2[123I]epideprideNoneTypical neurolepticsn.s.11/237±310/333±27±3n
Tseng et al., 2018

Partly the same patients as Suridjan et al., 2013 and Mizrahi et al., 2012
SZPANSSpos: 19±4

PANSSneg: 17±4
DArel[11C](+)PHNONone, substance abuseNoney/n6/324±513/1225±4n.s.nn.a.
Tune et al., 1993 Partly the same patients asWong et al., 1997 and Tune et al., 1996SZ paranoid, undiff.BPRS: 47±n.s.

SANS: 38±n.s.

PSE: 13±2

MMSE: 28±1

HDRS: 3±1
D2[11C]MSPNoneNone, neurolepticsn.s.17/835±713/439±66±2n28
Tune et al., 1996

Same patients as Tune et al., 1993
SZ paranoid, undiff.BPRS: n.s.D2[11C]MSPNoneNone, neurolepticsn.s.7/746±813/233±5n.s.nn.s.
Tuppurainen et al., 2003SZPANSS: 89±18

PANSSpos: 23±6

PANSSneg: 22±7

PANSSgen: 43±7
D2[123I]epideprideNoneNonen.s.3/432±144/331±91±n.s.nn.a.
Tuppurainen et al., 2006

Same patients and controls

Tuppurainen et al., 2003
SZPANSS: 89±18

PANSSpos: 23±6

PANSSneg: 22±7

PANSSgen: 43±7
D2[123I]epideprideNoneNonen.s.3/432±144/331±91±n.s.nn.a.
Uchida et al., 2009SZ, SADPANSS: 49±13

MMSE: 29±1
D2[11C]raclopriden.s.Previous: bn.s. current: risperidone for ≥6 weeks; co-medication: benzodiazepine, μ-opiate agonistn.s.4 (gender n.s.)61±312 (gender n.s.)n.s.39±7n0
Vallabhajosula et al., 1997SZn.s.D2[123I]IBZMn.s.Anticholinergicsn.s.2/132±52/145–48 yearsn.s.n14
Same patients and controlsSZn.s.D2[123I]IBZMn.s.Current: haloperidol for 6 weeksn.s.1/134±42/145–48 yearsn.s.y0
Valli et al., 2008

Same controls as Howes et al., 2009
SZ paranoid‘acute’; score n.s.DAsyn[18F]DOPAn.s.n.s.n.s.1/058±n.s8/424±5n.s.n2920
Vernaleken et al., 2004SZPANSS: 76±19

SA: 16±5

D2[18F]DMFPNoneCurrent: amisulpiride for ≥2 weeks; comedication: benzodiazepines, non-benzodiapzepine GABAA agonists, lithiumn.s.6/336±1312/035±168±n.s.y0
Weinstein et al., 2018SZ, SAD, SFDPANSS: 68±25

PANSSpos: 17±7

PANSSneg: 17±6

PANSSgen: 34±14
D2[11C]raclopriden.s.None, neurolepticsy/n7/334±126/332±8n.s.n21
Same patients and controlsSZ, SAD, SFDPANSS: 68±25PANSSpos: 17±7PANSSneg: 17±6PANSSgen: 34±14DArel[11C]raclopriden.s.None, neurolepticsy/n7/334±126/332±8n.s.n21
Wong et al., 1986SZBPRS: n.s.

MMSE: n.s.

PSE: n.s.
D2[11C]MSPNoneNone, neurolepticsn.s.13/229±39/2n.s.5±5n18

Wong et al., 1997

Partly the same patients as

Tune et al., 1993, 1996
PsychosisHDRS: 7±6

MADRS: 10±10

MAPRS: 5±5

YMRS: 18±16

BMRS: 34±32

PPdP: 52±28

PSE: 9±11
D2[11C]MSPBDNone, neurolepticsn.s.4/341±1319/540±225±8n.s.n.s.
Same controlsSZ paranoid, undiff.n.s.D2[11C]MSPNoneNonen.s.3/945±2419/540±22n.s.n.s.n.s.
Wulff et al., 2015SZ paranoid, undiff., disorg., unspec.PANSS: 81±15

PANSSpos: 20±4

PANSSneg: 20±8

PANSSgen: 41±8

GAF-f: 42±12

GAF-s: 40±9

SWNS: 67±14
D2[123I]IBZMNoneNone, antidepressantsn.s.14/1423±413/1323±51±2n30
Xiberas et al., 2001SZPANSSpos: 17±5

PANSSneg: 24±5
D2[76Br]FLB457NoneCurrent: typical and atypical neuroleptics for at least 25 days; co-medication: anticholinergics, benzodiazepinesn.s.16/332±76/024±4n.s.y0
Yang et al., 2003SZBPRS: 28±6

SA: 3±3
D2[123I]IBZMNoneNone, typical and

atypical neuroleptics
n.s.8/1227±1010/1036±9n.s.y/n0
Yang et al., 2004SZ paranoid, disorg., undiff.PANSS: 64±11DAT[99mTc]TRODATNoneNonen.s.6/525±109/333±131±2nn.a.
Same patients and controlsSZ paranoid, disorg., undiff.PANSS: 64±11D2[123I]IBZMNoneNonen.s.6/525±109/333±131±2nn.a.
Yasuno et al., 2004

Partly the same patients as Suhara et al., 2002
SZBPRS: 29±9

BPRSpos: 15±5

BPRSneg: 6±5
D2[11C]FLB457–NoneNonen.s.10/030±819/030±82±n.s.nn.a.
Yoder et al., 2004SZPANSSpos: n.s.

PANSSneg: n.s.

PANSSgen: n.s.

AIMS: n.s.
DAT[11C]β-CFTNone, tardive dyskinesiaNone, neurolepticsn.s.8/241±1110 (gender n.s.)45±18n.s.y/n0
  1. Given are the reference (in alphabetical order), the subtype of disorder, mean rating scale scores (±SD), employed radioligands comorbidities, premedication, cigarette smoking habits, numbers of (male and female) patients and controls, mean age of patients and controls (±SD; years), mean duration of disease (±SD; years), medication state at the time of the investigation and duration of withdrawal (days). Abbreviations (in alphabetical order): AD, anxiety disorder; AIMS, Abnormal Involuntary Movement Scale; BAS, Barnes Scale for Drug-induced Akathisia; BD, bipolar disorder; BMRS, Blackburn mania rating scale; BPRS, Brief Psychiatric Rating Scale; BPRSpos, Brief Psychiatric Rating Scale – positive symptoms; BPRSneg, Brief Psychiatric Rating Scale – negative symptoms; CAARMStot, Comprehensive Assessment of At-Risk – total; CAARMSpos, Comprehensive Assessment of At-Risk – positive symptoms; CASHtotal, Andreasen’s Comprehensive Assessment of Symptoms and History Scale – total score; CASHpos, Andreasen’s Comprehensive Assessment of Symptoms and History scale – positive symptoms score; CASHneg, Andreasen’s Comprehensive Assessment of Symptoms and History scale – negative symptoms score; CDSS, Calgary Depression Rating Scale for Schizophrenia; CGI, Clinical Global Impression Scale; CPRS, Comprehensive Psychopathologic Rating Scale; CIRS-G, Cumulative Illness Rating Scale for Geriatrics; DA, dopamine; DAT, dopamine transporter; D1, dopamine D1 receptor; D2, dopamine D2 receptor; D2/3dopamine D2/3 receptor; DArel, dopamine release; DAsyn, dopamine synthesis; DD, delusional disorder; DRS, Depressive Retardation rating Scale; EPS, Extrapyramidal Symptoms Scale; EPSpark, Extrapyramidal Symptoms Scale – parkinsonism; EPSdysk, Extrapyramidal Symptoms Scale – dyskinesia; EPSdyst, Extrapyramidal Symptoms Scale – dystonia; f, female; GABAA, GABAA receptor; GAF-f, Global Assessment of Functioning – functioning score; GAF-s, Global Assessment of Functioning – symptom score; GAS, Endicotts Global Assessment Scale; HAMA, Hamilton Anxiety Rating Scale; HDRS, Hamilton Depression Rating Scale; LUNSERS, Liverpool University Neuroleptic Side Effects Rating Scale; m, male; MADRS, Montgomery Asberg Depression Rating Scale; MAPRS, Montgomery Asberg Psychopathology Rating Scale; MMSE, Mini Mental State Examination; n, no; n.a., not applicable; n.s., not specified in the original investigation; PANSS, Positive and Negative Sndrome Scale; PANSSpos, Positive and Negative Sndrome Scale – positive syndrome scale; PANSSneg, Positive and Negative Sndrome Scale – negative syndrome scale; PANSSgen, positive and negative syndrome scale – general psychopathology score; PAS, Premorbid Adjustment Scale; PEF, Psychomotor Expressiveness Factor; PPdP, Poss-Peyer-dePaulo Affective Symptom Rating Scale; PPS, Psychomotor Poverty Syndrome Scale; PSE, Present State Examination; SA, Simpson and Angus scale for parkinsonian symptoms; SAD, schizoaffective disorder; SANS, Andreasen’s Scale for Assessment of Negative Symptoms; SAPS, Andreasen’s Scale for Assessment of Positive Symptoms; SFD, schizophrenifrom disorder; SNRI, selective norepinephrine reuptake inhibitor; SPD, schizotypal personaliy disorder; SSRI, selective serotonin reuptake inhibitor; SZ, schizophrenia; SWNS, Subjective Well-being Under Neuroleptics Scale (short version); y, yes; y/n, yes/no; YMRS, Young Mania Rating Scale.

Data were evaluated as previously described (Nikolaus et al., 2010, 2012, 2014a,b, 2016, 2017). Percentual differences of VMAT2, DAT, D1R and D2R binding as well as DA synthesis and DA release to the respective control groups were calculated for the following brain regions: STR (nucleus caudate, putamen), VS, globus pallidus (GP), THAL, PFC (Brodmann areas 9–12, 46, 47, and 49), FC (PFC plus Brodmann areas 4 and 6), PC (Broadmann areas 3, 5, 7, 8, 39, and 40), temporal cortex (TC; Brodmann areas 20–22, 38, 41 and 42), occiptal cortex (OC; Brodmann areas 17–19), cingulate (CING), HIPP, parahippocampal gyrus (PHG), AMYG, insula (INS), mibrain/pons (MB), SN, VTA, locus caeruleus (LC) and cerebellum (CER). Left and right radioactivity accumulations were pooled, if given separately in the original publication. If the authors had analyzed more than one area within STR, PFC, FC, PC, TC, OC and CING, the mean values of these data were calculated for AD, MDD, BDdep, BDman and SZ subjects and the respective controls prior to computing percentual differences.

Statistic calculations were performed with IBM SPSS Statistics 22 (IBM SPSS Software Germany, Ehningen, Germany). The Kolmogorov-Smirnov test for normal distribution could not be performed for a number of variables in the individual disorders, as the sum of weighted cases per disorder and brain region fell short of 5. Hence, medians of percentual differences of VMAT2, DAT, D1R and D2R binding as well as DA synthesis and DA release in the individual brain regions relative to controls were computed for patients with AD, MDD, BDman, BDdep and SZ. Differences between AD, MDD, BDman, BDdep and SZ patients and the respective controls were assessed with the non-parametric Mann-Whitney U-test (α=0.05) for independent samples. Furthermore, the individual parameters of synaptic function were compared between disorders (AD vs. MDD, AD vs. BDman, AD vs. BDdep, AD vs. SZ, MDD vs. BDman, MDD vs. BDdep, MDD vs. SZ, BDman vs. SZ or BDdep vs. SZ) with the Mann-Whitney U-test (α=0.05). No corrections were made for multiple comparisons. As implied by the outcome of our precedent surveys on AD, MDD, BDman, BDdep and SZ (Nikolaus et al., 2010, 2012, 2014a,b, 2016, 2017), significance tests were performed one-sidedly.

Results

Comparison between patients and controls

AD

VMAT2 binding in the STR [number of investigations (n)=1] was not different from healthy individuals (data not shown). Likewise, DAT (Figure 1) in STR (n=11) and VS (n=1) was unaltered.

Figure 1: State of in vivo findings on DAT binding in anxiety disorder (AD), major depressive disorder (MDD), the manic state of bipolar disorder (BDman), the depressive state of bipolar disorder (BDdep) and schizophrenia (SZ).Considered were 12 studies on AD (155 patients, age: 38±4 years; 170 controls, age: 39±10 years), 22 studies on MDD (343 patients, age: 41±12 years; 546 controls, age: 40±13 years), one study on BDman (one patient, age: 25 years; 10 controls, age: 26±6 years), four studies on BDdep (46 patients, age: 41±1 years; 150 controls, age: 38±2 years) and 11 studies on SZ (184 patients, age: 31±7 years; 134 controls, age: 33±7 years), in which DAT was assessed in neostriatum (STR), ventral striatum (VS), thalamus (THAL), prefrontal cortex (PFC), frontal cortex, (FC), parietal cortex (PC), temporal cortex (TC), occipital cortex (OC), cingulate (CING), hippocampus (HIPP), amygdala (AMYG), midbrain/pons (MB), substantia nigra (SN), locus caeruleus (LC) and cerebellum (CER). The box plots give medians, 25th/75th percentiles (boxes) and 5th/95th percentiles (whiskers) of DAT binding in the investigated brain regions expresssed as percentages of control values. The circles represent the percentages of control values in the individulal investigations (white circles, percentual difference relative to controls not significant in the original investigation; black circles, percentual difference relative to controls significant in the original investigation with a p of at least 0.05). Asteriks indicate significant differences of the pooled samples of AD, MDD, BDdep, BDman or SZ patients relative to the pooled samples of controls or significant differences between pooled samples of AD, MDD BDdep, BDman or SZ (Mann-Whitney U-test, one-sided, α=0.05).
Figure 1:

State of in vivo findings on DAT binding in anxiety disorder (AD), major depressive disorder (MDD), the manic state of bipolar disorder (BDman), the depressive state of bipolar disorder (BDdep) and schizophrenia (SZ).

Considered were 12 studies on AD (155 patients, age: 38±4 years; 170 controls, age: 39±10 years), 22 studies on MDD (343 patients, age: 41±12 years; 546 controls, age: 40±13 years), one study on BDman (one patient, age: 25 years; 10 controls, age: 26±6 years), four studies on BDdep (46 patients, age: 41±1 years; 150 controls, age: 38±2 years) and 11 studies on SZ (184 patients, age: 31±7 years; 134 controls, age: 33±7 years), in which DAT was assessed in neostriatum (STR), ventral striatum (VS), thalamus (THAL), prefrontal cortex (PFC), frontal cortex, (FC), parietal cortex (PC), temporal cortex (TC), occipital cortex (OC), cingulate (CING), hippocampus (HIPP), amygdala (AMYG), midbrain/pons (MB), substantia nigra (SN), locus caeruleus (LC) and cerebellum (CER). The box plots give medians, 25th/75th percentiles (boxes) and 5th/95th percentiles (whiskers) of DAT binding in the investigated brain regions expresssed as percentages of control values. The circles represent the percentages of control values in the individulal investigations (white circles, percentual difference relative to controls not significant in the original investigation; black circles, percentual difference relative to controls significant in the original investigation with a p of at least 0.05). Asteriks indicate significant differences of the pooled samples of AD, MDD, BDdep, BDman or SZ patients relative to the pooled samples of controls or significant differences between pooled samples of AD, MDD BDdep, BDman or SZ (Mann-Whitney U-test, one-sided, α=0.05).

D1R (Figure 2) in the STR was lowered relative to controls (n=1, −27%, p<0.05). Moreover, D2R (Figure 3) was reduced in STR (n=11, −21%, p=0.005) and VS (n=5, −16%, p=0.047).

Figure 2: State of in vivo findings on D1R binding in anxiety disorder (AD), major depressive disorder (MDD), the manic state of bipolar disorder (BDman), the depressive state of bipolar disorder (BDdep) and schizophrenia (SZ).Considered were 1 study on AD (seven patients, age: 40±14 years; seven controls, age: 40±12 years), two studies on MDD (28 patients, age: 37±9 years; 14 controls, age: 36±7 years), one study on BDman (1 patient, age: 37 years; 29 controls, age: 20–72 years), one study on BDdep (one patient, age: 37 years; 21 controls, age: 20 –72 years) and eight studies on SZ (98 patients, age: 33±9 years; 113 controls, age: 32±6 years), in which D1R were assessed in neostriatum (STR), ventral striatum (VS), thalamus (THAL), prefrontal cortex (PFC), frontal cortex, (FC), parietal cortex (PC), temporal cortex (TC), occipital cortex (OC), cingulate (CING), hippocampus (HIPP), parahippocampal gyrus (PHG), amygdala (AMYG) and insula (INS). The box plots give medians, 25th/75th percentiles (boxes) and 5th/95th percentiles (whiskers) of D1R binding in the investigated brain regions expresssed as percentages of control values. The circles represent the percentages of control values in the individulal investigations (white circles, percentual difference relative to controls not significant in the original investigation; black circles, percentual difference relative to controls significant in the original investigation with a p of at least 0.05). Asteriks indicate significant differences of the pooled samples of AD, MDD, BDdep, BDman or SZ patients relative to the pooled samples of controls or significant differences between pooled samples of AD, MDD, BDdep, BDman or SZ (Mann-Whitney U-test, one-sided, α=0.05).
Figure 2:

State of in vivo findings on D1R binding in anxiety disorder (AD), major depressive disorder (MDD), the manic state of bipolar disorder (BDman), the depressive state of bipolar disorder (BDdep) and schizophrenia (SZ).

Considered were 1 study on AD (seven patients, age: 40±14 years; seven controls, age: 40±12 years), two studies on MDD (28 patients, age: 37±9 years; 14 controls, age: 36±7 years), one study on BDman (1 patient, age: 37 years; 29 controls, age: 20–72 years), one study on BDdep (one patient, age: 37 years; 21 controls, age: 20 –72 years) and eight studies on SZ (98 patients, age: 33±9 years; 113 controls, age: 32±6 years), in which D1R were assessed in neostriatum (STR), ventral striatum (VS), thalamus (THAL), prefrontal cortex (PFC), frontal cortex, (FC), parietal cortex (PC), temporal cortex (TC), occipital cortex (OC), cingulate (CING), hippocampus (HIPP), parahippocampal gyrus (PHG), amygdala (AMYG) and insula (INS). The box plots give medians, 25th/75th percentiles (boxes) and 5th/95th percentiles (whiskers) of D1R binding in the investigated brain regions expresssed as percentages of control values. The circles represent the percentages of control values in the individulal investigations (white circles, percentual difference relative to controls not significant in the original investigation; black circles, percentual difference relative to controls significant in the original investigation with a p of at least 0.05). Asteriks indicate significant differences of the pooled samples of AD, MDD, BDdep, BDman or SZ patients relative to the pooled samples of controls or significant differences between pooled samples of AD, MDD, BDdep, BDman or SZ (Mann-Whitney U-test, one-sided, α=0.05).

