Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 6, 2018

Neurotrophic factors hold promise for the future of Parkinson’s disease treatment: is there a light at the end of the tunnel?

  • Ava Nasrolahi , Javad Mahmoudi EMAIL logo , Abolfazl Akbarzadeh , Mohammad Karimipour , Saeed Sadigh-Eteghad , Roya Salehi and Mehdi Farhoudi EMAIL logo

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disorder and is characterized by a spectrum of clinicopathologic signs and a complex etiology. PD results from the degeneration of dopaminergic (DAergic) neurons in the substantia nigra. Current therapies for PD are only able to alleviate symptoms without stopping disease progression. In addition, the available therapeutic strategies do not have long-lasting effects. Furthermore, these therapies cause different ranges of adverse side effects. There is great interest in neurotrophic factors (NTFs) due to their ability to promote the survival of different neural cells. These factors are divided into four families: neurotrophins, neurokines, the glial cell line-derived NTF family of ligands, and the newly recognized cerebral DA NTF/mesencephalic astrocyte-derived NTF family. The protective and therapeutic effects of these factors on DAergic neurons make them suitable for the prevention of progressive cell loss in PD. Based on the above premise, we focus on the protective effects of NTFs, especially CDNF and MANF, on nigrostriatal DAergic neurons in PD.

References

Airaksinen, M.S. and Saarma, M. (2002). The GDNF family: signalling, biological functions and therapeutic value. Nat. Rev. Neurosci. 3, 383–394.10.1038/nrn812Search in Google Scholar PubMed

Airavaara, M., Harvey, B.K., Voutilainen, M.H., Shen, H., Chou, J., Lindholm, P., Lindahl, M., Tuominen, R.K., Saarma, M., and Hoffer, B. (2012). CDNF protects the nigrostriatal dopamine system and promotes recovery after MPTP treatment in mice. Cell Transplant. 21, 1213–1223.10.3727/096368911X600948Search in Google Scholar PubMed PubMed Central

ALS CNTF Treatment Study Group. (1996). A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. Neurology 46, 1244–1249.10.1212/WNL.46.5.1244Search in Google Scholar PubMed

Angelucci, F., Piermaria, J., Gelfo, F., Shofany, J., Tramontano, M., Fiore, M., Caltagirone, C., and Peppe, A. (2016). The effects of motor rehabilitation training on clinical symptoms and serum BDNF levels in Parkinson’s disease subjects. Can. J. Physiol. Pharmacol. 94, 455–461.10.1139/cjpp-2015-0322Search in Google Scholar PubMed

Antony, P., Diederich, N.J., Krüger, R., and Balling, R. (2013). The hallmarks of Parkinson’s disease. FEBS J. 280, 5981–5993.10.1111/febs.12335Search in Google Scholar PubMed

Apostolou, A., Shen, Y., Liang, Y., Luo, J., and Fang, S. (2008). Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death. Exp. Cell Res. 314, 2454–2467.10.1016/j.yexcr.2008.05.001Search in Google Scholar PubMed PubMed Central

Aron, L. and Klein, R. (2011). Repairing the parkinsonian brain with neurotrophic factors. Trends Neurosci. 34, 88–100.10.1016/j.tins.2010.11.001Search in Google Scholar PubMed

Bäck, S., Peränen, J., Galli, E., Pulkkila, P., Lonka-Nevalaita, L., Tamminen, T., Voutilainen, M.H., Raasmaja, A., Saarma, M., and Männistö, P.T. (2013). Gene therapy with AAV2-CDNF provides functional benefits in a rat model of Parkinson’s disease. Brain Behav. 3, 75–88.10.1002/brb3.117Search in Google Scholar PubMed PubMed Central

Baker, S.A., Stanford, L.E., Brown, R.E., and Hagg, T. (2005). Maturation but not survival of dopaminergic nigrostriatal neurons is affected in developing and aging BDNF-deficient mice. Brain Res. 1039, 177–188.10.1016/j.brainres.2005.01.052Search in Google Scholar PubMed

Baquet, Z.C., Bickford, P.C., and Jones, K.R. (2005). Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J. Neurosci. 25, 6251–6259.10.1523/JNEUROSCI.4601-04.2005Search in Google Scholar PubMed PubMed Central

Bartus, R.T. and Johnson, E.M. (2017a). Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 1: where have we been and what have we learned? Neurobiol. Dis. 97, 156–168.10.1016/j.nbd.2016.03.027Search in Google Scholar

Bartus, R.T. and Johnson, E.M. (2017b). Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 2: where do we stand and where must we go next? Neurobiol. Dis. 97, 169–178.10.1016/j.nbd.2016.03.026Search in Google Scholar

Bartus, R.T., Baumann, T.L., Siffert, J., Herzog, C.D., Alterman, R., Boulis, N., Turner, D.A., Stacy, M., Lang, A.E., and Lozano, A.M. (2013). Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology 80, 1698–1701.10.1212/WNL.0b013e3182904faaSearch in Google Scholar PubMed

Bauer, S., Kerr, B.J., and Patterson, P.H. (2007). The neuropoietic cytokine family in development, plasticity, disease and injury. Nat. Rev. Neurosci. 8, 221–232.10.1038/nrn2054Search in Google Scholar PubMed

Baydyuk, M., Nguyen, M.T., and Xu, B. (2011). Chronic deprivation of TrkB signaling leads to selective late-onset nigrostriatal dopaminergic degeneration. Exp. Neurol. 228, 118–125.10.1016/j.expneurol.2010.12.018Search in Google Scholar PubMed

Baydyuk, M., Xie, Y., Tessarollo, L., and Xu, B. (2013). Midbrain-derived neurotrophins support survival of immature striatal projection neurons. J. Neurosci. 33, 3363–3369.10.1523/JNEUROSCI.3687-12.2013Search in Google Scholar PubMed

Bhave, S.V., Ghoda, L., and Hoffman, P.L. (1999). Brain-derived neurotrophic factor mediates the anti-apoptotic effect of NMDA in cerebellar granule neurons: signal transduction cascades and site of ethanol action. J. Neurosci. 19, 3277–3286.10.1523/JNEUROSCI.19-09-03277.1999Search in Google Scholar PubMed

Björklund, A., Kirik, D., Rosenblad, C., Georgievska, B., Lundberg, C., and Mandel, R. (2000). Towards a neuroprotective gene therapy for Parkinson’s disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res. 886, 82–98.10.1016/S0006-8993(00)02915-2Search in Google Scholar PubMed