Figure 3: State of in vivo findings on D2R binding in anxiety disorder (AD), major depressive disorder (MDD), the manic state of bipolar disorder (BDman) and schizophrenia (SZ).Considered were 11 studies on AD (128 patients, age: 33±5 years; 121 controls, age: 31±4 years), 18 studies on MDD (242 patients, age: 42±7 years; 248 controls, age: 41±10 years), one study on BDman (13 patients, age: 33±12 years; 24 controls, age: 32±12 years) and 68 studies on SZ (1068 patients, age: 32±8 years; 1018 controls, age: 32±9 years), in which D2R were assessed in neostriatum (STR), ventral striatum (VS), globus pallidus (GP), thalamus (THAL), prefrontal cortex (PFC), frontal cortex, (FC), parietal cortex (PC), temporal cortex (TC), occipital cortex (OC), cingulate (CING), hippocampus (HIPP), amygdala (AMYG), insula (INS), midbrain/pons (MB), substantia nigra (SN) and cerebellum (CER). The box plots give medians, 25th/75th percentiles (boxes) and 5th/95th percentiles (whiskers) of D2R binding in the investigated brain regions expresssed as percentages of control values. The circles represent the percentages of control values in the individulal investigations (white circles, percentual difference relative to controls not significant in the original investigation; black circles, percentual difference relative to controls significant in the original investigation with a p of at least 0.05). Asteriks indicate significant differences of the pooled samples of AD, MDD, BDman or SZ patients relative to the pooled samples of controls or significant differences between pooled samples of AD, MDD, BDman or SZ (Mann-Whitney U-test, one-sided, α=0.05).
Figure 3:

State of in vivo findings on D2R binding in anxiety disorder (AD), major depressive disorder (MDD), the manic state of bipolar disorder (BDman) and schizophrenia (SZ).

Considered were 11 studies on AD (128 patients, age: 33±5 years; 121 controls, age: 31±4 years), 18 studies on MDD (242 patients, age: 42±7 years; 248 controls, age: 41±10 years), one study on BDman (13 patients, age: 33±12 years; 24 controls, age: 32±12 years) and 68 studies on SZ (1068 patients, age: 32±8 years; 1018 controls, age: 32±9 years), in which D2R were assessed in neostriatum (STR), ventral striatum (VS), globus pallidus (GP), thalamus (THAL), prefrontal cortex (PFC), frontal cortex, (FC), parietal cortex (PC), temporal cortex (TC), occipital cortex (OC), cingulate (CING), hippocampus (HIPP), amygdala (AMYG), insula (INS), midbrain/pons (MB), substantia nigra (SN) and cerebellum (CER). The box plots give medians, 25th/75th percentiles (boxes) and 5th/95th percentiles (whiskers) of D2R binding in the investigated brain regions expresssed as percentages of control values. The circles represent the percentages of control values in the individulal investigations (white circles, percentual difference relative to controls not significant in the original investigation; black circles, percentual difference relative to controls significant in the original investigation with a p of at least 0.05). Asteriks indicate significant differences of the pooled samples of AD, MDD, BDman or SZ patients relative to the pooled samples of controls or significant differences between pooled samples of AD, MDD, BDman or SZ (Mann-Whitney U-test, one-sided, α=0.05).

DA release (Figure 5) was elevated in the STR (n=2, +27%, p=0.051). So far, no investigation of DA synthesis has been conducted on AD patients.

MDD

DAT (Figure 1) was diminished in PFC (n=2, −13%, p=0.051), FC (n=2, −13%, p=0.051), CING (n=1, −93%, p<0.05), AMYG (n=1, −46%, p<0.05), SN (n=1, −17%, p<0.05) and LC (n=1, −54%, p<0.05) relative to healthy individuals. Contrarily, DAT binding was unaltered in STR (n=24), VS (n=2), THAL (n=2), PC (n=1), TC (n=1), OC (n=1) and MB (n=2).

D1R (Figure 2) was reduced in the STR (n=2, −8%, p=0.051), but not different from healthy subjects in VS (n=1), CING (n=1), AMYG (n=1) and INS (n=1).

D2R (Figure 3) was increased in the CING (n=2, +8%, p=0.051). No decreases of D2R were detected in STR (n=15), VS (n=4), THAL (n=2), FC (n=1), TC (n=1), HIPP (n=1), AMYG (n=1) and CER (n=1) relative to controls.

DA synthesis (Figure 4) was elevated in PFC (n=3, +75%, p=0.017) and FC (n=3, +75%, p=0.017), but not different form controls in the STR (n=5).

Figure 4: State of in vivo findings on DA synthesis in major depressive disorder (MDD), the manic state of bipolar disorder (BDman), and schizophrenia (SZ).Considered were six studies on MDD (65 patients, age: 43±5 years; 67 controls, age: 40±7 years), one study on BDman (13 patients, age: 33±12 years; 13 controls, age: 32±12 years), and 14 studies on SZ (152 patients, age: 37±8 years; 190 controls, age: 31±10 years), in which DA synthesis was assessed in neostriatum (STR), ventral striatum (VS), thalamus (THAL), prefrontal cortex (PFC), frontal cortex, (FC), temporal cortex (TC), cingulate (CING), hippocampus (HIPP), parahippocampal gyrus (PHG), amygdala (AMYG), midbrain/pons (MB), substantia nigra (SN), ventral tegmental area (VTA) and cerebellum (CER). The box plots give medians, 25th/75th percentiles and 5th/95th percentiles of the individual synaptic constituents in the investigated brain regions expresssed as percentages of control values. The box plots give medians, 25th/75th percentiles (boxes) and 5th/95th percentiles (whiskers) of DA synthesis in the investigated brain regions expresssed as percentages of control values. The circles represent the percentages of control values in the individulal investigations (white circles, percentual difference relative to controls not significant in the original investigation; black circles, percentual difference relative to controls significant in the original investigation with a p of at least 0.05). Asteriks indicate significant differences of the pooled samples of MDD, BDman or SZ patients relative to the pooled samples of controls or significant differences between pooled samples of MDD, BDman or SZ (Mann-Whitney U-test, one-sided, α=0.05).
Figure 4:

State of in vivo findings on DA synthesis in major depressive disorder (MDD), the manic state of bipolar disorder (BDman), and schizophrenia (SZ).

Considered were six studies on MDD (65 patients, age: 43±5 years; 67 controls, age: 40±7 years), one study on BDman (13 patients, age: 33±12 years; 13 controls, age: 32±12 years), and 14 studies on SZ (152 patients, age: 37±8 years; 190 controls, age: 31±10 years), in which DA synthesis was assessed in neostriatum (STR), ventral striatum (VS), thalamus (THAL), prefrontal cortex (PFC), frontal cortex, (FC), temporal cortex (TC), cingulate (CING), hippocampus (HIPP), parahippocampal gyrus (PHG), amygdala (AMYG), midbrain/pons (MB), substantia nigra (SN), ventral tegmental area (VTA) and cerebellum (CER). The box plots give medians, 25th/75th percentiles and 5th/95th percentiles of the individual synaptic constituents in the investigated brain regions expresssed as percentages of control values. The box plots give medians, 25th/75th percentiles (boxes) and 5th/95th percentiles (whiskers) of DA synthesis in the investigated brain regions expresssed as percentages of control values. The circles represent the percentages of control values in the individulal investigations (white circles, percentual difference relative to controls not significant in the original investigation; black circles, percentual difference relative to controls significant in the original investigation with a p of at least 0.05). Asteriks indicate significant differences of the pooled samples of MDD, BDman or SZ patients relative to the pooled samples of controls or significant differences between pooled samples of MDD, BDman or SZ (Mann-Whitney U-test, one-sided, α=0.05).

DA release (Figure 5) was increased in the VS (n=1, +7%, p<0.05), but unaltered in the STR (n=3). So far, no investigation of VMAT2 binding have been conducted on MDD subjects.

Figure 5: State of in vivo findings on DA release in anxiety disorder (AD), major depressive disorder (MDD) and schizophrenia (SZ).Considered were 2 studies on AD [20 patients, age: not specified (n.s.); 22 controls, age: n.s.], three studies on MDD (30 patients, age: 36±0.2 years; 38 controls, age: 29±2 years), and 10 studies on SZ (113 patients, age: 32±6 years; 133 controls, age: 32±6 years), in which DA release was assessed in neostriatum (STR), ventral striatum (VS), thalamus (THAL), prefrontal cortex (PFC), frontal cortex, (FC), parietal cortex (PC), temporal cortex (TC), cingulate (CING), parahippocampal gyrus (PHG), amygdala (AMYG), insula (INS), substantia nigra (SN) and ventral tegmental area (VTA). The box plots give medians, 25th/75th percentiles (boxes) and 5th/95th percentiles (whiskers) of DA release in the investigated brain regions expresssed as percentages of control values. The circles represent the percentages of control values in the individulal investigations (white circles, percentual difference relative to controls not significant in the original investigation; black circles, percentual difference relative to controls significant in the original investigation with a p of at least 0.05). Asteriks indicate significant differences of the pooled samples of AD, MDD or SZ patients relative to the pooled samples of controls or significant differences between pooled samples of AD, MDD or SZ (Mann-Whitney U-test, one-sided, α=0.05).
Figure 5:

State of in vivo findings on DA release in anxiety disorder (AD), major depressive disorder (MDD) and schizophrenia (SZ).

Considered were 2 studies on AD [20 patients, age: not specified (n.s.); 22 controls, age: n.s.], three studies on MDD (30 patients, age: 36±0.2 years; 38 controls, age: 29±2 years), and 10 studies on SZ (113 patients, age: 32±6 years; 133 controls, age: 32±6 years), in which DA release was assessed in neostriatum (STR), ventral striatum (VS), thalamus (THAL), prefrontal cortex (PFC), frontal cortex, (FC), parietal cortex (PC), temporal cortex (TC), cingulate (CING), parahippocampal gyrus (PHG), amygdala (AMYG), insula (INS), substantia nigra (SN) and ventral tegmental area (VTA). The box plots give medians, 25th/75th percentiles (boxes) and 5th/95th percentiles (whiskers) of DA release in the investigated brain regions expresssed as percentages of control values. The circles represent the percentages of control values in the individulal investigations (white circles, percentual difference relative to controls not significant in the original investigation; black circles, percentual difference relative to controls significant in the original investigation with a p of at least 0.05). Asteriks indicate significant differences of the pooled samples of AD, MDD or SZ patients relative to the pooled samples of controls or significant differences between pooled samples of AD, MDD or SZ (Mann-Whitney U-test, one-sided, α=0.05).

BDman

DAT (Figure 1) was elevated relative to controls in the STR (n=1, +15%, p<0.05).

D1R (Figure 2) was dimished in the FC (n=1, −25%, p<0.05), but unaltered in the STR (n=1). Also D2R (Figure 3) and DA synthesis (Figure 4) did not differ between patients and healthy individuals in the STR (n=1, each).

No studies of VMAT2 binding and DA release were available on BDman.

BDdep

DAT (Figure 1) was not different from healthy subjects in the STR (n=4).

D1R (Figure 2) was lowered in the FC (n=1, −31%, p<0.05), but unaltered in the STR (n=1) relative to healthy controls.

No investigations were available on VMAT2, D2R, DA synthesis and DA release in BDdep patients.

SZ

DAT (Figure 1) was decreased in the STR compared to healthy individuals (n=16, −2%, p=0.011).

D1R (Figure 2) was elevated in VS (n=5, +10%, p=0.002), PFC (n=5, +21%, p=0.047), FC (n=9, +14%, p=0.017), PC (n=3, +13%, p=0.019) and OC (n=4, +10%, p=0.007). No difference relative to controls were observed in STR (n=8), TC (n=5), CING (n=5), HIPP (n=1), PHG (n=1) and AMYG (n=1).

D2R (Figure 3) was decreased in STR (n=79, −5%, p=0.025), THAL (n=14, −8%, p=0.006), TC (n=11, −15%, p=0.035) and MB (n=1, −16%, p<0.05). A further reduction was observed in the VS (n=9, −7%, p=0.058), which marginally failed to reach statistical significance. No differences to controls were obtained in GP (n=3), PFC (n=3), FC (n=8), PC (n=2), OC (n=2), CING (n=3), HIPP (n=3), AMYG (n=2), INS (n=2), MB (n=1) and SN (n=4).

DA synthesis (Figure 4) was increased in STR (n=16, +10%, p<0.001), CING (n=4, +3%, p=0.024), AMYG (n=1, +53%, p<0.05) and MB (n=1, +52%, p<0.05). Moreover, an elevation was observed in the TC (n=3, +2%, p=0.061), which marginally failed to reach statistical significance. No differences were found in VS (n=5), THAL (n=1), PFC (n=3), FC (n=4), PHG (n=1), SN (n=1), VTA (n=1) and CER (n=1).

DA release (Figure 5) was elevated in STR (n=10, +80%, p<0.001) and VS (n=2, +43%, p=0.051). No alterations were observed in THAL (n=1), PFC (n=1), FC (n=1), PC (n=1), TC (n=1), CING (n=1), PHG (n=1), AMYG (n=1), INS (n=1), SN (n=2) and VTA (n=1).

So far, no investigation of VMAT2 has been conducted on SZ.

Comparison between disorders

DAT

DAT (Figure 1) was lowered in the STR (−17%, p=0.051) of SZ patients relative to BDman. There were no differences between AD and BDman (STR), AD and BDman (STR), AD and MDD (STR, VS), AD and SZ (STR), BDman and BDdep (STR), BDman and MDD (STR), BDdep and MDD (STR, FC), and BDdep and SZ (STR).

D1R

Reductions of D1R (Figure 2) in the STR of AD patients relative to SZ (−32%, p=0.06), and in the FC of BDdep patients relative to SZ (−39%, p=0.058) marginally failed to reach statistical significance. No differences were observed between AD and BDman, (STR), AD and MDD (STR), BDman and BDdep (STR, FC), BDman and MDD (STR), BDman and SZ (STR, FC), BDdep and MDD (STR), BDdep and SZ (STR, FC) and MDD and SZ (STR, VS, CING, AMYG).

D2R

D2R (Figure 3) was diminshed in the STR of AD compared to MDD patients (+22%, p=0.0001). Moreover, a decrement was observed in the VS (−16%, p=0.069) of AD patients relative to MDD, which, however, marginally failed to reach statistical significance. D2R was reduced in the STR of SZ patients relative to MDD (−6%, p=0.025), whereas no differences between disorders were found in VS, THAL, FC, TC, CING and AMYG. No differences were observed between AD and SZ (STR, VS), BDman and MDD (STR), BDman and SZ (STR). Due to the lack of data, no comparisons were possible between AD and BDdep, BDman and BDdep and BDdep and MDD.

DA synthesis

DA synthesis was decreased in the STR of MDD patients relative to SZ (−8%, p=0.015). In contrast, prefrontal (+68%, p=0.002) and frontal DA synthesis (+68%, p=0.016) were elevated in MDD compared to SZ. No differences were observed between MDD and BDman (STR) and SZ and BDman (STR). Due to the lack of data, no comparisons were possible bewtwwen AD and MDD, AD and BDman, AD and BDdep, AD and SZ, BDman and BDdep, BDman and BDdep and SZ.

DA release

DA release was augmented in the STR of SZ patients relative to AD (+61%, p=0.043) and MDD (+82%, p=0.009), whereas no difference was observed between AD and MDD. Likewise, no differences between SZ and AD and SZ and MDD were detected in the VS. Due to the lack of data, no comparisons were possible between AD and BDman, AD and BDdep, BDman and BDdep, BDman and MDD, BDdep and MDD, BDman and SZ, and BDdep and SZ.

Discussion

Role of neurotransmitters in neuropsychiatric disorders

AD

AD patients displayed a reduction of D1R in the STR, reductions of D2R in STR and VS and an elevation of DA release in the STR.

In addition, previous analyses of 5-HT and GABA function (including those findings, which had been obtained in merely one investigation) had revealed decreases of SERT in THAL, hypothalamus (HT), AMYG and MB, decreases of 5-HT1R in MB, PFC, FC, TC, CING, HIPP, PHG, AMYG, INS and fusiform gyrus (FG), a decrease of 5-HT2R in the VS, an elevation of 5-HT2R in TC, decreases of GABAAR in STR, FC, TC, OC, CING, AMYG, INS and entorhinal cortex (EC) and an increase of GABAAR in the PHG (Table 5; Nikolaus et al., 2014b, 2016).

Table 5:

In vivo findings on DA (VMAT, DAT, D1R, D2R, DA synthesis [DAsyn], DA release [DArel]), 5-HT (SERT, 5-HT1AR, 5-HT2AR, 5-HT synthesis [5-HTsyn]) and GABA function (GABAAR) in anxiety disorder (AD) major depressive disorder (MDD), bipolar disorder in manic (BDman) or depressed condition (BDdep) and schizophrenia (SZ).

DisorderRegionVMAT2DATD1RD2RDAsynDArelSERT5-HT1AR5-HT2AR5-HTsynGABAAR
ADSTR====
VS===
GP
HT
THAL==
PFC===
FC==
PC====
TC=
OC===
CING==
HIPP===
PHG
AMYG
INS==
FG
EC
MB=
SN===
VTA
LC
PAG
CER=
MDDSTR=======
VS====
GP==
HT=
THAL===
PFC==
FC=====
PC=====
TC======
OC=====
CING===
HIPP====
PHG==
AMYG=====
INS===
FG==
EC
MB==
SN
VTA
LC
PAG
CER===
BDmanSTR===
VS
GP
HT
THAL
PFC
FC
PC
TC
OC
CING
HIPP
PHG
AMYG
INS
FG
EC
MB
SN
VTA
LC
PAG
CER
BDdepSTR===
VS
GP
HT
THAL=
PFC
FC
PC=
TC=
OC=
CING=
HIPP
PHG
AMYG
INS=
FG
EC
MB==
SN=
VTA
LC
PAG
CER
SZSTR====
VS====
GP=
HT
THAL======
PFC======
FC====
PC=====
TC===
OC==
CING=======
HIPP======
PHG====
AMYG======
INS======
FG
EC==
MB=
SN=======
VTA==
LC
PAG
CER=
  1. Displayed are significant increases (↑), significant decreases (↓) or no alterations (=) relative to healthy controls as obtained from the present and previous analyses (Nikolaus et al., 2014a,b, 2016) in the following brain regions: neostriatum (STR), ventral striatum (VS), globus pallidus (GP), hypothalamus (HT), thalamus (THAL), prefrontal cortex (PFC), frontal cortex (FC), parietal cortex (PC), temporal cortex (TC), occipital cortex (OC), cngulate (CING), hippocampus (HIPP), parahippocampal gyrus (PHG), amygdala (AMYG), insula (INS), fusiform gyrus (FG), entorhinal cortex (EC), midbrain /pons (MB), substantia nigra (SN), ventral tegmental area (VTA), locus caeruleus (LC), periaqueductal gray (PAG), cerebellum (CER).

It is known that GABA exerts inhibitory effects on both DA (Grace and Bunney, 1979) and 5-HT neurons (Luparini et al., 2004). Moreover, DA inhibits the release of GABA (Girault et al., 1986) and 5-HT (Ferre et al., 1994) via D2R action. 5-HT, in turn, stimulates the release of both DA (Ichikawa and Meltzer, 1995, 2000) and GABA (Cozzi and Nichols, 1996) via 5-HT1/2R and 5-HT2R, respectively.

On the basis of these interactions, it may be hypothesized that, in AD, the initial deficit is either the abnormal elevation of DA in the STR or the elevation of GABA throughout the nigrostriatal/mesolimbocortical system. If the abundant release of neostriatal DA occurs first in order, neostriatal DA levels are bound to be elevated (as DAT density in this region is normal), leading to the observed desensitization of D1R and D2R in STR and VS. DA inhibits the release of GABA and 5-HT via D2R action (Girault et al., 1986; Ferre et al., 1994). Hence, the desensitization of striatal D2 heteroreceptors incurs, for one, the elevation of GABA concentrations in the STR as well as in the projection areas of striatothalamocortical GABAergic neurons, which is consistent with the detected desensitization of GABAAR in STR, FC, TC, OC, CING, AMYG, INS and EC of AD patients. Secondly, also 5-HT levels are likely to be augmented, which is consistent with the observed desensitization of SERT in MB, THAL, HT and AMYG, of 5-HT1R in MB, PFC, FC, TC, CING, HIPP, PHG, AMYG, INS and FG and of 5-HT2R in the VS.