Blits, B., Kirik, D., Petry, H., and Hermening, S. (2015). Gene therapy for Parkinson’s disease: AAV5-mediated delivery of glial cell line-derived neurotrophic factor (GDNF). Neuromethods. X. Bo and J. Verhaagen, eds. (Springer), pp. 67–83.10.1007/978-1-4939-2306-9_3Search in Google Scholar

Cavallucci, V. and D’Amelio, M. (2011). Matter of life and death: the pharmacological approaches targeting apoptosis in brain diseases. Curr. Pharm. Des. 17, 215–229.10.2174/138161211795049705Search in Google Scholar PubMed

Chao, M.V. (2003). Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat. Rev. Neurosci. 4, 299–309.10.1038/nrn1078Search in Google Scholar PubMed

Chau, M., Zhang, J., Wei, L., and Yu, S.P. (2016). Regeneration after stroke: stem cell transplantation and trophic factors. Brain Circ. 2, 86–94.10.4103/2394-8108.186279Search in Google Scholar

Chauhan, N.B., Siegel, G.J., and Lee, J.M. (2001). Depletion of glial cell line-derived neurotrophic factor in substantia nigra neurons of Parkinson’s disease brain. J. Chem. Neuroanat. 21, 277–288.10.1016/S0891-0618(01)00115-6Search in Google Scholar PubMed

Chen, L., Yung, K., Chan, Y., Shum, D., and Bolam, J. (2008). The proNGF-p75NTR-sortilin signalling complex as new target for the therapeutic treatment of Parkinson’s disease. CNS Neurol. Disord. Drug Targets 7, 512–523.10.2174/187152708787122923Search in Google Scholar PubMed

Chen, Y.-C., Sundvik, M., Rozov, S., Priyadarshini, M., and Panula, P. (2012). MANF regulates dopaminergic neuron development in larval zebrafish. Dev. Biol. 370, 237–249.10.1016/j.ydbio.2012.07.030Search in Google Scholar PubMed

Chen, L., Feng, L., Wang, X., Du, J., Chen, Y., Yang, W., Zhou, C., Cheng, L., Shen, Y., and Fang, S. (2015). Mesencephalic astrocyte-derived neurotrophic factor is involved in inflammation by negatively regulating the NF-κB pathway. Sci. Rep. 5, 8133.10.1038/srep08133Search in Google Scholar PubMed PubMed Central

Cheng, L., Zhao, H., Zhang, W., Liu, B., Liu, Y., Guo, Y., and Nie, L. (2013). Overexpression of conserved dopamine neurotrophic factor (CDNF) in astrocytes alleviates endoplasmic reticulum stress-induced cell damage and inflammatory cytokine secretion. Biochem. Biophys. Res. Commun. 435, 34–39.10.1016/j.bbrc.2013.04.029Search in Google Scholar PubMed

Chojnacki, A., Shimazaki, T., Gregg, C., Weinmaster, G., and Weiss, S. (2003). Glycoprotein 130 signaling regulates Notch1 expression and activation in the self-renewal of mammalian forebrain neural stem cells. J. Neurosci. 23, 1730–1741.10.1523/JNEUROSCI.23-05-01730.2003Search in Google Scholar PubMed

Cohen, A.D., Tillerson, J.L., Smith, A.D., Schallert, T., and Zigmond, M.J. (2003). Neuroprotective effects of prior limb use in 6-hydroxydopamine-treated rats: possible role of GDNF. J. Neurochem. 85, 299–305.10.1046/j.1471-4159.2003.01657.xSearch in Google Scholar PubMed

Conner, J.M., Lauterborn, J.C., Yan, Q., Gall, C.M., and Varon, S. (1997). Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J. Neurosci. 17, 2295–2313.10.1523/JNEUROSCI.17-07-02295.1997Search in Google Scholar PubMed

Cordero-Llana, Ó., Houghton, B.C., Rinaldi, F., Taylor, H., Yáñez-Muñoz, R.J., Uney, J.B., Wong, L.-F., and Caldwell, M.A. (2015). Enhanced efficacy of the CDNF/MANF family by combined intranigral overexpression in the 6-OHDA rat model of Parkinson’s disease. Mol. Ther. 23, 244–254.10.1038/mt.2014.206Search in Google Scholar PubMed

Costantini, C., Scrable, H., and Puglielli, L. (2006). An aging pathway controls the TrkA to p75NTR receptor switch and amyloid β-peptide generation. EMBO J. 25, 1997–2006.10.1038/sj.emboj.7601062Search in Google Scholar PubMed

Cummings, J., Isaacson, S., Mills, R., Williams, H., Chi-Burris, K., Corbett, A., Dhall, R., and Ballard, C. (2014). Pimavanserin for patients with Parkinson’s disease psychosis: a randomised, placebo-controlled phase 3 trial. Lancet 383, 533–540.10.1016/S0140-6736(13)62106-6Search in Google Scholar PubMed

Danzer, K.M., Haasen, D., Karow, A.R., Moussaud, S., Habeck, M., Giese, A., Kretzschmar, H., Hengerer, B., and Kostka, M. (2007). Different species of α-synuclein oligomers induce calcium influx and seeding. J. Neurosci. 27, 9220–9232.10.1523/JNEUROSCI.2617-07.2007Search in Google Scholar PubMed PubMed Central

Decressac, M., Ulusoy, A., Mattsson, B., Georgievska, B., Romero-Ramos, M., Kirik, D., and Björklund, A. (2011). GDNF fails to exert neuroprotection in a rat α-synuclein model of Parkinson’s disease. Brain 134, 2302–2311.10.1093/brain/awr149Search in Google Scholar PubMed

Donaghue, I.E., Tator, C.H., and Shoichet, M.S. (2015). Sustained delivery of bioactive neurotrophin-3 to the injured spinal cord. Biomater. Sci. 3, 65–72.10.1039/C4BM00311JSearch in Google Scholar PubMed

Ebert, A.D., Beres, A.J., Barber, A.E., and Svendsen, C.N. (2008). Human neural progenitor cells over-expressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson’s disease. Exp. Neurol. 209, 213–223.10.1016/j.expneurol.2007.09.022Search in Google Scholar PubMed

Eglitis, M.A. and Mezey, É. (1997). Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Natl. Acad. Sci. USA 94, 4080–4085.10.1073/pnas.94.8.4080Search in Google Scholar PubMed PubMed Central

Ellis, C.E., Murphy, E.J., Mitchell, D.C., Golovko, M.Y., Scaglia, F., Barceló-Coblijn, G.C., and Nussbaum, R.L. (2005). Mitochondrial lipid abnormality and electron transport chain impairment in mice lacking α-synuclein. Mol. Cell. Biol. 25, 10190–10201.10.1128/MCB.25.22.10190-10201.2005Search in Google Scholar PubMed PubMed Central

Emborg, M.E., Ebert, A.D., Moirano, J., Peng, S., Suzuki, M., Capowski, E., Joers, V., Roitberg, B.Z., Aebischer, P., and Svendsen, C.N. (2008). GDNF-secreting human neural progenitor cells increase tyrosine hydroxylase and VMAT2 expression in MPTP-treated cynomolgus monkeys. Cell Transplant. 17, 383–395.10.3727/096368908784423300Search in Google Scholar PubMed

Encinas, M., Iglesias, M., Llecha, N., and Comella, J. (1999). Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. J. Neurochem. 73, 1409–1421.10.1046/j.1471-4159.1999.0731409.xSearch in Google Scholar PubMed

Eyhani-Rad, S., Mohajjel Nayebi, A., Mahmoudi, J., Samini, M., and Babapour, V. (2012). Role of 5-hydroxytryptamine 1A receptors in 6-hydroxydopmaine-induced catalepsy-like immobilization in rats: a therapeutic approach for treating catalepsy of Parkinson’s disease. Iran. J. Pharm. Res. 11, 1175–1181.Search in Google Scholar PubMed

Feng, Y., Jankovic, J., and Wu, Y.-C. (2015). Epigenetic mechanisms in Parkinson’s disease. J. Neurol. Sci. 349, 3–9.10.1016/j.jns.2014.12.017Search in Google Scholar PubMed

Florez-McClure, M.L., Linseman, D.A., Chu, C.T., Barker, P.A., Bouchard, R.J., Le, S.S., Laessig, T.A., and Heidenreich, K.A. (2004). The p75 neurotrophin receptor can induce autophagy and death of cerebellar Purkinje neurons. J. Neurosci. 24, 4498–4509.10.1523/JNEUROSCI.5744-03.2004Search in Google Scholar PubMed PubMed Central

Garea-Rodriguez, E., Eesmaa, A., Lindholm, P., Schlumbohm, C., König, J., Meller, B., Krieglstein, K., Helms, G., Saarma, M., and Fuchs, E. (2016). Comparative analysis of the effects of neurotrophic factors CDNF and GDNF in a nonhuman primate model of Parkinson’s disease. PLoS One 11, e0149776.10.1371/journal.pone.0149776Search in Google Scholar PubMed PubMed Central

Gill, S.S., Patel, N.K., Hotton, G.R., O’Sullivan, K., McCarter, R., Bunnage, M., Brooks, D.J., Svendsen, C.N., and Heywood, P. (2003). Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med. 9, 589–595.10.1038/nm850Search in Google Scholar PubMed

Giráldez-Pérez, R.M., Antolín-Vallespín, M., Muñoz, M.D., and Sánchez-Capelo, A. (2014). Models of α-synuclein aggregation in Parkinson’s disease. Acta Neuropathol. Commun. 2, 1.10.1186/s40478-014-0176-9Search in Google Scholar PubMed PubMed Central

Glembotski, C.C., Thuerauf, D.J., Huang, C., Vekich, J.A., Gottlieb, R.A., and Doroudgar, S. (2012). Mesencephalic astrocyte-derived neurotrophic factor protects the heart from ischemic damage and is selectively secreted upon sarco/endoplasmic reticulum calcium depletion. J. Biol. Chem. 287, 25893–25904.10.1074/jbc.M112.356345Search in Google Scholar PubMed PubMed Central

Goldberg, N.R., Caesar, J., Park, A., Sedgh, S., Finogenov, G., Masliah, E., Davis, J., and Blurton-Jones, M. (2015). Neural stem cells rescue cognitive and motor dysfunction in a transgenic model of dementia with Lewy bodies through a BDNF-dependent mechanism. Stem Cell Rep. 5, 791–804.10.1016/j.stemcr.2015.09.008Search in Google Scholar PubMed PubMed Central

Goldman, S.M. (2014). Environmental toxins and Parkinson’s disease. Annu. Rev. Pharmacol. Toxicol. 54, 141–164.10.1146/annurev-pharmtox-011613-135937Search in Google Scholar PubMed

Grondin, R., Cass, W.A., Zhang, Z., Stanford, J.A., Gash, D.M., and Gerhardt, G.A. (2003). Glial cell line-derived neurotrophic factor increases stimulus-evoked dopamine release and motor speed in aged rhesus monkeys. J. Neurosci. 23, 1974–1980.10.1523/JNEUROSCI.23-05-01974.2003Search in Google Scholar PubMed

Gu, S., Huang, H., Bi, J., Yao, Y., and Wen, T. (2009). Combined treatment of neurotrophin-3 gene and neural stem cells is ameliorative to behavior recovery of Parkinson’s disease rat model. Brain Res. 1257, 1–9.10.1016/j.brainres.2008.12.016Search in Google Scholar PubMed

Hagg, T. and Varon, S. (1993). Ciliary neurotrophic factor prevents degeneration of adult rat substantia nigra dopaminergic neurons in vivo. Proc. Natl. Acad. Sci. USA 90, 6315–6319.10.1073/pnas.90.13.6315Search in Google Scholar

Haque, N.S., Hlavin, M.-L., Fawcett, J.W., and Dunnett, S.B. (1996). The neurotrophin NT4/5, but not NT3, enhances the efficacy of nigral grafts in a rat model of Parkinson’s disease. Brain Res. 712, 45–52.10.1016/0006-8993(95)01427-6Search in Google Scholar

Haynes, C.M., Titus, E.A., and Cooper, A.A. (2004). Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol. Cell 15, 767–776.10.1016/j.molcel.2004.08.025Search in Google Scholar PubMed

Heinrich, P.C., Behrmann, I., Serge, H., Hermanns, H.M., Müller-Newen, G., and Schaper, F. (2003). Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20.10.1042/bj20030407Search in Google Scholar PubMed PubMed Central

Hirsch, M.A., Iyer, S.S., and Sanjak, M. (2016). Exercise-induced neuroplasticity in human Parkinson’s disease: what is the evidence telling us? Parkinsonism Relat. Disord. 22, S78–S81.Search in Google Scholar

Horger, B.A., Nishimura, M.C., Armanini, M.P., Wang, L.-C., Poulsen, K.T., Rosenblad, C., Kirik, D., Moffat, B., Simmons, L., and Johnson, E. (1998). Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J. Neurosci. 18, 4929–4937.10.1523/JNEUROSCI.18-13-04929.1998Search in Google Scholar PubMed