If, however, the elevation of GABA constitutes the initial deficit, the likely consequence, for one, is the observed desensitization of GABAAR throughout the nigrostriatal and mesolimbocortical system. Since GABA exerts inhibitory effects on both DA (Grace and Bunney, 1979) and 5-HT neurons (Luparini et al., 2004), the desensitization of GABAAR in striatal, neocortical and limbic regions, secondly, diminishes the inhibitory GABAergic input to DA and 5-HT neurons leading to an elevation of both DA and 5-HT concentrations throughout the nigrostriatal/mesolimbocortical system (as reflected by the desensitizations of D1R, D2R and 5-HT1R). Likely, an important role may be ascribed to the PHG, which displays an elevation of GABAAR binding sites, indicative of GABA shortage in this region (see below).

DA and 5-HT concentrations are regulated by autoreceptors of the D2R and 5-HT1R subtype, respectively, which are localized at the presynaptic terminal and modulate neurotransmitter synthesis and release via inhibitory feedback loops (for a review see Chiodo et al., 1995). Thus, irrespective to the site of primary neurochemical dysfunction, the desensitizations of inhibitory D2 autoreceptors in STR and VS and 5-HT1 autoreceptors in MB, PFC, FC, TC, CING, HIPP, PHG, AMYG, INS and FG reduce feedback inhibition, resulting in a further enhancement of DA efflux in STR/VS and of 5-HT efflux in mesencephalic, neocortical, cingulate and limbic regions.

The desensitization of D1, D2, 5-HT1 and 5-HT2 heteroreceptors in the respective regions may be conceived to reflect adaptive responses to the increased availability of monoamines. Firstly, the desensitization of D1 heteroreceptors in the STR can be surmised to lead to a compensatory decline of excitatory input to the nigral, neocortical and limbic target regions of descending and ascending projections. Secondly, the desensitization of D2 heteroreceptors in STR and VS is likely to reduce also the inhibitory input to the nigral, ventral tegmental, neocortical and limbic target regions of descending and ascending DAergic projections. Thirdly, since 5-HT1R stimulate the release of DA (Ichikawa and Meltzer, 1995, 2000), the desensitization of 5-HT1 heteroreceptors in MB, neocortex and limbic system likely induces an adaptive reduction of DA efflux in these regions. As, however, so far, no in vivo imaging studies have been conduced on DA synthesis and DA release in MB, neocortex and limbic system, further investigations are required to either confirm or refute this hypothesis. Fourthly, the desensitization of 5-HT1 heteroreceptors in MB, neocortex and limbic system presumably reduces the inhibitory input to the target regions of descending and ascending 5-HTergic projections.

While excitatory D1R and inhibitory D2R both are desensitized in the STR, excitatory 5-HT2R (in contrast to 5-HT1R) is unaltered throughout most part of the neocortex with a significant elevation in the TC (Nikolaus et al., 2016). The sensitization of temporal 5-HT2R may ultimately constitute an adaptive response to the desensitization of 5-HT2R in the VS, as the latter may be assumed to reduce not only ventrostriatal excitation but also the net excitatory input to the target regions of ascending 5-HTergic fibers. Due to the small number of investigations, the observation of both decreased 5-HT2R in the VS (n=1) and increased 5-HT2R in the TC (n=2), however, must be viewed with caution. Yet, it can not be dismissed that the alterations of excitatory 5-HTergic actions relative to controls may be related to the role of the TC and its limbic connections in self-awareness (for a review see Chavoix and Insausuti, 2017) and emotional learning and memory (for a review see Grosso et al., 2015), functions, which are presumably disturbed in acute AD.

Taken together, the condition of acute AD is characterized by an abundance of neo- and ventrostriatal DA, mesencephalic, thalamic/hypothalamic, cingulate, neocortical (PFC, FC, TC), and limbic (HIPP, PHG, AMYG, INS, FG) 5-HT and neostriatal, neocortical (FC, TC, OC), cingulate and limbic (AMYG, INS, EC) GABA. Thereby, sensitization and desensitization mechanisms likely result in a net overweight of excitatory DAergic and 5-HTergic neurotransmission. Arguably, the underlying deficit is either an abnormal elevation of neostriatal DA release or the elevation of GABA throughout the nigrostriatal/mesolimbocortical system.

MDD

MDD patients displayed reductions of DAT in PFC, FC, CING, AMYG, SN and LC, a reduction of D1R in STR, an elevation of D2R in the CING, an elevation of DA synthesis in PFC and FC and an elevation of DA release in the VS.

Furthermore, a previous analysis had evidenced reductions of SERT in STR, THAL, PFC, MB and AMYG, an elevation of SERT in the INS, a reduction of 5-HT1R in the MB, an elevation of 5-HT1R in the PHG, reductions of 5-HT2R in CING, PFC, FC, OC, INS and FG, an increase of 5-HT2R in the THAL, reductions of 5-HT synthesis in the CING, but no alterations of GABAAR in OC and MB (Table 5; Nikolaus et al., 2014b, 2016).

The observed desensitizations of 5-HT1R and 5-HT2R in MB, CING, PFC, FC, OC, INS and FG may be interpreted to reflect an increased availability of 5-HT in these regions. 5-HT synthesis is not different from healthy controls in STR, THAL and PFC, but diminished in FC, TC and CING (Nikolaus et al., 2016). As no impairment of GABAAR function and even a sensitization of CING D2R has been detected, no effect of D2R or GABAAR desensitization on 5-HT levels can be inferred. Rather, the extensive reduction of SERT in MB, STR, THAL, PFC and AMYG implies that SERT hypofunction constitutes the initial deficit in MDD, leading to an abundance of 5-HT throughout the mesolimbocortical system. This is underlined by genetic studies, which show an association between polymorphisms of the SERT gene SLC6A4 and the risk to develop depression and suicidality (Ho et al., 2013). In the THAL, the finding of SERT desensitization is opposed to the finding of 5-HT2R sensitization, which, in contrast, reflects a decreased availability of 5-HT. Thereby, it must be borne in mind that – although pooling of the available studies on thalamic SERT binding has yielded a median reduction – the findings obtained in the individual studies had been widely discrepant, showing increases, decreases or no alteration relative to controls (Nikolaus et al., 2016). As the finding of thalamic 5-HT2R sensitization was obtained in merely one study, further investigations are needed to determine the exact role of of thalamic 5-HT in MDD. So far, the most likely solution of the present contradiction is that thalamic 5-HT2R sensitization occurs in a subset of patients displaying a sensitization of the thalamic SERT, leading to increased neurotransmitter reuptake into the presynaptic terminal and subsequent 5-HT shortage.

Corresponding to AD, the desensitization of mesencephalic 5-HT1 autoreceptors reduces feedback inhibition, resulting in an enhancement of 5-HT release and a further augmentation of mesencephalic 5-HT levels. Contary to AD, however, the desensitization of 5-HT1R is confined to the MB and does not involve frontal, cingulate and limbic regions. Thus, in MDD, there is no adaptive reduction of inhibitory neurotransmission in these areas. Rather, limbic inhibition is enhanced via sensitization of 5-HT1 heteroreceptors in the PHG, with the sensitization of 5-HT1 autoreceptors additionally reducing parahippocampal 5-HT efflux. This indicates entirely different routes of cognitive and emotional processing in AD and MDD. Thereby, in either disorder, a relevant role may be played by the PHG, which is relevant for processing contextual associations (for a review see Aminoff et al., 2013), and displays sensitizations of 5-HT1R in MDD and GABAAR in AD. A further compensation of 5-HT abundance is achieved in MDD by the desensitization of 5-HT2R in CING, PFC, FC, OC INS and FG (none of which is present in AD), leading to a decline of excitatory neocortical, cingulate and limbic neurotransmission.

As 5-HT2R is desensitized in CING, PFC, FC, OC, CING, INS and FG, the consequence ought to be a reduction of DA efflux in these regions. DA synthesis and DA release, however, are increased in PFC/FC and VS, respectively, implying augmented DA concentrations, and, thusly, an increase of DA action in the desending and ascending projections of the mesolimbocortical system. Interestingly, in line with SERT hypofunction in the MB, DAT is desensitized in PFC, FC, CING and AMYG, leading to a further increase of DA availability in prefrontal/frontal, cingulate and limbic regions. Possibly, the enhancement of DA synthesis in PFC/FC and of DA release in the VS, together with the desensitization of DAT in PFC/FC, CING and AMYG constitute adaptive responses, aiming to maintain (or even enhance) mesolimbocortical DA function. Thereby, the desensitization of DAT in the SN is likely to incur an elevation of nigral DA to some level, which may eventually account for the normality of DA synthesis, DA release, DAT and D2R function in the STR.

MDD patients display a desensitization of striatal D1R. As the striatal D2R density is not different from controls, this can not be interpreted in terms of an adaptive response to an abundance of striatal DA. Rather, due to the higher expression of D1R relative to D2R in neocortical tissues (Palacios et al., 1988), the elevation of prefrontal/frontal DA levels is likely to induce a net increase of excitatory action in the descending fibers of the nigrostriatal and mesolimbocortical pathways, which requires compensation by the observed desensitization of striatal D1R.

D2R is sensitized in the CING, which reflects DA shortage. Since 5-HT stimulates DA efflux via 5-HT1/2R (Ichikawa and Meltzer, 1995, 2000), an association can be inferred between the desensitization of 5-HT2R in the CING and the implied reduction of DA. The assumption of DA shortage, however, is not consistent with the normal D1R binding in the CING, although the latter finding must be viewed with reserve, since it was obtained in merely one investigation. As the CING is relevant for the processing of emotion and social behavior (for a review see Hadland et al., 2003), further investigations are required to elucidate the exact role of cingulate 5-HT and DA function in MDD, and, for that matter, also AD and BD, on which in vivo studies of CING D2R binding are completely lacking.

Taken together, MDD is characterized by an abundance of ventrostriatal and prefrontal/frontal DA and mesencephalic, neostriatal, thalamic, cingulate, prefrontal/frontal, insular and fusiform 5-HT, while striatal DA and mesencephalic GABA levels are normal. Sensitization and desensitization mechanism likely result in a net reduction of excitatory DA and 5-HT action. Arguably, the initial deficit is SERT hypofunction. As, however, findings on GABAAR function are limited to MB and OC, further investigations are needed to clarify the exact role of GABAAR in acute MDD.

BD

BDman patients displayed an increase of DAT in the STR and a reduction of D1R in the FC. In addition, previous analyses had revealed an increase of SERT in the MB as well as decreases of 5-HT2R in FC, PC, TC, OC, INS and FG (Nikolaus et al., 2016, 2017).

BDdep patients showed a decrease of D1R in the FC, while precedent analyses had additionally evidenced a decrease of SERT in VS and HIPP, an increase of SERT in CING and INS, and increases of 5-HT1R in PFC, FC, HIPP, PHG and AMYG (Nikolaus et al., 2016, 2017). GABAAR binding, so far, has neither been assessed in BDman nor in BDdep (Table 5).

In BDman, striatal DA synthesis, D1R and D2R are not different from healthy controls. Strikingly, however, frontal D1R is diminished, which – contrary to AD, but similar to MDD – reflects an increased availability of frontal DA.

So far, studies on 5-HT synthesis and GABAAR are lacking in BDman. However, the desensitization 5-HT2R in FC, PC, TC, OC, INS and FG may be interpreted as an adaptive response to the enhanced availability of 5-HT in neocortical and limbic target regions of ascending 5-HTergic fibers. In line with this assumption, the sensitization of MB SERT may be conceived as an adaptation to elevated 5-HT concentrations at the site of origin of ascending 5-HTergic neurons.

Since 5-HT stimulates DA release via 5-HT1/2R (Ichikawa and Meltzer, 1995, 2000), the desensitization of these binding sites in the neocortex can be assumed to (though not effectively) diminish cortical DA concentrations and – together with the desensitization of frontal D1R – to reduce the (excitatory) DAergic input to the mesolimbic target regions of descending DA neurons (Nikolaus et al., 2017). Interestingly, striatal DAT is augmented in BDman, reflecting an increased availability of DA in this region. Although this finding must be viewed with caution, since it was obtained in merely one investigation, it may not be excluded that the elevation of DAT density constitutes the very mechanism granting normal striatal DA levels and normal D1R and D2R binding.

Similar to BDman, striatal D1R does not differ between BDdep and healthy controls, whereas frontal D1R is diminished, suggesting increased availability of frontal DA also in BDdep. In BDdep, SERT is decreased in VS and HIPP, which reflects diminshed levels of mesolimbic 5-HT. Interestingly, however, SERT binding is increased in CING and INS (implying high 5-HT), whereas both cingulate and insular 5-HT1 auto- and hetereorecetor binding are normal. It is striking that, also in MDD, SERT binding is elevated in the INS (in contrast to the AMYG), while insular 5-HT1 auto- and hetereorecetor binding is unaltered relative to healthy controls (Nikolaus et al., 2016). This, possibly, indicates that the INS (and in BDdep also the CING) contain a higher basal amount of 5-HT than VS, HIPP and AMYG in BDdep and MDD, which, via increased sensitization of the SERT, is effectively transported back into the presynaptic terminals.

The relative shortage of 5-HT in VS and HIPP may incur a reduction of 5-HTergic input to the neocortical and limbic target regions of mesolimbic projections, which likely results in the observed sensitization of inhibitory prefrontal/frontal and limbic 5-HT1 heteroreceptors, ultimately enhancing the inhibitory input to the target regions of prefrontal/frontal and limbic projections. As 5-HT stimulates DA release via 5-HT1/2R action (Ichikawa and Meltzer, 1995, 2000), the sensitization of frontal 5-HT1R also in BDdep will lead to an augmentation of DA release, entailing the observed desensitization of frontal D1R. Yet, on the other hand, the sensitization of inhibitory 5-HT1 autoreceptors in prefrontal/frontal cortex and limbic system increases the inhibitory action of the negative feedback loop, secondarily leading to a further aggravation of 5-HT shortage.

Taken together, both BDman and BDdep are characterized by elevated frontal DA. However, increased mesencephalic, limbic (INS, FG) and frontoparietotemporooccipital 5-HT underlie the condition of BDman, whereas BDdep patients display decreased prefrontal/frontal and mesolimbic 5-HT levels. Notably, different neocortical and limbic regions are involved in BDman and BDdep. The abundance of 5-HT in BDman may be either due to increased 5-HT synthesis (which, so far, has not been assessed in vivo imaging studies) or to still insufficient sensitization of SERT. Another cause might be a persistent desensitization of 5-HT1 autoreceptors, which, however, warrants further investigation in in vivo imaging studies. In turn, the shortage of prefrontal and limbic 5-HT in BDdep may be either due to reduced 5-HT synthesis or to a persistent 5-HT1 autoreceptor sensitization, either of which is still awaiting further in vivo assessment.

SZ

SZ patients showed reductions of DAT in the STR, increases of D1R in VS, PFC, FC, PC and OC, reductions of D2R in STR, THAL, TC and MB, increases of DA synthesis in STR, CING, AMYG and MB as well as increases of DA release in STR and VS.

Furthermore, previous analyses had yielded reductions of 5-HT1R in TC, OC, MB and AMYG, reductions of 5-HT2R in FC, TC and OC as well as reductions of GABAAR in FC and TC (Table 5; Nikolaus et al., 2014b, 2016).

Given the known association between SZ and variations of the GABAAR gene (Cherlyn et al., 2010), it may be hypothesized that defects of the GABAAR gene – and, thus, of GABAAR dysfunction – constitute the initial deficit in SZ with a decrease of GABAAR density in FC and TC lowering the inhibitory input to the target regions of descending corticothalamostriatal projections. The likely consequence would be the abundance of DA and 5-HT as reflected by the the observed augmentation of DA synthesis and release in MB, STR, VS, CING and AMYG as well as by the desensitizations of D2R in STR, THAL and TC, 5-HT1R in TC, OC, MB and AMYG and 5-HT2R in FC, TC and OC.

On the other hand, it may be argued that the initital deficit in SZ, rather, is excess DA synthesis (in STR, MB, CING and AMYG) and DA release (in STR and VS), leading to the increased availability of DA in the striatothalamocortical pathway and the observed desensitization of D2R in STR, THAL, TC and MB. Thereby, the desensitization of inhibitory D2 autoreceptors in STR, THAL, TC and MB will reduce the feedback inhibition, ultimately leading to a further enhancement of DA release, while the desensitization of D2 hetereoreceptors will result in the reduction of inhibitory input to the target regions of ascending and descending DAergic fibers.

As D2R inhibit the release of GABA and 5-HT (Girault et al., 1986; Ferre et al., 1994), a further consequence of D2R desensitization will be an augmentation of GABA efflux in the neocortical projection areas of ascending GABAergic neurons, which is consistent with the observed desensitization of GABAAR in FC and TC.

Also 5-HT levels are likely to be increased, which is in agreement with the observed desensitizations of 5-HT1R in MB, TC, OC and AMYG and of 5-HT2R in FC, TC and OC. Thereby, for one, the desensitization of 5-HT1 autoreceptors in MB, TC, OC and AMYG will disinhibit the feedback loop, resulting in a further enhancement of 5-HT efflux in mesencephalic, neocortical and limbic regions. Secondly, the desensitization of 5-HT1 and 5-HT2 heteroreceptors will lead to a compensatory reduction of both inhibitory and excitatory action in the target regions of ascending and descending 5-HT neurons. Thirdly, the desensitization of 5-HT1/2R sites in the neocortex, can be assumed to diminish DA concentrations in the neocortex and in the ventrostriatal target region of descending DAergic projections, which is consistent with the detected sensitization of D1R in VST, PFC, FC, PC and OC.

Strikingly, the sensitization of D1R in VST, PFC, FC, PC and OC, as opposed to the desensitization of D2R in STR, THAL, TC and MB, implies regional differences of DA levels in SZ, with an increased availability in the striatothalamocortical and a decreased availability in the mesolimbocortical pathway. Similarly, findings in MDD had evidenced regional differences in 5-HT levels, with an increased availability in MB, CING and neocortex but a decreased availability in the PHG.

Taken together, acute SZ is characterized by an abundance of mesencepahlic, neostriatal, thalamic, cingulate, temporal and amygdalar DA, but DA shortage in VS, PFC, FC, PC and OC. Further features are GABA abundance in FC and TC and 5-HT abundance in MB, FC, TC, OC and AMYG. Sensitization and desensitization mechanisms likely result in a net reduction of inhibitory DA action. The initial deficit may be either GABAAR dysfunction or excess DA synthesis and release.

Appraisal of results

AD, MDD, BDman, BDdep and SZ share the characteristic of imbalanced DA function. Findings, however, show that the individual disorders greatly differ as to the affected brain region(s), the affected synaptic constituent(s) and the direction of dysfunction in terms of either sensitization or desensitization of transporter and receptor binding sites.

The results can be summarized as follows:

  1. No desensitization of DAT is evident in AD, whereas, in SZ, DAT desensitization is confinced to the STR, and, in MDD, involves the prefrontal/frontal cortex as well as CING, AMYG and SN. In contrast, in BDman, DAT is sensitized in the STR. Comparisons between disorders revealed that, in BDman, striatal DAT binding is increased relative to SZ.