Huang, E.J. and Reichardt, L.F. (2001). Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736.10.1146/annurev.neuro.24.1.677Search in Google Scholar PubMed PubMed Central

Huang, J., Chen, C., Gu, H., Li, C., Fu, X., Jiang, M., Sun, H., Xu, J., Fang, J., and Jin, L. (2016). Mesencephalic astrocyte-derived neurotrophic factor reduces cell apoptosis via upregulating GRP78 in SH-SY5Y cells. Cell Biol. Int. 40, 803–811.10.1002/cbin.10621Search in Google Scholar PubMed

Huddleston, D.E. and Factor, S.A. (2011). Of monkeys and men: analysis of the phase 2 double-blind, sham-surgery controlled, randomized trial of AAV2-neurturin gene therapy for Parkinson’s disease. Curr. Neurol. Neurosci. Rep. 11, 345–348.10.1007/s11910-011-0206-ySearch in Google Scholar PubMed

Hynes, M., Poulsen, K., Armanini, M., Berkemeier, L., Phillips, H., and Rosenthal, A. (1994). Neurotrophic-4/5 is a survival factor for embryonic midbrain dopaminergic neurons in enriched cultures. J. Neurosci. Res. 37, 144–154.10.1002/jnr.490370118Search in Google Scholar PubMed

Jeong, K.H., Nam, J.H., Jin, B.K., and Kim, S.R. (2015). Activation of CNTF/CNTFRα signaling pathway by hRheb (S16H) transduction of dopaminergic neurons in vivo. PLoS One 10, e0121803.10.1371/journal.pone.0121803Search in Google Scholar PubMed

Jiaming, M. and Niu, C. (2015). Comparing neuroprotective effects of CDNF-expressing bone marrow derived mesenchymal stem cells via differing routes of administration utilizing an in vivo model of Parkinson’s disease. Neurol. Sci. 36, 281–287.10.1007/s10072-014-1929-8Search in Google Scholar

Kirik, D., Georgievska, B., and Björklund, A. (2004). Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nat. Neurosci. 7, 105–110.10.1038/nn1175Search in Google Scholar PubMed

Klein, C. and Westenberger, A. (2012). Genetics of Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a008888.10.1101/cshperspect.a008888Search in Google Scholar PubMed

Kordower, J.H., Palfi, S., Chen, E.Y., Ma, S.Y., Sendera, T., Cochran, E.J., Mufson, E.J., Penn, R., Goetz, C.G., and Comella, C.D. (1999). Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann. Neurol. 46, 419–424.10.1002/1531-8249(199909)46:3<419::AID-ANA21>3.0.CO;2-QSearch in Google Scholar

Kramer, E.R. and Liss, B. (2015). GDNF-Ret signaling in midbrain dopaminergic neurons and its implication for Parkinson disease. FEBS Lett. 589, 3760–3772.10.1016/j.febslet.2015.11.006Search in Google Scholar PubMed

Lang, A.E., Gill, S., Patel, N.K., Lozano, A., Nutt, J.G., Penn, R., Brooks, D.J., Hotton, G., Moro, E., and Heywood, P. (2006). Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann. Neurol. 59, 459–466.10.1002/ana.20737Search in Google Scholar PubMed

Latge, C., Cabral, K.M., De Oliveira, G.A., Raymundo, D.P., Freitas, J.A., Johanson, L., Romão, L.F., Palhano, F.L., Herrmann, T., and Almeida, M.S. (2015). The solution structure and dynamics of full-length human cerebral dopamine neurotrophic factor and its neuroprotective role against α-synuclein oligomers. J. Biol. Chem. 290, 20527–20540.10.1074/jbc.M115.662254Search in Google Scholar PubMed

Lee, H.-J., Bae, E.-J., and Lee, S.-J. (2014). Extracellular α-synuclein – a novel and crucial factor in Lewy body diseases. Nat. Rev. Neurol. 10, 92–98.10.1038/nrneurol.2013.275Search in Google Scholar PubMed

Levanti, M., Germana, A., Catania, S., Germana, G., Gauna-Añasco, L., Vega, J., and Ciriaco, E. (2001). Neurotrophin receptor-like proteins in the bovine (Bos taurus) lymphoid organs, with special reference to thymus and spleen. Anat. Histol. Embryol. 30, 193–198.10.1046/j.1439-0264.2001.00329.xSearch in Google Scholar PubMed

Levi-Montalcini, R. (1987). The nerve growth factor 35 years later. Science 237, 1154–1162.10.1126/science.3306916Search in Google Scholar PubMed

Levi-Montalcini, R. and Angeletti, P.U. (1963). Essential role of the nerve growth factor in the survival and maintenance of dissociated sensory and sympathetic embryonic nerve cells in vitro. Dev. Biol. 7, 653–659.10.1016/0012-1606(63)90149-0Search in Google Scholar

Levivier, M., Przedborski, S., Bencsics, C., and Kang, U.J. (1995). Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. J. Neurosci. 15, 7810–7820.10.1523/JNEUROSCI.15-12-07810.1995Search in Google Scholar

Li, Y., Yui, D., Luikart, B.W., McKay, R.M., Li, Y., Rubenstein, J.L., and Parada, L.F. (2012). Conditional ablation of brain-derived neurotrophic factor-TrkB signaling impairs striatal neuron development. Proc. Natl. Acad. Sci. USA 109, 15491–15496.10.1073/pnas.1212899109Search in Google Scholar PubMed PubMed Central

Lindholm, P., Voutilainen, M.H., Laurén, J., Peränen, J., Leppänen, V.-M., Andressoo, J.-O., Lindahl, M., Janhunen, S., Kalkkinen, N., and Timmusk, T. (2007). Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature 448, 73–77.10.1038/nature05957Search in Google Scholar PubMed

Lindholm, P., Peränen, J., Andressoo, J.-O., Kalkkinen, N., Kokaia, Z., Lindvall, O., Timmusk, T., and Saarma, M. (2008). MANF is widely expressed in mammalian tissues and differently regulated after ischemic and epileptic insults in rodent brain. Mol. Cell. Neurosci. 39, 356–371.10.1016/j.mcn.2008.07.016Search in Google Scholar PubMed

Lindström, R., Lindholm, P., Kallijärvi, J., Palgi, M., Saarma, M., and Heino, T.I. (2016). Exploring the conserved role of MANF in the unfolded protein response in Drosophila melanogaster. PLoS One 11, e0151550.10.1371/journal.pone.0151550Search in Google Scholar PubMed PubMed Central