  2. In AD and MDD, D1R is desensitized in the STR, while, in BDman and BDdep, D1R is desensitized in the FC. In contrast, in SZ, D1R is sensitized, with the sensitization involving the VS as well as practically the whole neocortex. Comparison between disorders revealed no differences in D1R.

  3. In AD, D2R is desensitized in STR and VS, while, in SZ, D2R desensitization is more extensive, involving – apart from the STR – also THAL, TC and MB. In contrast, in MDD and BDman, neostriatal D2R binding is normal. Comparisons of D2R between disorders revealed that, in AD, striatal D2R is decreased relative to MDD. Moreover, in MDD, striatal D2R is increased relative to SZ.

  4. In MDD, DA synthesis is increased in PFC and FC, while, in MDD as well as BDman, neostriatal DA synthesis is normal. In contrast, in SZ, extensive increases of DA synthesis are evident, involving STR, CING, AMYG and MB. Comparisons between disorders revealed that, in MDD, striatal DA synthesis is lower compared to SZ. In contrast, prefrontal and frontal DA synthesis in MDD is higher relative to SZ.

  5. In AD and SZ, DA release is elevated in STR and/or VS. Comparison between disorders revealed that, in AD and MDD, DA release is significantly decreased relative to SZ.

Precedent analyses (Nikolaus et al., 2014b, 2016, 2017), additionally, have revealed the following features:

  1. In AD, SERT is desensitized in THAL, HIPP and AMYG, while, in MDD, SERT desensitization is even more extensive, involving – apart from THAL and AMYG – also STR, MB and PFC. In BDman, SERT is sensitized in the MB, whereas, in BDdep, SERT is sensitized in CING and INS and desensitized in VS and HIPP. Interestingly, MDD and BDdep share the feature of SERT sensitization in the INS. No alterations of SERT are evident in SZ. Previous analyses have yielded no significant difference of SERT density between the individual disorders (Nikolaus et al., 2016).

  2. In AD, 5-HT1R desensitization is observed in MB, PFC, FC, TC, CING, HIPP, PHG, AMYG, INS and FG. In SZ, 5-HT1R desensitization is merely present in MB, AMYG, TC and OC. Also in MDD, 5-HT1R densitization is limited, occurring solely in the MB, wheras the PHG displays a sensitization of 5-HT1R. Likewise, 5-HT1R is sensitized in BDdep, involving PFC, FC, HIPP, PHG and AMYG. 5-HT1R is diminished in CING, FC, AMYG and INS of AD compared to MDD patients, and in CING, FC and MB of AD compared to SZ patients. Moreover, 5-HT1R in the INS of AD subjects is decreased compared to BDdep (Nikolaus et al., 2016).

  3. In AD, 5-HT2R is desensitized in the VS and sensitized in the TC. In MDD, 5-HT2R desensitization is evident in CING, PFC, FC, OC, INS and FG. Moreover, a sensitization of 5-HT2R is observed in the THAL. In BDman, 5-HT2R desensitization is evident in INS, FG and throughout the whole neocortex. In SZ, 5-HT2R desensitization does not involve CING and the limbic system, but is confined to the neocortex (FC, TC, OC). 5-HT2R is increased in the TC of AD compared to MDD patients, and in the FC and TC of AD compared to SZ patients. Furthermore, 5-HT2R is elevated in the FC of MDD compared to SZ patients (Nikolaus et al., 2016).

  4. In AD, GABAAR is desensitized in STR, CING, FC, TC, OC, AMYG, INS and EC and sensitized in the PHG. In contrast, in SZ, GABAAR desensitization is confined to the neocortex (FC, TC), whereas, in MDD, GABAAR is normal. In AD patients, GABAAR is lower in the AMYG relative to SZ. Moreover, in MDD, occipital GABAAR binding is higher relative to both AD and SZ (Nikolaus et al., 2014b).

From this may be inferred that striatal DA synthesis is higher and that prefrontal/frontal DA synthesis is lower in SZ relative to MDD. This underlines our conclusion that, in MDD, DA levels are normal in the STR, but abundant in PFC/FC. This also holds for BDman and BDdep. On the other hand, an increased availability of neostriatal DA can be inferred for SZ (relative to both AD and MDD). Thereby, DA function in SZ is impaired throughout the nigrostriatal and mesolimbocortical system with an increased availability of DA in the striatothalamocortical and a decreased availability in the mesolimbocortical pathway. Striatal DAT binding is higher in BDman than in SZ. This implies that the elevation of DA reuptake may constitute the mechanism, which grants normal neostriatal DA levels as well as normal neostriatal D1R and D2R binding in BDman. Moreover, neostriatal D2R binding is lower in AD relative to MDD and BDman, which indicates different roles of D2R auto- and heteroreceptor function in the individual disorders.

Mesencephalic 5-HT levels are increased in AD, MDD, BDman and SZ, but normal in BDdep. Furthermore, AD, MDD, BDman and SZ share the feature of elevated neocortical 5-HT, which, however, in BDman is more extensive, involving the whole frontoparietotemporooccipital cortex. In contrast, BDdep is characterized by a decrease of prefrontal/frontal and limbic 5-HT. Strikingly, in MDD, the desensitization of MB 5-HT1 auto- and heteroreceptors is concurrent with a sensitization of parahippocampal 5-HT1R. This corresponds to the increase of 5-HT1R in limbic regions of BDdep patients. Hence, the same line of events – sensitization of limbic 5-HT1 heteroreceptors leading to an increase of inhibitory input, and sensitization of limbic 5-HT1 autoreceptors leading to a decline of 5-HT levels – may be assumed to occur in both disorders. However, in MDD, an interaction of limbic and mesencephalic 5-HT function can be inferred, which is is not present in BDdep. Moreover, contrary to AD and SZ, the desensitization of 5-HT1R in MDD is confined to the MB and does not involve neocortical, cingulate and limbic regions. Thus, contrary to AD and SZ, in MDD, there is no adaptive reduction of inhibitory neurotransmission in these areas. It is striking that AD is characterized by the highest temporal 5-HT2R binding and the lowest cingulate and frontal 5-HT1R binding relative to MDD and SZ. Moreover, AD patients display the lowest GABAAR binding in the AMYG relative to SZ, which implies a specific role of excitation in temporal and inhibition in cingulate/limbic and frontocortical regions.

Although the conjecture of region-specific alterations of VMAT2, DAT, D1R, D2R, DA synthesis and DA release is intriguing, it must be put into perspective: for one, investigations of several parameters of synaptic function are scarce in individual diseases with merely one study of VMAT2 in AD (Table 1), one study on D1R in AD (Table 1), two studies on D1R in MDD (Table 2), three studies on DA release in MDD (Table 2), one study on D1R in BDman (Table 3), one study on D1R in BDdep (Table 3), one study on D2R in BDman (Table 3) and one study on DA synthesis in BDman (Table 3). Moreover, so far, no study has been conducted on VMAT2 in MDD, BDman, BDdep and SZ, DA synthesis in AD and DA synthesis in BDman and BDdep. In numerous cases, furthermore, the number of available studies per brain region is limited (Figures 15). If, in addition, the number of investigated subjects is comparatively small, findings are difficult to interpret as to their portability.

Furthermore, as illustrated by Figures 15, the individual findings underlying the obtained differences between AD, MDD, BDman, BDdep, and SZ patients and the respective controls were rather inconsistent with reports of no alterations and both significant and non-significant increases as well as decreases of DAT, D1R, D2R, DA synthesis and DA release. Thereby, inconsistent findings may be due to varying subtypes of the respective disorders, varying comorbidities, varying disease durations and varying disease severities, which, in addition, have been assessed with a variety of different inventories (Tables 14). Additional factors, which may influence the outcome of studies, are differences in methodology: results can not be expected to be entirely consistent, when they were acquired with different imaging tools such as SPECT and the higher-resolving PET, and with quantification methods ranging from the determination of ratios to cerebellar or cortical reference regions over compartmental modeling to statistical parametric mapping of distribution volumes. In addition, the employment of various radioligands for a given binding site may not only bias (semi)quantitative values due to differences in affinities, but also due to the pitfalls inherent to the respective imaging modality such as the lack of exact attenuation correction in SPECT in conjunction with the usage of specific reconstruction algorithms (Catafau et al., 2009; Bullich et al., 2010).

Another important issue is the fact that in the majority of original investigations patients had undergone previous and/or current treatment with anticonvulsants, anxiolytics, antidepressants and neuroleptics, acting – among others – on sodium channels and pre- and postsynaptic DA, 5-HT, noradrenaline and GABA binding sites (Tables 14).

Therefore, future in vivo imaging studies are required, which address individual parameters of neurotransmitter function in unmedicated or – preferably – medication-naïve patients with the primary (and preferably exclusive) diagnosis of individual subtypes of AD (obsessive-compulsive disorder, panic disorder, phobia, etc.), MDD (melancholic, atypical, catatonic depression, seasonal affective disorder, etc.), BD (bipolar I, bipolar II, etc.) in either the manic or depressed state or SZ (paranoid, disorganized, catatonic, etc.). This especially pertains to brain regions, which are known to play a major role in the mediation of cognition, emotion and social functioniong such as HIPP (for a review see Eichenbaum, 2017), PHG (for a review see Aminoff et al., 2013), AMYG (for a review see Gothard et al., 2018), CING (for a review see Hadland et al., 2003), TC (for a review see Grosso et al., 2015) and PFC (for a review see Hiser and Koenigs, 2018). A variety of these regions displayed interesting disease-specific alterations of transporter and receptor binding in individual disorders, such as the elevation of temporal 5-HT2R in AD, insular SERT in MDD and BDdep, mesencephalic SERT in BDman, parahippocampal 5-HT1R in MDD or cingulate D2R in MDD. Noteworthy are, furthermore, the increase of inhibitory prefrontal/frontal and limbic 5-HT1R in BDman and excitatory ventrostriatal prefrontal/frontal and parietooccipital D1R in SZ, which exemplify that entirely different modes of neurotransmitter action – in this case, increased prefrontal/frontal and limbic 5-HTergic inhibition in BDman as opposed to increased mesolimbocortical DAergic excitation in SZ – may underlie the individual pathological conditions.

Besides, there is evidence that neurotransmitters beyond DA, 5-HT and GABA may play a role in the manifestation of AD, MDD, BD and SZ. Among them are acetylcholine (for review see Koukouli and Maskos, 2015), histamine (for a review see Shan et al., 2017), glutamate (for a review see O’Donovan et al., 2017), substance P (for a review see Nikolaus et al., 2013) and endocannabinoids (for a review see Campos et al., 2016). Since, as of yet, the number of available in vivo imaging studies on these neurotransmitters is scarce, future efforts must also be directed towards elucidating their contributions to the pathophysiology of AD, MDD, BD and SZ.

References

Abi-Dargham, A. (2003). Probing cortical dopamine function in schizophrenia: what can D1 receptors tell us? World Psychiatry 2, 166–171.Search in Google Scholar

Abi-Dargham, A., Gil, R., Krystal, J., Baldwin, R.M., Seibyl, J.P., Bowers, M., van Dyck, C.H., Charney, D.S., Innis, R.B., and Laruelle, M. (1998). Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am. J. Psychiatry 155, 761–767.Search in Google Scholar

Abi-Dargham, A., Rodenhiser, J., Printz, D., Zea-Ponce, Y., Gil, R., Kegeles, L.S., Weiss, R., Cooper, T.B., Mann, J.J., Van Heertum, R.L., et al. (2000). Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc. Natl. Acad. Sci. USA 97, 8104–8109.10.1073/pnas.97.14.8104Search in Google Scholar PubMed PubMed Central

Abi-Dargham, A., Mawlawi, O., Lombardo, I., Gil, R., Martinez, D., Huang, Y., Hwang, D.R., Keilp, J., Kochan, L., Van Heertum, R., et al. (2002). Prefrontal dopamine D1 receptors and working memory in schizophrenia. J. Neurosci. 22, 3708–3719.10.1523/JNEUROSCI.22-09-03708.2002Search in Google Scholar

Abi-Dargham, A., van de Giessen, E., Slifstein, M., Kegeles, L.S., and Laruelle M. (2009). Baseline and amphetamine-stimulated dopamine activity are related in drug-naïve schizophrenic subjects. Biol. Psychiatry 65, 1091–1093.10.1016/j.biopsych.2008.12.007Search in Google Scholar PubMed

Abi-Dargham, A., Xu, X., Thompson, J.L., Gil, R., Kegeles, L.S., Urban, N., Narendran, R., Hwang, D.R., Laruelle, M., and Slifstein, M. (2012). Increased prefrontal cortical D₁ receptors in drug naive patients with schizophrenia: a PET study with [11C]NNC112. J. Psychopharmacol. 26, 794–805.10.1177/0269881111409265Search in Google Scholar PubMed

Afifi, A.K. (1994a). Basal ganglia: functional anatomy and physiology. Part 1. J. Child Neurol. 9, 249–260.10.1177/088307389400900306Search in Google Scholar PubMed

Afifi, A.K. (1994b). Basal ganglia: functional anatomy and physiology. Part 2. J. Child Neurol. 9, 352–361.10.1177/088307389400900403Search in Google Scholar PubMed

Agid, O., Mamo, D., Ginovart, N., Vitcu, I., Wilson, A.A., Zipursky, R.B., and Kapur, S. (2007). Striatal vs extrastriatal dopamine D2 receptors in antipsychotic response – a double-blind PET study in schizophrenia. Neuropsychopharmacology 32, 1209–1215.10.1038/sj.npp.1301242Search in Google Scholar PubMed

Agren, H. and Reibring, L. (1994). PET studies of präsynaptischen Monoamine metabolism in depressed patients and healthy volunteers. Pharmacopsychiatry 27, 2–6.10.1055/s-2007-1014265Search in Google Scholar PubMed

Agren, H., Reibring, L., Hartvig, P., Tedroff, J., Bjurling, P., Lundqvist, H., and Langström, B. (1992). PET studies with L-[11C]5-HTP and L-[11C]dopa in brains of healthy volunteers and patients with major depression. Clin. Neuropharmacol. 15 (Suppl. 1 Pt A), 235–236.10.1097/00002826-199201001-00123Search in Google Scholar PubMed

Agren, H., Reibring, L., Hartvig, P., Tedroff, J., Bjurling, P., Lundqvist, H., and Langstrom, B. (1993). Monoamine metabolism in human prefrontal cortex and basal ganglia. Pet studies using [β-11C] l–5-hydroxytryptophan and [β-11C] L-dopa in healthy volunteers and patients with unipolar major depression. Depression 1, 71–83.10.1002/depr.3050010203Search in Google Scholar

Aminoff, E.M., Kveraga, K., and Bar, M. (2013). The role of the parahippocampal cortex in cognition. Trends Cogn. Sci. 17, 379–390.10.1016/j.tics.2013.06.009Search in Google Scholar

Amsterdam, J.D. and Newberg, A.B. (2007). A preliminary study of dopamine transporter binding in bipolar and unipolar depressed patients and healthy controls. Neuropsychobiology 55, 167–170.10.1159/000106476Search in Google Scholar

Amsterdam, J.D., Newberg, A.B., Soeller, I., and Shults, J. (2012). Greater striatal dopamine transporter density may be associated with major depressive episode. J. Affect. Disord. 141, 425–431.10.1016/j.jad.2012.03.007Search in Google Scholar

Arakawa, R., Ichimiya, T., Ito, H., Takano, A., Okumura, M., Takahashi, H., Takano, H., Yasuno, F., Kato, M., Okubo, Y., et al. (2009). Increase in thalamic binding of [(11)C]PE2I in patients with schizophrenia: a positron emission tomography study of dopamine transporter. J. Psychiatr. Res. 43, 1219–1223.10.1016/j.jpsychires.2009.04.009Search in Google Scholar

Arakawa, R., Ito, H., Okumura, M., Takano, A., Takahashi, H., Takano, H., Okubo, Y., and Suhara, T. (2010). Extrastriatal dopamine D2 receptor occupancy in olanzapine-treated patients with schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 260, 345–350.10.1007/s00406-009-0082-5Search in Google Scholar

Argyelan, M., Szabo, Z., Kanyo, B., Tanacs, A., Kovacs, Z., Janka, Z., and Pavics, L. (2005). Dopamine transporter availability in medication free and in bupropion treated depression: a 99mTc-TRODAT-1 SPECT study. J. Affect. Disord. 89, 115–123.10.1016/j.jad.2005.08.016Search in Google Scholar

Barnas, C., Quiner, S., Tauscher, J., Hilger, E., Willeit, M., Küfferle, B., Asenbaum, S., Brücke, T., Rao, M.L., and Kasper, S. (2001). In vivo (123)I IBZM SPECT imaging of striatal dopamine 2 receptor occupancy in schizophrenic patients. Psychopharmacology (Berl). 157, 236–242.10.1007/s002130100813Search in Google Scholar

Bertolino, A., Breier, A., Callicott, J.H, Adler, C., Mattay, V.S., Shapiro, M., Frank, J.A., Pickar, D., and Weinberger, D.R. (2000). The relationship between dorsolateral prefrontal neuronal N-acetylaspartate and evoked release of striatal dopamine in schizophrenia. Neuropsychopharmacology 22, 125–132.10.1016/S0893-133X(99)00096-2Search in Google Scholar

Bigliani, V., Mulligan, R.S., Acton, P.D., Visvikis, D., Ell, P.J., Stephenson, C., Kerwin, R.W., and Pilowsky, L.S. (1999). In vivo occupancy of striatal and temporal cortical D2/D3 dopamine receptors by typical antipsychotic drugs. [123I]epidepride single photon emission tomography (SPET) study. Br. J. Psychiatry 175, 231–238.10.1192/bjp.175.3.231Search in Google Scholar PubMed

Bose, S.K., Turkheimer, F.E., Howes, O.D., Mehta, M.A., Cunliffe, R., Stokes, P.R., and Grasby, P.M. (2008). Classification of schizophrenic patients and healthy controls using [18F]fluorodopa PET imaging. Schizophr. Res. 106, 148–155.10.1016/j.schres.2008.09.011Search in Google Scholar PubMed

Breier, A., Su, T.P., Saunders, R., Carson, R.E., Kolachana, B.S., de Bartolomeis, A., Weinberger, D.R., Weisenfeld, N., Malhotra, A.K., Eckelman, W.C., et al. (1997). Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc. Natl. Acad. Sci. USA 94, 2569–2574.10.1073/pnas.94.6.2569Search in Google Scholar PubMed PubMed Central

Bressan, R.A., Erlandsson, K., Mulligan, R.S., Gunn, R.N., Cunningham, V.J., Owens, J., Ell, P.J., and Pilowsky, L.S. (2003). Evaluation of NMDA receptors in vivo in schizophrenic patients with [123I]CNS 1261 and SPET: preliminary findings. Ann. N. Y. Acad. Sci. 1003, 364–367.10.1196/annals.1300.027Search in Google Scholar PubMed

Broft, A., Slifstein, M., Osborne, J., Kothari, P., Morim, S., Shingleton, R., Kenney, L., Vallabhajosula, S., Attia, E., Martinez, D., et al. (2015). Striatal dopamine type 2 receptor availability in anorexia nervosa. Psychiatry Res. 233, 380–387.10.1016/j.pscychresns.2015.06.013Search in Google Scholar PubMed PubMed Central

Brücke, T., Wenger, S., Podreka, I., and Asenbaum, S. (1991). Dopamine receptor classification, neuroanatomical distribution and in vivo imaging. Wien. Klin. Wochenschr. 103, 639–646.Search in Google Scholar

Brunswick, D.J., Amsterdam, J.D., Mozley, P.D., and Newberg, A. (2003). Greater availability of brain dopamine transporters in major depression shown by [99mTc]TRODAT-1 SPECT imaging. Am. J. Psychiatry 160, 1836–1841.10.1176/appi.ajp.160.10.1836Search in Google Scholar PubMed

Buchsbaum, M.S., Christian, B.T., Lehrer, D.S., Narayanan, T.K., Shi, B., Mantil, J., Kemether, E., Oakes, T.R., and Mukherjee, J. (2006). D2/D3 dopamine receptor binding with [18F]fallypride in thalamus and cortex of patients with schizophrenia. Schizophr. Res. 85, 232–244.10.1016/j.schres.2006.03.042Search in Google Scholar PubMed

Bullich, S., Ros, D., Pavía, J., Cot, A., Lopez, N., and Catafau, A.M. (2009). Neurotransmission SPECT and MR registration combining mutual and gradient information. Med. Phys. 36, 4903–4910.10.1118/1.3232002Search in Google Scholar PubMed

Busto, U.E., Redden, L., Mayberg, H., Kapur, S., Houle, S., and Zawertailo, L.A. (2009). Dopaminergic activity in depressed smokers: a positron emission tomography study. Synapse 63, 681–689.10.1002/syn.20646Search in Google Scholar PubMed PubMed Central

Camardese, G., De Risio, L., Di Nicola, M., Pucci, L., Cocciolillo, F., Bria, P., Giordano, A., Janiri, L., and Di Giuda, D. (2014). Changes of dopamine transporter availability in depressed patients with and without anhedonia: a 123I-N-ω-fluoropropyl-carbomethoxy-3β-(4-iodophenyl)tropane SPECT study. Neuropsychobiology 70, 235–243.10.1159/000368117Search in Google Scholar PubMed

Campos, A.C., Fogaca, M.V., Sonego, A.B., and Guimaraes, F.S. (2016). Cannabidiol, neuroprotection and neuropsychiatric disorders. Pharmacol. Res. 112, 119–127.10.1016/j.phrs.2016.01.033Search in Google Scholar PubMed

Cannon, D.M., Klaver, J.M., Peck, S.A., Rallis-Voak, D., Erickson, K., and Drevets, W.C. (2009). Dopamine type-1 receptor binding in major depressive disorder assessed using positron emission tomography and [11C]NNC-112. Neuropsychopharmacology 34, 1277–1287.10.1038/npp.2008.194Search in Google Scholar PubMed PubMed Central

Caravaggio, F., Borlido, C., Wilson, A., and Graff-Guerrero, A. (2015). Examining endogenous dopamine in treated schizophrenia using [11C]-(+)-PHNO positron emission tomography: A pilot study. Clin. Chim. Acta 449, 60–62.10.1016/j.cca.2015.03.020Search in Google Scholar

Carlsson, M.L. (2001). On the role of prefrontal cortex glutamate for the antithetical phenomenology of obsessive compulsive disorder and attention deficit hyperactivity disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 25, 5–26.10.1016/S0278-5846(00)00146-9Search in Google Scholar

Catafau, A.M., Suarez, M., Bullich, S., Llop, J., Nucci, G., Gunn, R.N., Brittain, C., and Laruelle, M. (2009). Barcelona Clinical Imaging in Psychiatry Group. Within-subject comparison of striatal D2 receptor occupancy measurements using [123I]IBZM SPECT and [11C]Raclopride PET. Neuroimage 46, 447–458.10.1016/j.neuroimage.2009.02.005Search in Google Scholar PubMed

Catafau, A.M., Bullich, S., Nucci, G., Burgess, C., Gray, F., and Merlo-Pich, E. (2011). Barcelona Clinical Imaging in Psychiatry Group. Contribution of SPECT measurements of D2 and 5-HT2A occupancy to the clinical development of the antipsychotic SB-773812. J. Nucl. Med. 52, 526–534.10.2967/jnumed.110.081885Search in Google Scholar PubMed

Chavoix, C. and Insausti, R. (2017). Self-awareness and the medial temporal lobe in neurodegenerative diseases. Neurosci. Biobehav. Rev. 78, 1–12.10.1016/j.neubiorev.2017.04.015Search in Google Scholar PubMed

Chen, K.C., Yang, Y.K., Howes, O., Lee, I.H., Landau, S., Yeh, T.L., Chiu, N.T., Chen, P.S., Lu, R.B., David, A.S., et al. (2013). Striatal dopamine transporter availability in drug-naive patients with schizophrenia: a case-control SPECT study with [99mTc]-TRODAT-1 and a meta-analysis. Schizophr. Bull. 39, 378–386.10.1093/schbul/sbr163Search in Google Scholar PubMed PubMed Central

Cherlyn, S.Y., Woon, P.S., Liu, J.J., Ong, W.Y., Tsai, G.C., and Sim, K. (2010). Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance. Neurosci. Biobehav. Rev. 34, 958–977.10.1016/j.neubiorev.2010.01.002Search in Google Scholar PubMed

Chiodo, A.L., Freeman, A.S., and Bunney, B.S. (1995). Dopamine Autoreceptor Signal Transduction and Regulation. Psychopharmacology – The fourth generation of progress. F.E. Bloom and D.J., eds. (New York, USA: Raven Press), pp. 221–226.Search in Google Scholar

Chung, S.J., Lee, J.J., Ham, J.H., Lee, P.H., and Sohn, Y.H. (2016). Apathy and striatal dopamine defects in non-demented patients with Parkinson’s disease. Parkinsonism Relat. Disord. 23, 62–65.10.1016/j.parkreldis.2015.12.003Search in Google Scholar PubMed

Corripio, I., Perez, V., Catafau, A.M., Mena, E., Carrio, I., and Alvarez, E. (2006). Striatal D2 receptor binding as a marker of prognosis and outcome in untreated first-episode psychosis. Neuroimage 29, 662–666.10.1016/j.neuroimage.2005.07.038Search in Google Scholar PubMed

Corripio, I., Escartí, M.J., Portella, M.J., Perez, V., Grasa, E., Sauras, R.B., Alonso, A., Safont, G., Camacho, M.V., Duenas, R., et al. (2011). Density of striatal D2 receptors in untreated first-episode psychosis: an I123-IBZM SPECT study. Eur. Neuropsychopharmacol. 21, 861–866.10.1016/j.euroneuro.2011.03.004Search in Google Scholar PubMed

Cozzi, N.V. and Nichols, D.E. (1996). 5-HT2A receptor antagonists inhibit potassium-stimulated γ-aminobutyric acid release in rat frontal cortex. Eur. J. Pharmacol. 309, 25–31.10.1016/0014-2999(96)00325-1Search in Google Scholar

Dao-Castellana, M.H., Paillere-Martinot, M.L., Hantraye, P., Attar-Levy, D., Remy, P., Crouzel, C., Artiges, E., Feline, A., Syrota, A., and Martinot, J.L. (1997). Presynaptic dopaminergic function in the striatum of schizophrenic patients. Schizophr. Res. 23, 167–174.10.1016/S0920-9964(96)00102-8Search in Google Scholar

Deeks, E.D. and Keating, G.M. (2008). Olanzapine/fluoxetine: a review of its use in the treatment of acute bipolar depression. Drugs 68, 1115–1137.10.2165/00003495-200868080-00008Search in Google Scholar

de Haan, L., van Bruggen, M., Lavalaye, J., Booij, J., Dingemans, P.M., and Linszen, D. (2003). Subjective experience and D2 receptor occupancy in patients with recent-onset schizophrenia treated with low-dose olanzapine or haloperidol: a randomized, double-blind study. Am. J. Psychiatry 160, 303–209.10.1176/appi.ajp.160.2.303Search in Google Scholar

de Kwaasteniet, B.P., Pinto, C., Ruhe, H.G., van Wingen, G.A., Booij, J., and Denys, D. (2014). Striatal dopamine D2/3 receptor availability in treatment resistant depression. PLoS One 9, e113612.10.1371/journal.pone.0113612Search in Google Scholar

Demjaha, A., Egerton, A., Murray, R.M., Kapur, S., Howes, O.D., Stone, J.M., and McGuire, P.K. (2014). Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biol. Psychiatry 75, e11–13.10.1016/j.biopsych.2013.06.011Search in Google Scholar

Denys, D., van der Wee, N., Janssen, J., De Geus, F., and Westenberg, H.G. (2004). Low level of dopaminergic D2 receptor binding in obsessive-compulsive disorder. Biol. Psychiatry 55, 1041–1045.10.1016/j.biopsych.2004.01.023Search in Google Scholar

D’haenen, H.A. and Bossuyt, A. (1994). Dopamine D2 receptors in depression measured with single photon emission computed tomography. Biol. Psychiatry 35, 128–132.10.1016/0006-3223(94)91202-5Search in Google Scholar

Di Giovanni, G., Di Matteo, V., Pierucci, M., Benigno, A., and Esposito, E. (2006). Central serotonin2C receptor: from physiology to pathology. Curr. Top. Med. Chem. 6, 1909–1925.10.2174/156802606778522113Search in Google Scholar PubMed

Di Pietro, N.C. and Seamans, J.K. (2007). Dopamine and serotonin interactions in the prefrontal cortex: insights on antipsychotic drugs and their mechanism of action. Pharmacopsychiatry. 40 (Suppl. 1), S27–S33.10.1055/s-2007-992133Search in Google Scholar PubMed

Dougherty, D.D., Bonab, A.A., Ottowitz, W.E., Livni, E., Alpert, N.M., Rauch, S.L., Fava, M., and Fischman, A.J. (2006). Decreased striatal D1 binding as measured using PET and [11C]SCH 23,390 in patients with major depression with anger attacks. Depress. Anxiety 23, 175–177.10.1002/da.20168Search in Google Scholar

Ebert, D., Feistel, H., Kaschka, W., Barocka, A., and Pirner, A. (1994). Single photon emission computerized tomography assessment of cerebral dopamine D2 receptor blockade in depression before and after sleep deprivation – preliminary results. Biol. Psychiatry 35, 880–885.10.1016/0006-3223(94)90024-8Search in Google Scholar

Ebert, D., Feistel, H., Loew, T., and Pirner, A. (1996). Dopamine and depression – striatal dopamine D2 receptor SPECT before and after antidepressant therapy. Psychopharmacology (Berl.) 126, 91–94.10.1007/BF02246416Search in Google Scholar

Eichenbaum, H. (2017). The role of the hippocampus in navigation is memory. J. Neurophysiol. 117, 1785–1796.10.1152/jn.00005.2017Search in Google Scholar

Elkashef, A.M., Doudet, D., Bryant, T., Cohen, R.M., Li, S.H., and Wyatt, R.J. (2000). 6-(18)F-DOPA PET study in patients with schizophrenia. Positron emission tomography. Psychiatry Res. 100, 1–11.10.1016/S0925-4927(00)00064-0Search in Google Scholar

Erro, R., Pappata, S., Amboni, M., Vicidomini, C., Longo, K., Santangelo, G., Picillo, M., Vitale, C., Moccia, M., Giordano, F., et al. (2012). Anxiety is associated with striatal dopamine transporter availability in newly diagnosed untreated Parkinson’s disease patients. Parkinsonism Relat. Disord. 18, 1034–1038.10.1016/j.parkreldis.2012.05.022Search in Google Scholar PubMed

Fagerlund, B., Pinborg, L.H., Mortensen, E.L., Friberg, L., Baare, W.F., Gade, A., Svarer, C., and Glenthoj, B.Y. (2013). Relationship of frontal D(2/3) binding potentials to cognition: a study of antipsychotic-naive schizophrenia patients. Int. J. Neuropsychopharmacol. 16, 23–36.10.1017/S146114571200003XSearch in Google Scholar PubMed

Farde, L., Wiesel, F.A., Hall, H., Halldin, C., Stone-Elander, S., and Sedvall, G. (1987). No D2 receptor increase in PET study of schizophrenia. Arch. Gen. Psychiatry 44, 671–672.10.1001/archpsyc.1987.01800190091013Search in Google Scholar PubMed

Farde, L., Wiesel, F.A., Stone-Elander, S., Halldin, C., Nordström, A.L., Hall, H., and Sedvall, G. (1990). D2 dopamine receptors in neuroleptic-naive schizophrenic patients. A positron emission tomography study with [11C]raclopride. Arch. Gen. Psychiatry 47, 213–219.10.1001/archpsyc.1990.01810150013003Search in Google Scholar PubMed

Felicio, A.C., Moriyama, T.S., Godeiro-Junior, C., Shih, M.C., Hoexter, M.Q., Borges, V., Silva, S.M., Amaro-Junior, E., Andrade, L.A., Ferraz, H.B., et al. (2010). Higher dopamine transporter desnity in Parkinson’s disease patients with depression. Psychopharmacology (Berl.) 211, 27–31.10.1007/s00213-010-1867-ySearch in Google Scholar PubMed

Ferre, S., Cortes, R., and Artigas, F. (1994). Dopaminergic regulation of the serotonergic raphe-striatal pathway: microdialysis studies in freely moving rats. J. Neurosci. 14, 4839–4846.10.1523/JNEUROSCI.14-08-04839.1994Search in Google Scholar

Figee, M., de Koning, P., Klaassen, S., Vulink, N., Mantione, M., van den Munckhof, P., Schuurman, R., van Wingen, G., van Amelsvoort, T., Booij, J., et al. (2014). Deep brain stimulation induces striatal dopamine release in obsessive-compulsive disorder. Biol. Psychiatry. 75, 647–652.10.1016/j.biopsych.2013.06.021Search in Google Scholar

Frosini, D., Unti, E., Guidoccio, F., Del Gamba, C., Puccini, G., Volterrani, D., Bonuccelli, U., and Ceravolo, R. (2015). Mesolimbic dopaminergic dysfunction in Parkinson’s disease depression: evidence from a 123I-FP-CIT SPECT investigation. J. Neural Transm. (Vienna). 122, 1143–1147.10.1007/s00702-015-1370-zSearch in Google Scholar

Gefvert, O., Bergström, M., Langström, B., Lundberg, T., Lindstöom, L., and Yates, R. (1998). Time course of central nervous dopamine-D2 and 5-HT2 receptor blockade and plasma drug concentrations after discontinuation of quetiapine (Seroquel) in patients with schizophrenia. Psychopharmacology (Berl.) 135, 119–126.10.1007/s002130050492Search in Google Scholar

Girault, J.A., Spampinato, U., Glowinski, J., and Besson, M.J. (1986). In vivo release of [3H]gamma-aminobutyric acid in the rat neostriatum – II. Opposing effects of D1 and D2 dopamine receptor stimulation in the dorsal caudate putamen. Neuroscience 19, 1109–1117.10.1016/0306-4522(86)90127-2Search in Google Scholar

Glenthoj, B.Y., Mackeprang, T., Svarer, C., Rasmussen, H., Pinborg, L.H., Friberg, L., Baare, W., Hemmingsen, R., and Videbaek, C. (2006). Frontal dopamine D(2/3) receptor binding in drug-naive first-episode schizophrenic patients correlates with positive psychotic symptoms and gender. Biol. Psychiatry 60, 621–629.10.1016/j.biopsych.2006.01.010Search in Google Scholar

Gothard, K.M., Mosher, C.P., Zimmerman, P.E., Putnam, P.T., Morrow, J.K., and Fuglevand, A.J. (2018). New perspectives on the neurophysiology of primate amygdala emerging from the study of naturalistic social behaviors. Wiley Interdiscip. Rev. Cogn. Sci. 9, Epub 2017 Aug 11.10.1002/wcs.1449Search in Google Scholar

Grace, A.A. and Bunney, B.S. (1979). Paradoxical GABA excitation of nigral dopaminergic cells: indirect mediation through reticulata inhibitory neurons. Eur. J. Pharmacol. 59, 211–218.10.1016/0014-2999(79)90283-8Search in Google Scholar

Graef, S., Schönknecht, P., Sabri, O., and Hegerl, U. (2011). Cholinergic receptor subtypes and their role in cognition, emotion, and vigilance control: an overview of preclinical and clinical findings. Psychopharmacology (Berl.) 215, 205–229.10.1007/s00213-010-2153-8Search in Google Scholar PubMed

Graff-Guerrero, A., Mizrahi, R., Agid, O., Marcon, H., Barsoum, P., Rusjan, P., Wilson, A.A., Zipursky, R., and Kapur, S. (2009). The dopamine D2 receptors in high-affinity state and D3 receptors in schizophrenia: a clinical [11C]-(+)-PHNO PET study. Neuropsychopharmacology 34, 1078–1086.10.1038/npp.2008.199Search in Google Scholar PubMed

Gray, N.S., Pilowsky, L.S., Gray, J.A., and Kerwin, R.W. (1995). Latent inhibition in drug naive schizophrenics: relationship to duration of illness and dopamine D2 binding using SPET. Schizophr. Res. 17, 95–107.10.1016/0920-9964(95)00034-JSearch in Google Scholar

Grosso, A., Cambiaghi, M., Concina, G., Sacco, T., and Sacchetti, B. (2015). Auditory cortex involvement in emotional learning and memory. Neuroscience 299, 45–55.10.1016/j.neuroscience.2015.04.068Search in Google Scholar

Hadland, K.A., Rushworth, M.F., Gaffan, D., and Passingham, R.E. (2003). The effect of cingulate lesions on social behaviour and emotion. Neuropsychologia 41, 919–931.10.1016/S0028-3932(02)00325-1Search in Google Scholar

Hajos, M. and Rogers, B.N. (2010). Targeting α7 nicotinic acetylcholine receptors in the treatment of schizophrenia. Curr. Pharm. Des. 16, 538–554.10.2174/138161210790361434Search in Google Scholar

Hesse, S., Müller, U., Lincke, T., Barthel, H., Villmann, T., Angermeyer, M.C., Sabri, O., and Stengler-Wenzke, K. (2005). Serotonin and dopamine transporter imaging in patients with obsessive-compulsive disorder. Psychiatry Res. 140, 63–72.10.1016/j.pscychresns.2005.07.002Search in Google Scholar

Hietala, J., Syvalahti, E., Vuorio, K., Nagren, K., Lehikoinen, P., Ruotsalainen, U., Räkköläinen, V., Lehtinen, V., and Wegelius, U. (1994). Striatal D2 dopamine receptor characteristics in neuroleptic-naive schizophrenic patients studied with positron emission tomography. Arch. Gen. Psychiatry 51, 116–123.10.1001/archpsyc.1994.03950020040004Search in Google Scholar

Hietala, J., Syvalahti, E., Vuorio, K., Räkköläinen, V., Bergman, J., Haaparanta, M., Solin, O., Kuoppamäki, M., Kirvelä, O., Ruotsalainen, U., et al. (1995). Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients. Lancet 346, 1130–1131.10.1016/S0140-6736(95)91801-9Search in Google Scholar

Hietala, J., Syvalahti, E., Vilkman, H., Vuorio, K., Räkköläinen, V., Bergman, J., Haaparanta, M., Solin, O., Kuoppamäki, M., Eronen, E., et al. (1999). Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia. Schizophr. Res. 35, 41–50.10.1016/S0920-9964(98)00113-3Search in Google Scholar

Hirvonen, J., Karlsson, H., Kajander, J., Markkula, J., Rasi-Hakala, H., Nagren, K., Salminen, J.K., and Hietala, J. (2008). Striatal dopamine D2 receptors in medication-naive patients with major depressive disorder as assessed with [11C]raclopride PET. Psychopharmacology (Berl.) 197, 581–590.10.1007/s00213-008-1088-9Search in Google Scholar PubMed