Liu, H., Liu, G., and Bi, Y. (2014). CNTF regulates neurite outgrowth and neuronal migration through JAK2/STAT3 and PI3K/Akt signaling pathways of DRG explants with gp120-induced neurotoxicity in vitro. Neurosci. Lett. 569, 110–115.10.1016/j.neulet.2014.03.071Search in Google Scholar PubMed

Lommatzsch, M., Zingler, D., Schuhbaeck, K., Schloetcke, K., Zingler, C., Schuff-Werner, P., and Virchow, J.C. (2005). The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol. Aging 26, 115–123.10.1016/j.neurobiolaging.2004.03.002Search in Google Scholar PubMed

Love, S., Plaha, P., Patel, N.K., Hotton, G.R., Brooks, D.J., and Gill, S.S. (2005). Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat. Med. 11, 703–704.10.1038/nm0705-703Search in Google Scholar PubMed

Lui, N.-P., Chen, L.-W., Yung, W.-H., Chan, Y.-S., and Yung, K.K.-L. (2012). Endogenous repair by the activation of cell survival signalling cascades during the early stages of rat Parkinsonism. PLoS One 7, e51294.10.1371/journal.pone.0051294Search in Google Scholar PubMed

Luo, D., Zhao, J., Cheng, Y., Lee, S.M.-Y., and Rong, J. (2017). N-propargyl caffeamide (PACA) ameliorates dopaminergic neuronal loss and motor dysfunctions in MPTP mouse model of Parkinson’s disease and in MPP+-induced neurons via promoting the conversion of proNGF to NGF. Mol. Neurobiol. 1–10. DOI: 10.1007/s12035-017-0486-6 (Epub ahead of print).10.1007/s12035-017-0486-6Search in Google Scholar

Majdi, A., Mahmoudi, J., Sadigh-Eteghad, S., Golzari, S.E., Sabermarouf, B., and Reyhani-Rad, S. (2016). Permissive role of cytosolic pH acidification in neurodegeneration: a closer look at its causes and consequences. J. Neurosci. Res. 94, 879–887.10.1002/jnr.23757Search in Google Scholar

Majdi, A., Kamari, F., Vafaee, M.S., and Sadigh-Eteghad, S. (2017). Revisiting nicotine’s role in the ageing brain and cognitive impairment. Rev. Neurosci. 28, 767–781.10.1515/revneuro-2017-0008Search in Google Scholar PubMed

Marks, W.J., Ostrem, J.L., Verhagen, L., Starr, P.A., Larson, P.S., Bakay, R.A., Taylor, R., Cahn-Weiner, D.A., Stoessl, A.J., and Olanow, C.W. (2008). Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol. 7, 400–408.10.1016/S1474-4422(08)70065-6Search in Google Scholar PubMed

Marks, W.J., Bartus, R.T., Siffert, J., Davis, C.S., Lozano, A., Boulis, N., Vitek, J., Stacy, M., Turner, D., and Verhagen, L. (2010). Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 9, 1164–1172.10.1016/S1474-4422(10)70254-4Search in Google Scholar PubMed

Marks Jr., W.J., Baumann, T.L., and Bartus, R.T. (2015). Long-term safety of patients with Parkinson’s disease receiving rAAV2-neurturin (CERE-120) gene transfer. Hum. Gene Ther. 27, 522–527.10.1089/hum.2015.134Search in Google Scholar PubMed

Marusiak, J., Żeligowska, E., Mencel, J., Kisiel-Sajewicz, K., Majerczak, J., Zoladz, J.A., Jaskólski, A., and Jaskólska, A. (2015). Interval training-induced alleviation of rigidity and hypertonia in patients with Parkinson’s disease is accompanied by increased basal serum brain-derived neurotrophic factor. J. Rehabil. Med. 47, 372–375.10.2340/16501977-1931Search in Google Scholar PubMed

McHughen, S.A., Rodriguez, P.F., Kleim, J.A., Kleim, E.D., Crespo, L.M., Procaccio, V., and Cramer, S.C. (2009). BDNF Val66Met polymorphism influences motor system function in the human brain. Cereb. Cortex 20, 1254–1262.10.1093/cercor/bhp189Search in Google Scholar PubMed PubMed Central

Mei, J.-M. and Niu, C.-S. (2014). Effects of CDNF on 6-OHDA-induced apoptosis in PC12 cells via modulation of Bcl-2/Bax and caspase-3 activation. Neurol. Sci. 35, 1275–1280.10.1007/s10072-014-1700-1Search in Google Scholar PubMed

Mei, J. and Niu, C. (2015). Protective and reversal effects of conserved dopamine neurotrophic factor on PC12 cells following 6-hydroxydopamine administration. Mol. Med. Rep. 12, 297–302.10.3892/mmr.2015.3388Search in Google Scholar PubMed

Miller, R.G., Petajan, J.H., Bryan, W.W., Armon, C., Barohn, R.J., Goodpasture, J.C., Hoagland, R.J., Parry, G.J., Ross, M.A., and Stromatt, S.C. (1996). A placebo-controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis. Ann. Neurol. 39, 256–260.10.1002/ana.410390215Search in Google Scholar PubMed

Mitre, M., Mariga, A., and Chao, M.V. (2017). Neurotrophin signalling: novel insights into mechanisms and pathophysiology. Clin. Sci. (Lond.) 131, 13–23.10.1042/CS20160044Search in Google Scholar PubMed

Mizobuchi, N., Hoseki, J., Kubota, H., Toyokuni, S., Nozaki, J.-I., Naitoh, M., Koizumi, A., and Nagata, K. (2007). ARMET is a soluble ER protein induced by the unfolded protein response via ERSE-II element. Cell. Struct. Funct. 32, 41–50.10.1247/csf.07001Search in Google Scholar PubMed

Mocchetti, I., Bachis, A., Nosheny, R.L., and Tanda, G. (2007). Brain-derived neurotrophic factor expression in the substantia nigra does not change after lesions of dopaminergic neurons. Neurotox. Res. 12, 135–143.10.1007/BF03033922Search in Google Scholar PubMed

Mogi, M., Togari, A., Kondo, T., Mizuno, Y., Komure, O., Kuno, S., Ichinose, H., and Nagatsu, T. (1999). Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson’s disease. Neurosci. Lett. 270, 45–48.10.1016/S0304-3940(99)00463-2Search in Google Scholar PubMed

Moon, H.E. and Paek, S.H. (2015). Mitochondrial dysfunction in Parkinson’s disease. Exp. Neurobiol. 24, 103–116.10.5607/en.2015.24.2.103Search in Google Scholar PubMed PubMed Central