Hiser, J. and Koenigs, M. (2018). The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biol. Psychiatry. 83, 638–647.10.1016/j.biopsych.2017.10.030Search in Google Scholar PubMed PubMed Central

Ho, P.S., Ho, K.K., Huang, W.S., Yen, C.H., Shih, M.C., Shen, L.H., Ma, K.H., and Huang, S.Y. (2013). Association study of serotonin transporter availability and SLC6A4 gene polymorphisms in patients with major depression. Psychiatry Res. 212, 216–222.10.1016/j.pscychresns.2012.04.005Search in Google Scholar

Hoexter, M.Q., Fadel, G., Felício, A.C., Calzavara, M.B., Batista, I.R., Reis, M.A., Shih, M.C., Pitman, R.K., Andreoli, S.B., Mello, M.F., et al. (2012). Higher striatal dopamine transporter density in PTSD: an in vivo SPECT study with [99mTc]TRODAT-1. Psychopharmacology (Berl). 224, 337–345.10.1007/s00213-012-2755-4Search in Google Scholar

Howes, O.D., Montgomery, A.J., Asselin, M.C., Murray, R.M., Valli, I., Tabraham, P., Bramon-Bosch, E., Valmaggia, L., Johns, L., Broome, M., et al. (2009). Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch. Gen. Psychiatry. 66, 13–20.10.1001/archgenpsychiatry.2008.514Search in Google Scholar

Hsiao, M.C., Lin, K.J., Liu, C.Y., Tzen, K.Y., and Yen, T.C. (2003). Dopamine transporter change in drug-naive schizophrenia: an imaging study with [99mTc]-TRODAT-1. Schizophr. Res. 65, 39–46.10.1016/S0920-9964(03)00006-9Search in Google Scholar

Ichikawa, J. and Meltzer, H.Y. (1995). DOI, a 5-HT2A/2C receptor agonist, potentiates amphetamine-induced dopamine release in rat striatum. Brain Res. 698, 204–208.10.1016/0006-8993(95)00865-NSearch in Google Scholar

Ichikawa, J. and Meltzer, H.Y. (2000). The effect of serotonin(1A) receptor agonism on antipsychotic drug-induced dopamine release in rat striatum and nucleus accumbens. Brain Res. 858, 252–263.10.1016/S0006-8993(99)02346-XSearch in Google Scholar

Joo, Y.H., Kim, J.H., Son, Y.D., Kim, H.K., Shin, Y.J., Lee, S.Y., and Kim, J.H. (2018). The relationship between excitement symptom severity and extrastriatal dopamine D2/3 receptor availability in patients with schizophrenia: a high-resolution PET study with [18F]fallypride. Eur. Arch. Psychiatry Clin. Neurosci. 268, 529–540.10.1007/s00406-017-0821-ySearch in Google Scholar PubMed

Karlsson, P., Farde, L., Halldin, C., and Sedvall, G. (2002). PET study of D(1) dopamine receptor binding in neuroleptic-naive patients with schizophrenia. Am. J. Psychiatry 159, 761–767.10.1176/appi.ajp.159.5.761Search in Google Scholar PubMed

Kasper, S., Tauscher, J., Kufferle, B., Barnas, C., Hesselmann, B., Asenbaum, S., Podreka, I., and Brucke, T. (1998). Sertindole and dopamine D2 receptor occupancy in comparison to risperidone, clozapine and haloperidol – a 123I-IBZM SPECT study. Psychopharmacology (Berl.) 136, 367–373.10.1007/s002130050579Search in Google Scholar PubMed

Kim, C.H., Koo, M.S., Cheon, K.A., Ryu, Y.H., Lee, J.D., and Lee, H. (2003). Dopamine transporter density of basal ganglia assessed with [123I]IPT SPET in obsessive-compulsive disorder. Eur. J. Nucl. Med. Mol. Imaging 30, 1637–1643.10.1007/s00259-003-1245-7Search in Google Scholar PubMed

Kim, J.H., Son, Y.D., Kim, H.K., Lee, S.Y., Cho, S.E., Kim, Y.B., and Cho, Z.H. (2011). Antipsychotic-associated mental side effects and their relationship to dopamine D2 receptor occupancy in striatal subdivisions: a high-resolution PET study with [11C]raclopride. J. Clin. Psychopharmacol. 31, 507–511.10.1097/JCP.0b013e318222353aSearch in Google Scholar

Kim, E., Howes, O.D., Veronese, M., Beck, K., Seo, S., Park, J.W., Lee, J.S., Lee, Y.S., and Kwon, J.S. (2017). Presynaptic dopamine capacity in patients with treatment-resistant schizophrenia taking clozapine: an [18F]DOPA PET study. Neuropsychopharmacology. 42, 941–950.10.1038/npp.2016.258Search in Google Scholar

Klimke, A., Larisch, R., Janz, A., Vosberg, H., Muller-Gartner, H.W., and Gaebel, W. (1999). Dopamine D2 receptor binding before and after treatment of major depression measured by [123I]IBZM SPECT. Psychiatry Res. 90, 91–101.10.1016/S0925-4927(99)00009-8Search in Google Scholar

Konradi, C. and Heckers, S. (2003). Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol. Ther. 97, 153–179.10.1016/S0163-7258(02)00328-5Search in Google Scholar

Kosaka, J., Takahashi, H., Ito, H., Takano, A., Fujimura, Y., Matsumoto, R., Nozaki, S., Yasuno, F., Okubo, Y., Kishimoto, T., et al. (2010). Decreased binding of [11C]NNC112 and [11C]SCH23390 in patients with chronic schizophrenia. Life Sci. 22, 86, 814–818.10.1016/j.lfs.2010.03.018Search in Google Scholar

Koukouli, F. and Maskos, U. (2015). The multiple roles of the α7 nicotinic acetylcholine receptor in modulating glutamatergic systems in the normal and diseased nervous system. Biochem. Pharmacol. 97, 378–387.10.1016/j.bcp.2015.07.018Search in Google Scholar

Kubota, M., Nagashima, T., Takano, H., Kodaka, F., Fujiwara, H., Takahata, K., Moriguchi, S., Kimura, Y., Higuchi, M., Okubo, Y., et al. (2017). Affinity states of striatal dopamine D2 receptors in antipsychotic-free patients with schizophrenia. Int. J. Neuropsychopharmacol. 20, 928–935.10.1093/ijnp/pyx063Search in Google Scholar

Küfferle, B., Brücke, T., Topitz-Schratzberger, A., Tauscher, J., Gössler, R., Vesely, C., Asenbaum, S., Podreka, I., and Kasper, S. (1996). Striatal dopamine-2 receptor occupancy in psychotic patients treated with risperidone. Psychiatry Res. 68, 23–30.10.1016/S0925-4927(96)02839-9Search in Google Scholar

Küfferle, B., Tauscher, J., Asenbaum, S., Vesely, C., Podreka, I., Brücke, T., and Kasper, S. (1997). IBZM SPECT imaging of striatal dopamine-2 receptors in psychotic patients treated with the novel antipsychotic substance quetiapine in comparison to clozapine and haloperidol. Psychopharmacology (Berl.) 133, 323–328.10.1007/s002130050409Search in Google Scholar PubMed

Künstler, U., Hohdorf, K., Regenthal, R., Seese, A., and Gertz, H.J. (2000). Diminution of hand writing area and D2-dopamine receptor blockade. Results from treatment with typical and atypical neuroleptics. Nervenarzt 71, 373–379.Search in Google Scholar

Kumakura, Y., Cumming, P., Vernaleken, I., Buchholz, H.G., Siessmeier, T., Heinz, A., Kienast, T., Bartenstein, P., and Gründer, G. (2007). Elevated [18F]fluorodopamine turnover in brain of patients with schizophrenia: an [18F]fluorodopa/positron emission tomography study. J. Neurosci. 27, 8080–8087.10.1523/JNEUROSCI.0805-07.2007Search in Google Scholar PubMed PubMed Central

Laakso, A., Vilkman, H., Alakare, B., Haaparanta, M., Bergman, J., Solin, O., Peurasaari, J., Räkköläinen, V., Syvälahti, E., and Hietala, J. (2000). Striatal dopamine transporter binding in neuroleptic-naive patients with schizophrenia studied with positron emission tomography. Am. J. Psychiatry 157, 269–271.10.1176/appi.ajp.157.2.269Search in Google Scholar

Laasonen-Balk, T., Kuikka, J., Viinamaki, H., Husso-Saastamoinen, M., Lehtonen, J., and Tiihonen, J. (1999). Striatal dopamine transporter density in major depression. Psychopharmacology (Berl.) 144, 282–285.10.1007/s002130051005Search in Google Scholar

Laruelle, M. and Abi-Dargham, A. (1999). Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J. Psychopharmacol. 13, 358–371.10.1177/026988119901300405Search in Google Scholar

Laruelle, M., Abi-Dargham, A., van Dyck, C.H., Gil, R., D’Souza, C.D., Erdos, J., McCance, E., Rosenblatt, W., Fingado, C., Zoghbi, S.S., et al. (1996). Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc. Natl. Acad. Sci. USA 93, 9235–9240.10.1073/pnas.93.17.9235Search in Google Scholar

Laruelle, M., Abi-Dargham, A., Gil, R., Kegeles, L., and Innis, R. (1999). Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol. Psychiatry 46, 56–72.10.1016/S0006-3223(99)00067-0Search in Google Scholar

Laruelle, M., Abi-Dargham, A., van Dyck, C., Gil, R., D’Souza, D.C., Krystal, J., Seibyl, J., Baldwin, R., and Innis, R. (2000). Dopamine and serotonin transporters in patients with schizophrenia: an imaging study with [123I]β-CIT. Biol. Psychiatry 47, 371–379.10.1016/S0006-3223(99)00257-7Search in Google Scholar

Lavalaye, J., Linszen, D.H., Booij, J., Dingemans, P.M., Reneman, L., Habraken, J.B., Gersons, B.P., and van Royen, E.A. (2001). Dopamine transporter density in young patients with schizophrenia assessed with [123I]FP-CIT SPECT. Schizophr. Res. 47, 59–67.10.1016/S0920-9964(00)00023-2Search in Google Scholar

Ledermann, K., Jenewein, J., Sprott, H., Hasler, G., Schnyder, U., Warnock, G., Johayem, A., Kollias, S., Buck, A., and Martin-Soelch, C. (2016). Relation of dopamine receptor 2 binding to pain perception in female fibromyalgia patients with and without depression – a [11C] raclopride PET-study. Eur. Neuropsychopharmacol. 26, 320–330.10.1016/j.euroneuro.2015.12.007Search in Google Scholar PubMed

Ledermann, K., Jenewein, J., Sprott, H., Hasler, G., Schnyder, U., Warnock, G., Johayem, A., Kollias, S., Buck, A., and Martin-Soelch, C. (2017). Altered dopamine responses to monetary rewards in female fibromyalgia patients with and without depression: a [11C]Raclopride Bolus-plus-Infusion PET Study. Psychother. Psychosom. 86, 181–182.10.1159/000455927Search in Google Scholar PubMed

Lee, L.T., Tsai, H.C., Chi, M.H., Chang, W.H., Chen, K.C., Lee, I.H., Chen, P.S., Yao, W.J., Chiu, N.T., and Yang, Y.K. (2015). Lower availability of striatal dopamine transporter in generalized anxiety disorder: a preliminary two-ligand SPECT study. Int. Clin. Psychopharmacol. 30, 175–178.10.1097/YIC.0000000000000067Search in Google Scholar PubMed

Lehrer, D.S., Christian, B.T., Kirbas, C., Chiang, M., Sidhu, S., Short, H., Wang, B., Shi, B., Chu, K.W., Merrill, B., et al. (2010). [18F]-fallypride binding potential in patients with schizophrenia compared to healthy controls. Schizophr. Res. 122, 43–52.10.1016/j.schres.2010.03.043Search in Google Scholar

Lehto, S., Tolmunen, T., Joensuu, M., Saarinen, P.I., Vanninen, R., Ahola, P., Tiihonen, J., Kuikka, J., and Lehtonen, J. (2006). Midbrain binding of [123I]nor-β-CIT in atypical depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 1251–1255.10.1016/j.pnpbp.2006.03.019Search in Google Scholar

Lehto, S.M., Kuikka, J., Tolmunen, T., Hintikka, J., Viinamäki, H., Vanninen, R., Haatainen, K., Koivumaa-Honkanen, H., Honkalampi, K., and Tiihonen, J. (2008a). Temporal cortex dopamine D2/3 receptor binding in major depression. Psychiatry Clin. Neurosci. 62, 345–348.10.1111/j.1440-1819.2008.01814.xSearch in Google Scholar

Lehto, S.M., Tolmunen, T., Kuikka, J., Valkonen-Korhonen, M., Joensuu, M., Saarinen, P.I., Vanninen, R., Ahola, P., Tiihonen, J., and Lehtonen, J. (2008b). Midbrain serotonin and striatum dopamine transporter binding in double depression: a one-year follow-up study. Neurosci. Lett. 441, 291–295.10.1016/j.neulet.2008.06.042Search in Google Scholar

Lenox, R.H. and Wang, L. (2003). Molecular basis of lithium action: integration of lithium-responsive signaling and gene expression networks. Mol. Psychiatry 8, 135–144.10.1038/sj.mp.4001306Search in Google Scholar

Lindstrom, L.H., Gefvert, O., Hagberg, G., Lundberg, T., Bergström, M., Hartvig, P., and Langström, B. (1999). Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(β-11C)DOPA and PET. Biol Psychiatry 46, 681–688.10.1016/S0006-3223(99)00109-2Search in Google Scholar

Lowry, C.A., Johnson, P.L., Hay-Schmidt, A., Mikkelsen, J., and Shekhar, A. (2005). Modulation of anxiety circuits by serotonergic systems. Stress 8, 233–246.10.1080/10253890500492787Search in Google Scholar

Luparini, M.R., Garrone, B., Pazzagli, M., Pinza, M., and Pepeu, G. (2004). A cortical GABA-5HT interaction in the mechanism of action of the antidepressant trazodone. Prog. Neuropsychopharmacol. Biol. Psychiatry. 28, 1117–1127.10.1016/j.pnpbp.2004.05.046Search in Google Scholar

Majurim, J., Joutsa, J., Johansson, J., Voon, V., Alakurtti, K., Parkkola, R., Lahti, T., Alho, H., Hirvonen, J., Arponen, E., et al. (2017). Dopamine and opioid neurotransmission in behavioral addictions: a comparative PET study in pathological gambling and binge eating. Neuropsychopharmacology. 42, 1169–1177.10.1038/npp.2016.265Search in Google Scholar

Malison, R.T., Price, L.H., Berman, R., van Dyck, C.H., Pelton, G.H., Carpenter, L., Sanacora, G., Owens, M.J., Nemeroff, C.B., Rajeevan, N., et al. (1998). Reduced brain serotonin transporter availability in major depression as measured by [123I]-2 β-carbomethoxy-3β-(4-iodophenyl)tropane and single photon emission computed tomography. Biol. Psychiatry 44, 1090–1098.10.1016/S0006-3223(98)00272-8Search in Google Scholar

Mamo, D., Graff, A., Mizrahi, R., Shammi, C.M., Romeyer, F, and Kapur, S. (2007). Differential effects of aripiprazole on D2, 5-HT2, and 5-HT1A receptor occupancy in patients with schizophrenia: a triple tracer PET study. Am. J. Psychiatry. 164, 1411–1417.10.1176/appi.ajp.2007.06091479Search in Google Scholar

Mane, A., Gallego, J., Lomena, F., Mateos, J.J., Fernandez-Egea, E., Horga, G., Cot, A., Pavia, J., Bernardo, M., and Parellada, E. (2011). A 4-year dopamine transporter (DAT) imaging study in neuroleptic-naive first episode schizophrenia patients. Psychiatry Res. 194, 79–84.10.1016/j.pscychresns.2011.03.004Search in Google Scholar

Maron, E., Nutt, D.J., Kuikka, J., and Tiihonen, J. (2010). Dopamine transporter binding in females with panic disorder may vary with clinical status. J. Psychiatr. Res. 44, 56–59.10.1016/j.jpsychires.2009.04.014Search in Google Scholar

Martinot, J.L., Huret, J.D., Peron-Magnan, P., Mazoyer, B.M., Baron, J.C., Caillard, V., Syrota, A., and Loo, H. (1989). Striatal D2 dopaminergic receptor status ascertained in vivo by positron emission tomography and 76Br-bromospiperone in untreated schizophrenics. Psychiatry Res. 29, 357–358.10.1016/0165-1781(89)90088-7Search in Google Scholar

Martinot, J.L., Paillere-Martinot, M.L., Loc’h, C., Hardy, P., Poirier, M.F., Mazoyer, B., Beaufils, B., Maziere, B., Allilaire, J.F., and Syrota, A. (1991). The estimated density of D2 striatal receptors in schizophrenia. A study with positron emission tomography and 76Br-bromolisuride. Br. J. Psychiatry 158, 346–350.10.1192/bjp.158.3.346Search in Google Scholar PubMed

Martinot, J.L., Paillere-Martinot, M.L., Loc’h, C., Lecrubier, Y., Dao-Castellana, M.H., Aubin, F., Allilaire, J.F., Mazoyer, B., Maziere, B., and Syrota, A. (1994). Central D2 receptors and negative symptoms of schizophrenia. Br. J. Psychiatry 164, 27–34.10.1192/bjp.164.1.27Search in Google Scholar PubMed

Martinot, M., Bragulat, V., Artiges, E., Dolle, F., Hinnen, F., Jouvent, R., and Martinot, J. (2001). Decreased presynaptic dopamine function in the left caudate of depressed patients with affective flattening and psychomotor retardation. Am. J. Psychiatry. 158, 314–316.10.1176/appi.ajp.158.2.314Search in Google Scholar PubMed

Mateos, J.J., Lomena, F., Parellada, E., Font, M., Fernandez, E., Pavia, J., Prats, A., Pons, F., and Bernardo, M. (2005). Decreased striatal dopamine transporter binding assessed with [123I] FP-CIT in first-episode schizophrenic patients with and without short-term antipsychotic-induced parkinsonism. Psychopharmacology (Berl.) 181, 401–406.10.1007/s00213-005-2250-2Search in Google Scholar PubMed

Mateos, J.J., Lomena, F., Parellada, E., Font, M., Fernandez, E., Pavia, J., Prats, A., and Bernardo, M. (2006). Striatal dopamine transporter density decrease in first episode schizophrenic patients treated with risperidone. Rev. Esp. Med. Nucl. 25, 159–165.10.1157/13088411Search in Google Scholar PubMed

Mateos, J.J., Lomena, F., Parellada, E., Mireia, F., Fernandez-Egea, E., Pavia, J., Prats, A., Pons, F., and Bernardo, M. (2007). Lower striatal dopamine transporter binding in neuroleptic-naive schizophrenic patients is not related to antipsychotic treatment but it suggests an illness trait. Psychopharmacology (Berl.) 191, 805–811.10.1007/s00213-006-0570-5Search in Google Scholar PubMed

McEvoy, J.P. and Allen, T.B. (2002). The importance of nicotinic acetylcholine receptors in schizophrenia, bipolar disorder and Tourette’s syndrome. Curr. Drug Targets CNS Neurol. Disord. 1, 433–442.10.2174/1568007023339210Search in Google Scholar PubMed

McGowan, S., Lawrence, A.D., Sales, T., Quested, D., and Grasby, P. (2004). Presynaptic dopaminergic dysfunction in schizophrenia: a positron emission tomographic [18F]fluorodopa study. Arch. Gen. Psychiatry. 61, 134–142.10.1001/archpsyc.61.2.134Search in Google Scholar PubMed

Meisenzahl, E.M., Dresel, S., Frodl, T., Schmitt, G.J., Preuss, U.W., Rossmüller, B., Tatsch, K., Mager, T., Hahn, K., and Möller, H.J. (2000). D2 receptor occupancy under recommended and high doses of olanzapine: an iodine-123-iodobenzamide SPECT study. J. Psychopharmacol. 14, 364–370.10.1177/026988110001400405Search in Google Scholar PubMed

Meisenzahl, E.M., Schmitt, G., Gründer, G., Dresel, S., Frodl, T., la Fougere, C., Scheuerecker, J., Schwarz, M., Boerner, R., Stauss, J., et al. (2008). Striatal D2/D3 receptor occupancy, clinical response and side effects with amisulpride: an iodine-123-iodobenzamide SPET study. Pharmacopsychiatry 41, 169–175.10.1055/s-2008-1076727Search in Google Scholar PubMed

Meyer, P., Bohnen, N.I., Minoshima, S., Koeppe, R.A., Wernette, K., Kilbourn, M.R., Kuhl, D.E., Frey, K.A., and Albin, R.L. (1999). Striatal presynaptic monoaminergic vesicles are not increased in Tourette’s syndrome. Neurology 53, 371–374.10.1212/WNL.53.2.371Search in Google Scholar

Meyer, J.H., Kruger, S., Wilson, A.A., Christensen, B.K., Goulding, V.S., Schaffer, A., Minifie, C., Houle, S., Hussey, D., and Kennedy, S.H. (2001). Lower dopamine transporter binding potential in striatum during depression. Neuroreport 12, 4121–4125.10.1097/00001756-200112210-00052Search in Google Scholar PubMed

Meyer, J.H., McNeely, H.E., Sagrati, S., Boovariwala, A., Martin, K., Verhoeff, N.P., Wilson, A.A., and Houle, S. (2006). Elevated putamen D2 receptor binding potential in major depression with motor retardation: an [11C]raclopride positron emission tomography study. Am. J. Psychiatry 163, 1594–1602.10.1176/ajp.2006.163.9.1594Search in Google Scholar PubMed

Mineur, Y.S. and Picciotto, M.R. (2010). Nicotine receptors and depression: revisiting and revising the cholinergic hypothesis. Trends Pharmacol. Sci. 31, 580–586.10.1016/j.tips.2010.09.004Search in Google Scholar PubMed PubMed Central

Mitchell, N.D. and Baker, G.B. (2010). An update on the role of glutamate in the pathophysiology of depression. Acta Psychiatr. Scand. 122, 192–210.10.1111/j.1600-0447.2009.01529.xSearch in Google Scholar PubMed

Mizrahi, R., Addington, J., Rusjan, P.M., Suridjan, I., Ng, A., Boileau, I., Pruessner, J.C., Remington, G., Houle, S., and Wilson, A.A. (2012). Increased stress-induced dopamine release in psychosis. Biol. Psychiatry. 71, 561–567.10.1016/j.biopsych.2011.10.009Search in Google Scholar PubMed

Montgomery, A.J., Stokes, P., Kitamura, Y., and Grasby, P.M. (2007). Extrastriatal D2 and striatal D2 receptors in depressive illness: pilot PET studies using [11C]FLB 457 and [11C]raclopride. J. Affect. Disord. 101, 113–122.10.1016/j.jad.2006.11.010Search in Google Scholar PubMed

Moresco, R.M,. Pietra, L., Henin, M., Panzacchi, A., Locatelli, M., Bonaldi, L., Carpinelli, A., Gobbo, C., Bellodi, L., Perani, D., et al. (2007). Fluvoxamine treatment and D2 receptors: a pet study on OCD drug-naïve patients. Neuropsychopharmacology 32, 197–205.10.1038/sj.npp.1301199Search in Google Scholar PubMed

Moriyama, T.S., Felicio, A.C., Chagas, M.H., Tardelli, V.S., Ferraz, H.B., Tumas, V., Amaro-Junior, E., Andrade, L.A., Crippa, J.A., and Bressan, R.A. (2011). Increased dopamine transporter density in Parkinson’s disease patients with social anxiety disorder. J. Neurol. Sci. 310, 53–57.10.1016/j.jns.2011.06.056Search in Google Scholar PubMed

Nakajima, S., Caravaggio, F., Mamo, D.C., Mulsant, B.H., Chung, J.K., Plitman, E., Iwata, Y., Gerretsen, P., Uchida, H., Suzuki, T., et al. (2015). Dopamine D₂/₃ receptor availability in the striatum of antipsychotic-free older patients with schizophrenia – a [11C]-raclopride PET study. Schizophr. Res. 164, 263–267.10.1016/j.schres.2015.02.020Search in Google Scholar PubMed PubMed Central

Neumeister, A., Willeit, M., Praschak-Rieder, N., Asenbaum, S., Stastny, J., Hilger, E., Pirker, W., Konstantinidis, A., and Kasper, S. (2001). Dopamine transporter availability in symptomatic depressed patients with seasonal affective disorder and healthy controls. Psychol. Med. 31, 1467–1473.10.1017/S003329170105434zSearch in Google Scholar PubMed

Nikolaus, S., Beu, M., Antke, C., and Müller HW. (2010). Cortical GABA, striatal dopamine and midbrain serotonin as the key players in compulsive and anxiety disorders – results from in vivo imaging studies. Rev. Neurosci. 21, 119–139.10.1515/REVNEURO.2010.21.2.119Search in Google Scholar PubMed

Nikolaus, S., Hautzel, H., Heinzel, A., and Müller, H.W. (2012). Key players in major and bipolar depression – a retrospective analysis of in vivo imaging studies. Behav. Brain Res. 232, 358–390.10.1016/j.bbr.2012.03.021Search in Google Scholar PubMed

Nikolaus, S., de Souza Silva, M.A., Hautzel, H., and Müller, H.W. (2013). The neurotachykinin NK1 receptor – a novel target for diagnostics and therapy. Curr. Mol. Imaging 2, 130–147.10.2174/2211555211302020004Search in Google Scholar

Nikolaus, S., Hautzel, H., Heinzel, A., and Müller, H.W. (2014a). Neurochemical dysfunction in treated and nontreated schizophrenia – a retrospective analysis of in vivo imaging studies. Rev. Neurosci. 25, 25–96.10.1515/revneuro-2013-0063Search in Google Scholar PubMed

Nikolaus, S., Hautzel, H., and Müller, H.W. (2014b). Focus on GABAA receptor function – a comparative analysis of in vivo imaging studies on neuropsychiatric disorders. Nuklearmedizin 53, 227–237.10.3413/Nukmed-0647-14-03Search in Google Scholar PubMed

Nikolaus, S., Müller, H.W., and Hautzel, H. (2016). Different patterns of 5-HT receptor and transporter dysfunction in neuropsychiatric disorders – a comparative analysis of in vivo imaging findings. Rev. Neurosci. 27, 27–59.10.1515/revneuro-2015-0014Search in Google Scholar

Nikolaus, S., Müller, H.W., and Hautzel, H. (2017). Different patterns of dopaminergic and serotonergic dysfunction in manic, depressive and euthymic phases of bipolar disorder. Nuklearmedizin 56, 191–200.10.3413/Nukmed-0893-17-04Search in Google Scholar

Norbak-Emig, H., Ebdrup, B.H., Fagerlund, B., Svarer, C., Rasmussen, H., Friberg, L., Allerup, P.N., Rostrup, E., Pinborg, L.H., and Glenthoj, B.Y. (2016). Frontal D2/3 receptor availability in schizophrenia patients before and after their first antipsychotic treatment: relation to cognitive functions and psychopathology. Int. J. Neuropsychopharmacol. 19, 1–10.10.1093/ijnp/pyw006Search in Google Scholar

Nordström, A.L., Farde, L., Pauli, S., Litton, J.E., and Halldin, C. (1992). PET analysis of central [11C]raclopride binding in healthy young adults and schizophrenic patients – reliability and age effects. Human Psychopharmacol. 7, 157–165.10.1002/hup.470070302Search in Google Scholar

Nordström, A.L., Farde, L., Nyberg, S., Karlsson, P., Halldin, C., and Sedvall, G. (1995a). D1, D2, and 5-HT2 receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients. Am. J. Psychiatry 152, 1444–1449.10.1176/ajp.152.10.1444Search in Google Scholar

Nordström, A.L., Farde, L., Eriksson, L., and Halldin C. (1995b). No elevated D2 dopamine receptors in neuroleptic-naive schizophrenic patients revealed by positron emission tomography and [11C]N-methylspiperone. Psychiatry Res. 61, 67–83.10.1016/0925-4927(95)02732-DSearch in Google Scholar

Nozaki, S., Kato, M., Takano, H., Ito, H., Takahashi, H., Arakawa, R., Okumura, M., Fujimura, Y., Matsumoto, R., Ota, M., et al. (2009). Regional dopamine synthesis in patients with schizophrenia using L-[β-11C]DOPA PET. Schizophr. Res. 108, 78–84.10.1016/j.schres.2008.11.006Search in Google Scholar PubMed

Nuss, P. (2015). Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr. Dis. Treat. 11, 165–175.10.2147/NDT.S58841Search in Google Scholar PubMed PubMed Central

O’Donovan, S.M., Sullivan, C.R., and McCullumsmith, R.E. (2017). The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophr. 3, 32.10.1038/s41537-017-0037-1Search in Google Scholar PubMed PubMed Central

Olver, J.S., O’Keefe, G., Jones, G.R., Burrows, G.D., Tochon-Danguy, H.J., Ackermann, U., Scott, A., and Norman, T.R. (2009). Dopamine D1 receptor binding in the striatum of patients with obsessive-compulsive disorder. J. Affect. Disord. 114, 321–326.10.1016/j.jad.2008.06.020Search in Google Scholar PubMed

Paquet, F., Soucy, J.P., Stip, E., Levesque, M., Elie, A., and Bedard, M.A. (2004). Comparison between olanzapine and haloperidol on procedural learning and the relationship with striatal D2 receptor occupancy in schizophrenia. J. Neuropsychiatry Clin. Neurosci. 16, 47–56.10.1176/jnp.16.1.47Search in Google Scholar

Palacios, J.M., Camps, M., Cortes, R., and Probst, A. (1988). Mapping dopamine receptors in the human brain. J. Neural Transm. (Suppl.) 27, 227–235.10.1007/978-3-7091-8954-2_20Search in Google Scholar

Parsey, R.V., Oquendo, M.A., Zea-Ponce, Y., Rodenhiser, J., Kegeles, L.S., Pratap, M., Cooper, T.B., Van Heertum, R., Mann, J.J., and Laruelle, M. (2001). Dopamine D(2) receptor availability and amphetamine-induced dopamine release in unipolar depression. Biol. Psychiatry 50, 313–322.10.1016/S0006-3223(01)01089-7Search in Google Scholar

Pedro, B.M., Pilowsky, L.S., Costa, D.C., Hemsley, D.R., Ell, P.J., Verhoeff, N.P., Kerwin, R.W., and Gray, N.S. (1994). Stereotypy, schizophrenia and dopamine D2 receptor binding in the basal ganglia. Psychol. Med. 24, 423–429.10.1017/S0033291700027392Search in Google Scholar

Pehrson, A.L. and Sanchez, C. (2015). Altered γ-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug Des. Devel. Ther. 19, 603–624.10.2147/DDDT.S62912Search in Google Scholar

Perani, D., Garibotto, V., Gorini, A., Moresco, R.M., Henin, M., Panzacchi, A., Matarrese, M., Carpinelli, A., Bellodi, L., and Fazio, F. (2008). In vivo PET study of 5HT2A serotonin and D2 dopamine dysfunction in drug-naive obsessive-compulsive disorder. Neuroimage 42, 306–314.10.1016/j.neuroimage.2008.04.233Search in Google Scholar

Perez, V., Catafau, A.M., Corripio, I., Martín, J.C., and Alvarez, E. (2003). Preliminary evidence of striatal D2 receptor density as a possible biological marker of prognosis in naive schizophrenic patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 767–770.10.1016/S0278-5846(03)00106-4Search in Google Scholar

Pickar, D., Su, T.P., Weinberger, D.R., Coppola, R., Malhotra, A.K., Knable, M.B., Lee, K.S., Gorey, J., Bartko, J.J., Breier, A., et al. (1996). Individual variation in D2 dopamine receptor occupancy in clozapine-treated patients. Am. J. Psychiatry 153, 1571–1578.10.1176/ajp.153.12.1571Search in Google Scholar

Pilowsky, L.S., Costa, D.C., Ell, P.J., Murray, R.M., Verhoeff, N.P., and Kerwin, R.W. (1992). Clozapine, single photon emission tomography, and the D2 dopamine receptor blockade hypothesis of schizophrenia. Lancet 340, 199–202.10.1016/0140-6736(92)90467-HSearch in Google Scholar

Pilowsky, L.S., Costa, D.C., Ell, P.J., Murray, R.M., Verhoeff, N.P., and Kerwin, R.W. (1993). Antipsychotic medication, D2 dopamine receptor blockade and clinical response: a 123I IBZM SPET (single photon emission tomography) study. Psychol. Med. 23, 791–797.10.1017/S0033291700025575Search in Google Scholar

Pilowsky, L.S., Costa, D.C., Ell, P.J., Verhoeff, N.P., Murray, R.M., and Kerwin, R.W. (1994). D2 dopamine receptor binding in the basal ganglia of antipsychotic-free schizophrenic patients. An 123I-IBZM single photon emission computerised tomography study. Br. J. Psychiatry 164, 16–26.10.1192/bjp.164.1.16Search in Google Scholar

Poels, E.M., Girgis, R.R., Thompson, J.L., Slifstein, M., and Abi-Dargham, A. (2013). In vivo binding of the dopamine-1 receptor PET tracers [11C]NNC112 and [11C]SCH23390: a comparison study in individuals with schizophrenia. Psychopharmacology (Berl). 228, 167–174.10.1007/s00213-013-3026-8Search in Google Scholar

Pogarell, O., Koch, W., Karch, S., Dehning, S., Müller, N., Tatsch, K., Poepperl, G., and Möller, H.J. (2012). Dopaminergic neurotransmission in patients with schizophrenia in relation to positive and negative symptoms. Pharmacopsychiatry 45 (Suppl 1), S36–S41.10.1055/s-0032-1306313Search in Google Scholar

Reith, J., Benkelfat, C., Sherwin, A., Yasuhara, Y., Kuwabara, H., Andermann, F., Bachneff, S., Cumming, P., Diksic, M., Dyve, S.E., et al. (1994). Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc. Natl. Acad. Sci. USA 91, 11651–11654.10.1073/pnas.91.24.11651Search in Google Scholar

Remy, P., Doder, M., Lees, A., Turjanski, N., and Brooks, D. (2005). Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 128, 1314–1322.10.1093/brain/awh445Search in Google Scholar

Ring, H.A., Trimble, M.R., Costa, D.C., Moriarty, J., Verhoeff, N.P.L.G., and Ell, P.J. (1994). Striatal dopamine receptor binding in epileptic psychoses. Biol. Psychiatry 35, 375–380.10.1016/0006-3223(94)90003-5Search in Google Scholar

Romeo, B., Choucha, W., Fossati, P., and Rotge, J.Y. (2018). Meta-analysis of central and peripheral γ-aminobutyric acid levels in patients with unipolar and bipolar depression. J. Psychiatry Neurosci. 43, 58–66.10.1503/jpn.160228Search in Google Scholar

Ryding, E., Ahnlide, J.A., Lindström, M., Rosen, I., and Träskman-Bendz, L. (2006). Regional brain serotonin and dopamine transporter binding capacity in suicide attempters relate to impulsiveness and mental energy. Psychiatry Res. 48, 195–203.10.1016/j.pscychresns.2006.06.001Search in Google Scholar PubMed

Safont, G., Corripio, I., Escartí, M.J., Portella, M.J., Perez, V., Ferrer, M., Camacho, V., Sauras, R.B., Alonso, A., Grasa, E.M., et al. (2011). Cannabis use and striatal D2 receptor density in untreated first-episode psychosis: an in vivo SPECT study. Schizophr. Res. 129, 169–171.10.1016/j.schres.2011.03.012Search in Google Scholar PubMed

Saijo, T., Takano, A., Suhara, T., Arakawa, R., Okumura, M., Ichimiya, T., Ito, H., and Okubo, Y. (2010). Electroconvulsive therapy decreases dopamine D2 receptor binding in the anterior cingulate in patients with depression: a controlled study using positron emission tomography with radioligand [11C]FLB 457. J. Clin. Psychiatry 71, 793–799.10.4088/JCP.08m04746bluSearch in Google Scholar PubMed

Sarchiapone, M., Carli, V., Camardese, G., Cuomo, C., Di Giuda, D., Calcagni, M.L., Focacci, C., and De Risio, S. (2006). Dopamine transporter binding in depressed patients with anhedonia. Psychiatry Res. 147, 243–248.10.1016/j.pscychresns.2006.03.001Search in Google Scholar PubMed

Savitz, J., Hodgkinson, C.A., Martin-Soelch, C., Shen, P.H., Szczepanik, J., Nugent, A.C., Herscovitch, P., Grace, A.A., Goldman, D., and Drevets, W.C. (2013). DRD2/ANKK1 Taq1A polymorphism (rs1800497) has opposing effects on D2/3 receptor binding in healthy controls and patients with major depressive disorder. Int. J. Neuropsychopharmacol. 16, 2095–2101.10.1017/S146114571300045XSearch in Google Scholar PubMed PubMed Central

Schmitt, G.J., Meisenzahl, E.M., Dresel, S., Tatsch, K., Rossmüller, B., Frodl, T., Preuss, U.W., Hahn, K., and Möller, H.J. (2002). Striatal dopamine D2 receptor binding of risperidone in schizophrenic patients as assessed by 123I-iodobenzamide SPECT: a comparative study with olanzapine. J. Psychopharmacol. 16, 200–206.10.1177/026988110201600302Search in Google Scholar PubMed

Schmitt, G.J., Meisenzahl, E.M., Frodl, T., La Fougere, C., Hahn, K., Möller, H.J., and Dresel, S. (2005). The striatal dopamine transporter in first-episode, drug-naive schizophrenic patients: evaluation by the new SPECT-ligand[99mTc]TRODAT-1. J. Psychopharmacol. 19, 488–493.10.1177/0269881105056530Search in Google Scholar PubMed

Schmitt, G.J., Frodl, T., Dresel, S., la Fougere, C., Bottlender, R., Koutsouleris, N., Hahn, K., Möller, H.J., and Meisenzahl, E.M. (2006). Striatal dopamine transporter availability is associated with the productive psychotic state in first episode, drug-naive schizophrenic patients. Eur. Arch. Psychiatry Clin. Neurosci. 256, 115–121.10.1007/s00406-005-0618-2Search in Google Scholar PubMed

Schmitt, G.J., la Fougere, C., Dresel, S., Frodl, T., Hahn, K., Möller, H.J., and Meisenzahl, E.M. (2008). Dual-isotope SPECT imaging of striatal dopamine: first episode, drug naïve schizophrenic patients. Schizophr. Res. 101, 133–141.10.1016/j.schres.2007.11.010Search in Google Scholar PubMed