Nadella, R., Voutilainen, M.H., Saarma, M., Gonzalez-Barrios, J.A., Leon-Chavez, B.A., Jiménez, J.M.D., Jiménez, S.H.D., Escobedo, L., and Martinez-Fong, D. (2014). Transient transfection of human CDNF gene reduces the 6-hydroxydopamine-induced neuroinflammation in the rat substantia nigra. J. Neuroinflamm. 11, 209.10.1186/s12974-014-0209-0Search in Google Scholar PubMed PubMed Central

Nam, J.H., Park, E.S., Won, S.-Y., Lee, Y.A., Kim, K.I., Jeong, J.Y., Baek, J.Y., Cho, E.J., Jin, M., and Chung, Y.C. (2015). TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson’s disease via CNTF. Brain 138, 3610–3622.10.1093/brain/awv297Search in Google Scholar PubMed PubMed Central

Noor, N.A., Mohammed, H.S., Mourad, I.M., Khadrawy, Y.A., and Ezz, H.S.A. (2016). A promising therapeutic potential of cerebrolysin in 6-OHDA rat model of Parkinson’s disease. Life Sci. 155, 174–179.10.1016/j.lfs.2016.05.022Search in Google Scholar PubMed

Norisada, J., Hirata, Y., Amaya, F., Kiuchi, K., and Oh-Hashi, K. (2016). A comparative analysis of the molecular features of MANF and CDNF. PLoS One 11, e0146923.10.1371/journal.pone.0146923Search in Google Scholar PubMed PubMed Central

Nutt, J., Burchiel, K., Comella, C., Jankovic, J., Lang, A., Laws, E., Lozano, A., Penn, R., Simpson, R., and Stacy, M. (2003). Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60, 69–73.10.1212/WNL.60.1.69Search in Google Scholar PubMed

Olson, L., Backlund, E.-O., Ebendal, T., Freedman, R., Hamberger, B., Hansson, P., Hoffer, B., Lindblom, U., Meyerson, B., and Strömberg, I. (1991). Intraputaminal infusion of nerve growth factor to support adrenal medullary autografts in Parkinson’s disease: one-year follow-up of first clinical trial. Arch. Neurol. 48, 373–381.10.1001/archneur.1991.00530160037011Search in Google Scholar PubMed

Ostenfeld, T., Tai, Y.T., Martin, P., Déglon, N., Aebischer, P., and Svendsen, C.N. (2002). Neurospheres modified to produce glial cell line-derived neurotrophic factor increase the survival of transplanted dopamine neurons. J. Neurosci. Res. 69, 955–965.10.1002/jnr.10396Search in Google Scholar PubMed

Ozkizilcik, A., Sharma, A., Muresanu, D.F., Lafuente, J.V., Tian, Z.R., Patnaik, R., Mössler, H., and Sharma, H.S. (2017). Timed release of cerebrolysin using drug-loaded titanate nanospheres reduces brain pathology and improves behavioral functions in Parkinson’s disease. Mol. Neurobiol. 1–11. DOI: 10.1007/s12035-017-0747-4 [Epub ahead of print].10.1007/s12035-017-0747-4Search in Google Scholar PubMed

Palfi, S., Leventhal, L., Chu, Y., Ma, S.Y., Emborg, M., Bakay, R., Déglon, N., Hantraye, P., Aebischer, P., and Kordower, J.H. (2002). Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J. Neurosci. 22, 4942–4954.10.1523/JNEUROSCI.22-12-04942.2002Search in Google Scholar PubMed

Panayotatos, N., Radziejewska, E., Acheson, A., Somogyi, R., Thadani, A., Hendrickson, W.A., and McDonald, N.Q. (1995). Localization of functional receptor epitopes on the structure of ciliary neurotrophic factor indicates a conserved, function-related epitope topography among helical cytokines. J. Biol. Chem. 270, 14007–14014.10.1074/jbc.270.23.14007Search in Google Scholar PubMed

Parain, K., Murer, M.G., Yan, Q., Faucheux, B., Agid, Y., Hirsch, E., and Raisman-Vozari, R. (1999). Reduced expression of brain-derived neurotrophic factor protein in Parkinson’s disease substantia nigra. Neuroreport 10, 557–561.10.1097/00001756-199902250-00021Search in Google Scholar PubMed

Park, H. and Poo, M.-M. (2013). Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 14, 7–23.10.1038/nrn3379Search in Google Scholar PubMed

Parkash, V., Lindholm, P., Peränen, J., Kalkkinen, N., Oksanen, E., Saarma, M., Leppänen, V.-M., and Goldman, A. (2009). The structure of the conserved neurotrophic factors MANF and CDNF explains why they are bifunctional. Protein Eng. Des. Sel. 22, 233–241.10.1093/protein/gzn080Search in Google Scholar PubMed

Patel, N.K., Pavese, N., Javed, S., Hotton, G.R., Brooks, D.J., and Gill, S.S. (2013). Benefits of putaminal GDNF infusion in Parkinson disease are maintained after GDNF cessation. Neurology 81, 1176–1178.10.1212/WNL.0b013e3182a55ea5Search in Google Scholar PubMed

Pedre, L.L., Fuentes, N.P., González, L.A., McRae, A., Sánchez, T.S., Lescano, L.B., and González, R.M.A. (2002). Nerve growth factor levels in Parkinson disease and experimental parkinsonian rats. Brain Res. 952, 122–127.10.1016/S0006-8993(02)03222-5Search in Google Scholar PubMed

Penn, R.D., Kroin, J.S., York, M.M., and Cedarbaum, J.M. (1997). Intrathecal ciliary neurotrophic factor delivery for treatment of amyotrophic lateral sclerosis (phase I trial). Neurosurgery 40, 94–100.Search in Google Scholar PubMed

Peterziel, H., Unsicker, K., and Krieglstein, K. (2002). TGFβ induces GDNF responsiveness in neurons by recruitment of GFRα1 to the plasma membrane. J. Cell Biol. 159, 157–167.10.1083/jcb.200203115Search in Google Scholar PubMed

Petrova, P.S., Raibekas, A., Pevsner, J., Vigo, N., Anafi, M., Moore, M.K., Peaire, A.E., Shridhar, V., Smith, D.I., and Kelly, J. (2003). MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J. Mol. Neurosci. 20, 173–187.10.1385/JMN:20:2:173Search in Google Scholar PubMed

Pietz, K., Odin, P., Funa, K., and Lindvall, O. (1996). Protective effect of platelet-derived growth factor against 6-hydroxydopamine-induced lesion of rat dopaminergic neurons in culture. Neurosci. Lett. 204, 101–104.10.1016/0304-3940(96)12326-0Search in Google Scholar PubMed