Schmitt, G.J., Meisenzahl, E.M., Frodl, T., La Fougere, C., Hahn, K., Möller, H.J., and Dresel, S. (2009). Increase of striatal dopamine transmission in first episode drug-naive schizophrenic patients as demonstrated by [123I]IBZM SPECT. Psychiatry Res. 173, 183–189.10.1016/j.pscychresns.2008.11.001Search in Google Scholar PubMed

Schneier, F.R., Liebowitz, M.R., Abi-Dargham, A., Zea-Ponce, Y., Lin, S.H., and Laruelle, M. (2000). Low dopamine D(2) receptor binding potential in social phobia. Am. J. Psychiatry. 157, 457–459.10.1176/appi.ajp.157.3.457Search in Google Scholar PubMed

Schneier, F.R., Martinez, D., Abi-Dargham, A., Zea-Ponce, Y., Simpson, H.B., Liebowitz, M.R., and Laruelle, M. (2008). Striatal dopamine D2 receptor availability in OCD with and without comorbid social anxiety disorder: preliminary findings. Depress. Anxiety 25, 1–7.10.1002/da.20268Search in Google Scholar PubMed

Schneier, F.R., Abi-Dargham, A., Martinez, D., Slifstein, M., Hwang, D.R., Liebowitz, M.R., and Laruelle, M. (2009). Dopamine transporters, D2 receptors, and dopamine release in generalized social anxiety disorder. Depress. Anxiety 26, 411–418.10.1002/da.20543Search in Google Scholar PubMed PubMed Central

Schwarz, J., Scherer, J., Trenkwalder, C., Mozley, P.D., and Tatsch, K. (1998). Reduced striatal dopaminergic innervation shown by IPT and SPECT in patients under neuroleptic treatment: need for levodopa therapy? Psychiatry Res. 83, 23–28.10.1016/S0925-4927(98)00026-2Search in Google Scholar

Seeman, P. and Lee, T. (1975). Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science. 188, 1217–1219.10.1126/science.1145194Search in Google Scholar

Shah, P.J., Ogilvie, A.D., Goodwin, G.M., and Ebmeier, K.P. (1997). Clinical and psychometric correlates of dopamine D2 binding in depression. Psychol. Med. 27, 1247–1256.10.1017/S0033291797005382Search in Google Scholar

Shan, L., Bao, A.M., and Swaab, D.F. (2017). Changes in histidine decarboxylase, histamine N-methyltransferase and histamine receptors in neuropsychiatric disorders. Handb. Exp. Pharmacol. 241, 259–276.10.1007/164_2016_125Search in Google Scholar

Shotbolt, P., Stokes, P.R., Owens, S.F., Toulopoulou, T., Picchioni, M.M., Bose, S.K., Murray, R.M., and Howes, O.D. (2011). Striatal dopamine synthesis capacity in twins discordant for schizophrenia. Psychol. Med. 41, 2331–2338.10.1017/S0033291711000341Search in Google Scholar

Slifstein, M., van de Giessen, E., Van Snellenberg, J., Thompson, J.L., Narendran, R., Gil, R., Hackett, E., Girgis, R., Ojeil, N., Moore, H., et al. (2015). Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. J. Am. Med. Assoc. Psychiatry 72, 316–324.10.1001/jamapsychiatry.2014.2414Search in Google Scholar

Smith, M., Wolf, A.P., Brodie, J.D., Arnett, C.D., Barouche, F., Shiue, C.Y., Fowler, J.S., Russell, J.A., MacGregor, R.R., Wolkin, A., et al. (1988). Serial [18F]N-methylspiroperidol PET studies to measure changes in antipsychotic drug D-2 receptor occupancy in schizophrenic patients. Biol. Psychiatry. 23, 653–663.10.1016/0006-3223(88)90048-0Search in Google Scholar

Staley, J.K., Sanacora, G., Tamagnan, G., Maciejewski, P.K., Malison, R.T., Berman, R.M., Vythilingam, M., Kugaya, A., Baldwin, R.M., Seibyl, J.P., et al. (2006). Sex differences in diencephalon serotonin transporter availability in major depression. Biol. Psychiatry 59, 40–47.10.1016/j.biopsych.2005.06.012Search in Google Scholar PubMed

Stein, D.J., Westenberg, H.G., and Liebowitz, M.R. (2002). Social anxiety disorder and generalized anxiety disorder: serotonergic and dopaminergic neurocircuitry. J. Clin. Psychiatry 63 (Suppl. 6), 12–19.Search in Google Scholar

Suhara, T., Nakayama, K., Inoue, O., Fukuda, H., Shimizu, M., Mori, A., and Tateno, Y. (1992). D1 dopamine receptor binding in mood disorders measured by positron emission tomography. Psychopharmacology (Berl). 106, 14–18.10.1007/BF02253582Search in Google Scholar PubMed

Suhara, T., Okubo, Y., Yasuno, F., Sudo, Y., Inoue, M., Ichimiya, T., Nakashima, Y., Nakayama. K., Tanada, S., Suzuki, K., et al. (2002). Decreased dopamine D2 receptor binding in the anterior cingulate cortex in schizophrenia. Arch. Gen. Psychiatry. 59, 25–30.10.1001/archpsyc.59.1.25Search in Google Scholar PubMed

Suridjan, I., Rusjan, P., Addington, J., Wilson, A.A., Houle, S., and Mizrahi, R. (2013). Dopamine D2 and D3 binding in people at clinical high risk for schizophrenia, antipsychotic-naive patients and healthy controls while performing a cognitive task. J. Psychiatry Neurosci. 38, 98–106.10.1503/jpn.110181Search in Google Scholar PubMed PubMed Central

Talvik, M., Nordstrom, A.L., Olsson, H., Halldin, C., and Farde, L. (2003). Decreased thalamic D2/D3 receptor binding in drug-naive patients with schizophrenia: a PET study with [11C]FLB 457. Int. J. Neuropsychopharmacol. 6, 361–370.10.1017/S1461145703003699Search in Google Scholar PubMed

Talvik, M., Nordstrom, A.L., Okubo, Y., Olsson, H., Borg, J., Halldin, C., and Farde, L. (2006). Dopamine D2 receptor binding in drug-naïve patients with schizophrenia examined with raclopride-11C and positron emission tomography. Psychiatry Res. 148, 165–173.10.1016/j.pscychresns.2006.05.009Search in Google Scholar PubMed

Tauscher, J., Küfferle, B., Asenbaum, S., Brücke, T., and Kasper, S. (1997). Previous treatment as a confounding variable in studies with novel antipsychotics: two cases of high dopamine-2 receptor occupancy with quetiapine. Psychopharmacology (Berl.) 133, 102–105.10.1007/s002130050378Search in Google Scholar PubMed

Tauscher, J., Küfferle, B., Asenbaum, S., Fischer, P., Pezawas, L., Barnas, C., Tauscher-Wisniewski, S., Brücke, T., and Kasper, S. (1999). In vivo 123I IBZM SPECT imaging of striatal dopamine-2 receptor occupancy in schizophrenic patients treated with olanzapine in comparison to clozapine and haloperidol. Psychopharmacology (Berl.) 141, 175–181.10.1007/s002130050822Search in Google Scholar PubMed

Taylor, S.F. and Tso, I.F. (2015). GABA abnormalities in schizophrenia: a methodological review of in vivo studies. Schizophr. Res. 167, 84–90.10.1016/j.schres.2014.10.011Search in Google Scholar PubMed PubMed Central

Thompson, J.L., Rosell, D.R., Slifstein, M., Girgis, R.R., Xu, X., Ehrlich, Y., Kegeles, L.S., Hazlett, E.A., Abi-Dargham, A., and Siever, L.J. (2014). Prefrontal dopamine D1 receptors and working memory in schizotypal personality disorder: a PET study with [11C]NNC112. Psychopharmacology (Berl). 231, 4231–4240.10.1007/s00213-014-3566-6Search in Google Scholar PubMed PubMed Central

Tibbo, P., Silverstone, P.H., McEwan, A.J., Scott, J., Joshua, A., and Golberg, K. (1997). A single photon emission computed tomography scan study of striatal dopamine D2 receptor binding with 123I-epidepride in patients with schizophrenia and controls. J. Psychiatry Neurosci. 22, 39–45.Search in Google Scholar

Tiihonen, J., Kuikka, J., Bergstrom, K., Lepola, U., Koponen, H., and Leinonen, E. (1997). Dopamine reuptake site densities in patients with social phobia. Am. J. Psychiatry 154, 239–242.10.1176/ajp.154.2.239Search in Google Scholar PubMed

Tolmunen, T., Joensuu, M., Saarinen, P.I., Mussalo, H., Ahola, P., Vanninen, R., Kuikka, J., Tiihonen, J., and Lehtonen, J. (2004). Elevated midbrain serotonin transporter availability in mixed mania: a case report. BMC Psychiatry 4, 27.10.1186/1471-244X-4-27Search in Google Scholar PubMed PubMed Central

Tseng, H.H., Chen, K.C., Chen, P.S., Lee, I.H., Chang, W.H., Yao, W.J., Chiu, N.T., and Yang, Y.K. (2017). Dopamine transporter availability in drug-naïve patients with schizophrenia and later psychotic symptoms severity. Schizophr Res. 190, 185–186.10.1016/j.schres.2017.03.036Search in Google Scholar PubMed

Tune, L., Barta, P., Wong, D., Powers, R.E., Pearlson, G., Tien, A.Y., and Wagner, H.N. (1996). Striatal dopamine D2 receptor quantification and superior temporal gyrus: volume determination in 14 chronic schizophrenic subjects. Psychiatry Res. 67, 155–158.10.1016/0925-4927(96)02728-XSearch in Google Scholar

Tuppurainen, H., Kuikka, J., Viinamäki, H., Husso-Saastamoinen, M., Bergström, K., and Tiihonen, J. (2003). Extrastriatal dopamine D 2/3 receptor density and distribution in drug-naive schizophrenic patients. Mol. Psychiatry. 8, 453–455.10.1038/sj.mp.4001334Search in Google Scholar PubMed

Tuppurainen, H., Kuikka, J.T., Laakso, M.P., Viinamäki, H., Husso, M., and Tiihonen, J. (2006). Midbrain dopamine D2/3 receptor binding in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 256, 382–387.10.1007/s00406-006-0649-3Search in Google Scholar PubMed

Tseng, H.H., Watts, J.J., Kiang, M., Suridjan, I., Wilson, A.A., Houle, S., Rusjan, P.M., and Mizrahi, R. (2018). Nigral stress-induced dopamine release in clinical high risk and antipsychotic-naïve schizophrenia. Schizophr. Bull. 44, 542–551.10.1093/schbul/sbx042Search in Google Scholar PubMed PubMed Central

Uchida, H., Graff-Guerrero, A., Mulsant, B.H., Pollock, B.G., and Mamo, D.C. (2009). Long-term stability of measuring D2 receptors in schizophrenia patients treated with antipsychotics. Schizophr. Res. 109, 130–133.10.1016/j.schres.2008.12.022Search in Google Scholar PubMed

Vallabhajosula, S., Hirschowitz, J., and Machac, J. (1997). Effect of haloperidol dose on iodine-123-IBZM brain SPECT imaging in schizophrenic patients. J. Nucl. Med. 38, 203–207.Search in Google Scholar

Valli, I., Howes, O., Tyrer, P., McGuire, P., and Grasby, P.M. (2008). Longitudinal PET imaging in a patient with schizophrenia did not show marked changes in dopaminergic function with relapse of psychosis. Am. J. Psychiatry 165, 1613–1614.10.1176/appi.ajp.2008.08071109Search in Google Scholar PubMed

Van der Wee, N.J., Stevens, H., Hardeman, J.A., Mandl, R.C., Denys, D.A., van Megen, H.J., Kahn, R.S., and Westenberg, H.M. (2004). Enhanced dopamine transporter density in psychotropic-naive patients with obsessive-compulsive disorder shown by [123I]β-CIT SPECT. Am. J. Psychiatry 161, 2201–2206.10.1176/appi.ajp.161.12.2201Search in Google Scholar PubMed

Van der Wee, N.J., van Veen, J.F., Stevens, H., van Vliet, I.M., van Rijk, P.P., and Westenberg, H.G. (2008). Increased serotonin and dopamine transporter binding in psychotropic medication-naive patients with generalized social anxiety disorder shown by 123I-β-(4-iodophenyl)-tropane SPECT. J. Nucl. Med. 49, 757–763.10.2967/jnumed.107.045518Search in Google Scholar PubMed

Vernaleken, I., Siessmeier, T., Buchholz, H.G., Härtter, S., Hiemke, C., Stoeter, P., Rösch, F., Bartenstein, P., and Gründer, G. (2004). High striatal occupancy of D2-like dopamine receptors by amisulpride in the brain of patients with schizophrenia. Int. J. Neuropsychopharmacol. 7, 421–430.10.1017/S1461145704004353Search in Google Scholar PubMed

Viinamäkki, H., Kuikka, J., Tiihonen, J., and Lehtonen, J. (1998). Change in monoamine transporter density related to clinical recovery: a case-control study. Nord. J. Psychiatry 52, 39–44.10.1080/080394898422553Search in Google Scholar

Vulink, N.C., Planting, R.S., Figee, M., Booij, J., and Denys, D. (2016). Reduced striatal dopamine D2/3 receptor availability in body dysmorphic disorder. Eur. Neuropsychopharmacol. 26, 350–356.10.1016/j.euroneuro.2015.11.018Search in Google Scholar

Weinstein, J.J., van de Giessen, E., Rosengard, R.J., Xu, X., Ojeil, N., Brucato, G., Gil, R.B., Kegeles, L.S., Laruelle, M., Slifstein, M., et al. (2018). PET imaging of dopamine-D2 receptor internalization in schizophrenia. Mol. Psychiatry. 23, 1506–1511.10.1038/mp.2017.107Search in Google Scholar

Willner, P. (1983). Dopamine and depression: a review of recent evidence. I. Empirical studies. Brain Res. 287, 211–224.Search in Google Scholar

Wing, Y.K., Lam, S.P., Zhang, J., Leung, E., Ho, C.L., Chen, S., Cheung, M.K., Li, S.X., Chan, J.W., Mok, V., et al. (2015). Reduced striatal dopamine transmission in REM sleep behavior disorder comorbid with depression. Neurology 84, 516–522.10.1212/WNL.0000000000001215Search in Google Scholar

Wong, D.F., Wagner, H.N. Jr., Tune, L.E., Dannals, R.F., Pearlson, G.D., Links, J.M., Tamminga, C.A., Broussolle, E.P., Ravert, H.T., Wilson, A.A., et al. (1986). Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234, 1558–1563.10.1126/science.2878495Search in Google Scholar

Wong, D.F., Pearlson, G.D., Tune, L.E., Young, L.T., Meltzer, C.C., Dannals, R.F., Ravert, H.T., Reith, J., Kuhar, M.J., and Gjedde, A. (1997). Quantification of neuroreceptors in the living human brain: IV. Effect of aging and elevations of D2-like receptors in schizophrenia and bipolar illness. J. Cereb. Blood Flow Metab. 17, 331–342.10.1097/00004647-199703000-00010Search in Google Scholar

Wong, D.F., Brasic, J.R., Singer, H.S., Schretlen, D.J., Kuwabara, H., Zhou, Y., Nandi, A., Maris, M.A., Alexander, M., Ye, W., et al. (2008). Mechanisms of dopaminergic and serotonergic neurotransmission in Tourette syndrome: clues from an in vivo neurochemistry study with PET. Neuropsychopharmacology 33, 1239–1251.10.1038/sj.npp.1301528Search in Google Scholar

Wulff, S., Pinborg, L.H., Svarer, C., Jensen, L.T., Nielsen, M.O., Allerup, P., Bak, N., Rasmussen, H., Frandsen, E., Rostrup, E., et al. (2015). Striatal D(2/3) binding potential values in drug-naïve first-episode schizophrenia patients correlate with treatment outcome. Schizophr. Bull. 41, 1143–1152.10.1093/schbul/sbu220Search in Google Scholar

Xiberas, X., Martinot, J.L., Mallet, L., Artiges, E., Loc’H, C., Maziere, B., and Paillere-Martinot, M.L. (2001). Extrastriatal and striatal D2 dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Br. J. Psychiatry. 179, 503–598.10.1192/bjp.179.6.503Search in Google Scholar

Yang, Y.K, Chiu, N.T., Chen, C.C., Chen, M., Yeh, T.L., and Lee, I.H. (2003). Correlation between fine motor activity and striatal dopamine D2 receptor density in patients with schizophrenia and healthy controls. Psychiatry Res. 123, 191–197.10.1016/S0925-4927(03)00066-0Search in Google Scholar

Yang, Y.K., Yu, L., Yeh, T.L., Chiu, N.T., Chen, P.S., and Lee, I.H. (2004). Associated alterations of striatal dopamine D2/D3 receptor and transporter binding in drug-naive patients with schizophrenia: a dual-isotope SPECT study. Am. J. Psychiatry 161, 1496–1498.10.1176/appi.ajp.161.8.1496Search in Google Scholar PubMed

Yang, Y.K., Yeh, T.L., Yao, W.J., Lee, I.H., Chen, P.S., Chiu, N.T., and Lu, R.B. (2008). Greater availability of dopamine transporters in patients with major depression--a dual-isotope SPECT study. Psychiatry Res. 162, 230–235.10.1016/j.pscychresns.2007.08.008Search in Google Scholar PubMed

Yasuno, F., Suhara, T., Okubo, Y., Sudo, Y., Inoue, M., Ichimiya, T., Takano, A., Nakayama, K., Halldin, C., and Farde, L. (2004). Low dopamine D2 receptor binding in subregions of the thalamus in schizophrenia. Am. J. Psychiatry 161, 1016–1022.10.1176/appi.ajp.161.6.1016Search in Google Scholar PubMed

Yatham, L.N., Liddle, P.F., Shiah, I.S., Lam, R.W., Ngan, E., Scarrow, G., Imperial, M., Stoessl, J., Sossi, V., and Ruth, T.J. (2002a). PET study of [18F]6-fluoro-L-dopa uptake in neuroleptic- and mood-stabilizer-naive first-episode nonpsychotic mania: effects of treatment with divalproex sodium. Am. J. Psychiatry 159, 768–774.10.1176/appi.ajp.159.5.768Search in Google Scholar PubMed

Yatham, L.N., Liddle, P.F., Lam, R.W., Shiah, I.S., Lane, C., Stoessl, A.J., Sossi, V., and Ruth, T.J. (2002b). PET study of the effects of valproate on dopamine D2 receptors in neuroleptic- and mood-stabilizer-naive patients with nonpsychotic mania. Am. J. Psychiatry. 159, 1718–1723.10.1176/appi.ajp.159.10.1718Search in Google Scholar PubMed

Yen, C.H., Shih, M.C., Cheng, C.Y., Ma, K.H., Lu, R.B., and Huang, S.Y. (2016). Incongruent reduction of dopamine transporter availability in different subgroups of alcohol dependence. Medicine (Baltimore). 95, e4048.10.1097/MD.0000000000004048Search in Google Scholar PubMed PubMed Central

Yoder, K.K., Hutchins, G.D., Morris, E.D., Brashear, A., Wang, C., and Shekhar, A. (2004). Dopamine transporter density in schizophrenic subjects with and without tardive dyskinesia. Schizophr. Res. 71, 371–375.10.1016/j.schres.2004.03.015Search in Google Scholar PubMed

Received: 2018-04-18
Accepted: 2018-06-30
Published Online: 2018-10-01
Published in Print: 2019-05-27

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2018-0037/html
Scroll to top button