Piltonen, M., Planken, A., Leskelä, O., Myöhänen, T., Hänninen, A.-L., Auvinen, P., Alitalo, K., Andressoo, J.-O., Saarma, M., and Männistö, P. (2011). Vascular endothelial growth factor C acts as a neurotrophic factor for dopamine neurons in vitro and in vivo. Neuroscience 192, 550–563.10.1016/j.neuroscience.2011.06.084Search in Google Scholar PubMed

Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., and Boyer, R. (1997). Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047.10.1126/science.276.5321.2045Search in Google Scholar PubMed

Rasmussen, P., Brassard, P., Adser, H., Pedersen, M.V., Leick, L., Hart, E., Secher, N.H., Pedersen, B.K., and Pilegaard, H. (2009). Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. Physiol. 94, 1062–1069.10.1113/expphysiol.2009.048512Search in Google Scholar PubMed

Ren, X., Zhang, T., Gong, X., Hu, G., Ding, W., and Wang, X. (2013). AAV2-mediated striatum delivery of human CDNF prevents the deterioration of midbrain dopamine neurons in a 6-hydroxydopamine induced parkinsonian rat model. Exp. Neurol. 248, 148–156.10.1016/j.expneurol.2013.06.002Search in Google Scholar PubMed

Requejo, C., Ruiz-Ortega, J., Cepeda, H., Sharma, A., Sharma, H., Ozkizilcik, A., Tian, R., Moessler, H., Ugedo, L., and Lafuente, J. (2017). Nanodelivery of cerebrolysin and rearing in enriched environment induce neuroprotective effects in a preclinical rat model of Parkinson’s disease. Mol. Neurobiol. 1–14. DOI: 10.1007/s12035-017-0741-x [Epub ahead of print].10.1007/s12035-017-0741-xSearch in Google Scholar PubMed

Reyhani-Rad, S. and Mahmoudi, J. (2016). Effect of adenosine A2A receptor antagonists on motor disorders induced by 6-hydroxydopamine in rat. Acta Cir. Bras. 31, 133–137.10.1590/S0102-865020160020000008Search in Google Scholar PubMed

Rosenblad, C., Kirik, D., Devaux, B., Moffat, B., Phillips, H.S., and Björklund, A. (1999). Protection and regeneration of nigral dopaminergic neurons by neurturin or GDNF in a partial lesion model of Parkinson’s disease after administration into the striatum or the lateral ventricle. Eur. J. Neurosci. 11, 1554–1566.10.1046/j.1460-9568.1999.00566.xSearch in Google Scholar

Roux, P.P. and Barker, P.A. (2002). Neurotrophin signaling through the p75 neurotrophin receptor. Prog. Neurobiol. 67, 203–233.10.1016/S0301-0082(02)00016-3Search in Google Scholar PubMed

Ryu, E.J., Harding, H.P., Angelastro, J.M., Vitolo, O.V., Ron, D., and Greene, L.A. (2002). Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s disease. J. Neurosci. 22, 10690–10698.10.1523/JNEUROSCI.22-24-10690.2002Search in Google Scholar PubMed

Scalzo, P., Kümmer, A., Bretas, T.L., Cardoso, F., and Teixeira, A.L. (2010). Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson’s disease. J. Neurol. 257, 540–545.10.1007/s00415-009-5357-2Search in Google Scholar PubMed

Segal, R.A. (2003). Selectivity in neurotrophin signaling: theme and variations. Annu. Rev. Neurosci. 26, 299–330.10.1146/annurev.neuro.26.041002.131421Search in Google Scholar PubMed

Seroogy, K.B., Lundgren, K.H., Tran, T., Guthrie, K.M., Isackson, P.J., and Gall, C.M. (1994). Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J. Comp. Neurol. 342, 321–334.10.1002/cne.903420302Search in Google Scholar PubMed

Severi, I., Senzacqua, M., Mondini, E., Fazioli, F., Cinti, S., and Giordano, A. (2015). Activation of transcription factors STAT1 and STAT5 in the mouse median eminence after systemic ciliary neurotrophic factor administration. Brain Res. 1622, 217–229.10.1016/j.brainres.2015.06.028Search in Google Scholar PubMed

Shingo, T., Yoshida, H., and Ohmoto, T. (2002). Neuroprotective and restorative effects of intrastriatal grafting of encapsulated GDNF-producing cells in a rat model of Parkinson’s disease. J. Neurosci. Res. 69, 946–954.10.1002/jnr.10375Search in Google Scholar PubMed

Sidorova, Y. and Saarma, M. (2016). Glial cell line-derived neurotrophic factor family ligands and their therapeutic potential. Mol. Biol. (Moscow) 50, 521–531.10.1134/S0026893316040105Search in Google Scholar

Sieving, P.A., Caruso, R.C., Tao, W., Coleman, H.R., Thompson, D.J., Fullmer, K.R., and Bush, R.A. (2006). Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc. Natl. Acad. Sci. USA. 103, 3896–3901.10.1073/pnas.0600236103Search in Google Scholar PubMed PubMed Central

Sleeman, I.J., Boshoff, E.L., and Duty, S. (2012). Fibroblast growth factor-20 protects against dopamine neuron loss in vitro and provides functional protection in the 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Neuropharmacology. 63, 1268–1277.10.1016/j.neuropharm.2012.07.029Search in Google Scholar PubMed

Slevin, J.T., Gerhardt, G.A., Smith, C.D., Gash, D.M., Kryscio, R., and Young, B. (2005). Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J. Neurosurg. 102, 216–222.10.3171/jns.2005.102.2.0216Search in Google Scholar PubMed

Stefanis, L. (2012). α-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a009399.10.1101/cshperspect.a009399Search in Google Scholar PubMed PubMed Central

Steiner, B., Winter, C., Hosman, K., Siebert, E., Kempermann, G., Petrus, D.S., and Kupsch, A. (2006). Enriched environment induces cellular plasticity in the adult substantia nigra and improves motor behavior function in the 6-OHDA rat model of Parkinson’s disease. Exp. Neurol. 199, 291–300.10.1016/j.expneurol.2005.11.004Search in Google Scholar PubMed

Stöckli, K., Lottspeich, F., Sendtner, M., Masiakowski, P., Carroll, P., Götz, R., Lindholm, D., and Thoenen, H. (1989). Molecular cloning, expression and regional distribution of rat ciliary neurotrophic factor. Nature 342, 920–923.10.1038/342920a0Search in Google Scholar PubMed

Sveinbjornsdottir, S. (2016). The clinical symptoms of Parkinson’s disease. J. Neurochem. 139, 318–324.10.1111/jnc.13691Search in Google Scholar PubMed

Teixeira, A.L., Barbosa, I.G., Diniz, B.S., and Kummer, A. (2010). Circulating levels of brain-derived neurotrophic factor: correlation with mood, cognition and motor function. Biomark. Med. 4, 871–887.10.2217/bmm.10.111Search in Google Scholar PubMed

Tsukahara, T., Takeda, M., Shimohama, S., Ohara, O., and Hashimoto, N. (1995). Effects of brain-derived neurotrophic factor on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in monkeys. Neurosurgery 37, 733–741.10.1227/00006123-199510000-00018Search in Google Scholar PubMed

Vicario-Abejón, C., Owens, D., McKay, R., and Segal, M. (2002). Role of neurotrophins in central synapse formation and stabilization. Nat. Rev. Neurosci. 3, 965–974.10.1038/nrn988Search in Google Scholar PubMed

Voutilainen, M.H., Bäck, S., Peränen, J., Lindholm, P., Raasmaja, A., Männistö, P.T., Saarma, M., and Tuominen, R.K. (2011). Chronic infusion of CDNF prevents 6-OHDA-induced deficits in a rat model of Parkinson’s disease. Exp. Neurol. 228, 99–108.10.1016/j.expneurol.2010.12.013Search in Google Scholar

Voutilainen, M.H., De Lorenzo, F., Stepanova, P., Bäck, S., Yu, L.-Y., Lindholm, P., Pörsti, E., Saarma, M., Männistö, P.T., and Tuominen, R.K. (2017). Evidence for an additive neurorestorative effect of simultaneously administered CDNF and GDNF in hemiparkinsonian rats: implications for different mechanism of action. eNeuro 4, 1–14. ENEURO-0117-16.2017.10.1523/ENEURO.0117-16.2017Search in Google Scholar

Wakabayashi, K., Tanji, K., Mori, F., and Takahashi, H. (2007). The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of α-synuclein aggregates. Neuropathology 27, 494–506.10.1111/j.1440-1789.2007.00803.xSearch in Google Scholar PubMed

Weissmiller, A.M. and Wu, C. (2012). Current advances in using neurotrophic factors to treat neurodegenerative disorders. Transl. Neurodegener. 1, 14.10.1186/2047-9158-1-14Search in Google Scholar PubMed

Wu, S.-Y., Wang, T.-F., Yu, L., Jen, C.J., Chuang, J.-I., Wu, F.-S., Wu, C.-W., and Kuo, Y.-M. (2011). Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav. Immun. 25, 135–146.10.1016/j.bbi.2010.09.006Search in Google Scholar PubMed

Yahr, M.D., Duvoisin, R.C., Schear, M.J., Barrett, R.E., and Hoehn, M.M. (1969). Treatment of parkinsonism with levodopa. Arch. Neurol. 21, 343–354.10.1001/archneur.1969.00480160015001Search in Google Scholar PubMed

Yamada, M., Ohnishi, H., Sano, S.i., Araki, T., Nakatani, A., Ikeuchi, T., and Hatanaka, H. (1999). Brain-derived neurotrophic factor stimulates interactions of Shp2 with phosphatidylinositol 3-kinase and Grb2 in cultured cerebral cortical neurons. J. Neurochem. 73, 41–49.10.1046/j.1471-4159.1999.0730041.xSearch in Google Scholar PubMed

Yan, Q., Rosenfeld, R., Matheson, C., Hawkins, N., Lopez, O., Bennett, L., and Welcher, A. (1997). Expression of brain-derived neurotrophic factor protein in the adult rat central nervous system. Neuroscience 78, 431–448.10.1016/S0306-4522(96)00613-6Search in Google Scholar PubMed

Yang, P., Arnold, S.A., Habas, A., Hetman, M., and Hagg, T. (2008). Ciliary neurotrophic factor mediates dopamine D2 receptor-induced CNS neurogenesis in adult mice. J. Neurosci. 28, 2231–2241.10.1523/JNEUROSCI.3574-07.2008Search in Google Scholar PubMed PubMed Central

Yuan, J., Huang, G., Xiao, Z., Lin, L., and Han, T. (2013). Overexpression of β-NGF promotes differentiation of bone marrow mesenchymal stem cells into neurons through regulation of AKT and MAPK pathway. Mol. Cell. Biochem. 383, 201–211.10.1007/s11010-013-1768-6Search in Google Scholar PubMed

Yurek, D.M. and Fletcher-Turner, A. (2000). Lesion-induced increase of BDNF is greater in the striatum of young versus old rat brain. Exp. Neurol. 161, 392–396.10.1006/exnr.1999.7274Search in Google Scholar PubMed

Zhang, Z.-J., Li, Y.-J., Liu, X.-G., Huang, F.-X., Liu, T.-J., Jiang, D.-M., Lv, X.-M., and Luo, M. (2015). Human umbilical cord blood stem cells and brain-derived neurotrophic factor for optic nerve injury: a biomechanical evaluation. Neural Regen. Res. 10, 1134–1138.10.4103/1673-5374.160110Search in Google Scholar PubMed PubMed Central

Zhao, H., Cheng, L., Liu, Y., Zhang, W., Maharjan, S., Cui, Z., Wang, X., Tang, D., and Nie, L. (2014). Mechanisms of anti-inflammatory property of conserved dopamine neurotrophic factor: inhibition of JNK signaling in lipopolysaccharide-induced microglia. J. Mol. Neurosci. 52, 186–192.10.1007/s12031-013-0120-7Search in Google Scholar PubMed

Zhou, L., Baumgartner, B.J., Hill-Felberg, S.J., McGowen, L.R., and Shine, H.D. (2003). Neurotrophin-3 expressed in situ induces axonal plasticity in the adult injured spinal cord. J. Neurosci. 23, 1424–1431.10.1523/JNEUROSCI.23-04-01424.2003Search in Google Scholar PubMed

Ziebell, M., Khalid, U., Klein, A.B., Aznar, S., Thomsen, G., Jensen, P., and Knudsen, G.M. (2012). Striatal dopamine transporter binding correlates with serum BDNF levels in patients with striatal dopaminergic neurodegeneration. Neurobiol. Aging 33, 428e1–428e5.10.1016/j.neurobiolaging.2010.11.010Search in Google Scholar PubMed

Received: 2017-06-18
Accepted: 2017-10-27
Published Online: 2018-01-06
Published in Print: 2018-07-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2017-0040/html
Scroll to top button