Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 22, 2019

Advances in the applications of graphene adsorbents: from water treatment to soil remediation

  • Lianqin Zhao

    Lianqin Zhao received his BS degree from Qingdao University of Science and Technology in 2012. He obtained his MS degree from Southwest Minzu University in 2015. He is pursuing his PhD at Shanghai Jiao Tong University under the supervision of Prof. Deyi Wu. His research focuses on the environ-application of nanotechnology.

    , Sheng-Tao Yang

    Sheng-Tao Yang received his BSc degree in 2006 and PhD in 2011 at Peking University majoring in chemistry. He was a research scholar at Clemson University from 2008 to 2009. He also worked as a visiting scholar at Hunan University from 2011 to 2012. Since 2011, he joined the College of Chemistry and Environment Protection Engineering, Southwest Minzu University, in China, as an assistant professor. He was promoted to full professor in 2016. His research interests are primarily in the preparation, environmental applications, and biosafety of carbon nanomaterials.

    EMAIL logo
    , Ailimire Yilihamu

    Ailimire Yilihamu obtained her BS degree in Applied Chemistry from Southwest Minzu University in 2017. She is pursuing her master’s degree at Southwest Minzu University under the supervision of Prof. Sheng-Tao Yang. Her research focuses on the bio-effects of carbon nanomaterials.

    and Deyi Wu

    Deyi Wu received his PhD in 1994 at Ehime University, Japan. He worked in University and Scientific Research Institute until 2001. He joined in the School of Environmental Science and Engineering of Shanghai Jiao Tong University in 2001. His research focused on eco-material exploitation and ecological remediation.

    EMAIL logo

Abstract

Graphene, a novel carbon allotrope, is single-layered graphite with honeycomb lattice. Its unique structure endows graphene many outstanding physical/chemical properties and a large surface area, which are beneficial to its applications in many areas. The potential applications of graphene in pollution remediation are adsorption, membrane separation, catalysis, environmental analysis, and so on. The adsorption efficiency of graphene adsorbents largely depends on its surface area, porous structure, oxygen-containing groups and other functional groups, adsorption conditions, and also the properties of adsorbates. With appropriate modifications, graphene materials are mostly efficient adsorbents for organic pollutants (e.g. dyes, pesticides, and oils) and inorganic pollutants (e.g. metal ions, nonmetal ions, and gas). Since our first report of graphene adsorbents in 2010, plenty of studies have been dedicated to developing various graphene adsorbents and to evaluating their performance in treating contaminated water. Recently, there is a growing trend in graphene adsorbents that could be applied in soil remediation, where the situation is much more complicated than in aqueous systems. Herein, we review the design of graphene adsorbents for water treatment and analyze their potential in soil remediation. Several suggestions to accelerate the research on graphene-based soil remediation technology are proposed.

Award Identifier / Grant number: 21777132 and 21507084

Funding statement: We acknowledge financial support from the China Natural Science Foundation (Funder Id: 10.13039/501100001809, nos. 21777132 and 21507084), Top-notch Young Talents Program of China, and the Functional Polymer Innovation Team Project, Southwest Minzu University (no. 14CXTD04).

About the authors

Lianqin Zhao

Lianqin Zhao received his BS degree from Qingdao University of Science and Technology in 2012. He obtained his MS degree from Southwest Minzu University in 2015. He is pursuing his PhD at Shanghai Jiao Tong University under the supervision of Prof. Deyi Wu. His research focuses on the environ-application of nanotechnology.

Sheng-Tao Yang

Sheng-Tao Yang received his BSc degree in 2006 and PhD in 2011 at Peking University majoring in chemistry. He was a research scholar at Clemson University from 2008 to 2009. He also worked as a visiting scholar at Hunan University from 2011 to 2012. Since 2011, he joined the College of Chemistry and Environment Protection Engineering, Southwest Minzu University, in China, as an assistant professor. He was promoted to full professor in 2016. His research interests are primarily in the preparation, environmental applications, and biosafety of carbon nanomaterials.

Ailimire Yilihamu

Ailimire Yilihamu obtained her BS degree in Applied Chemistry from Southwest Minzu University in 2017. She is pursuing her master’s degree at Southwest Minzu University under the supervision of Prof. Sheng-Tao Yang. Her research focuses on the bio-effects of carbon nanomaterials.

Deyi Wu

Deyi Wu received his PhD in 1994 at Ehime University, Japan. He worked in University and Scientific Research Institute until 2001. He joined in the School of Environmental Science and Engineering of Shanghai Jiao Tong University in 2001. His research focused on eco-material exploitation and ecological remediation.

References

Ahmad, M.; Rajapaksha, A. U.; Lim, J. E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S. S.; Ok, Y. S. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere2014, 99, 19–33.10.1016/j.chemosphere.2013.10.071Search in Google Scholar PubMed

Ahmad, M.; Ok, Y. S.; Rajapaksha, A. U.; Lim, J. E.; Kim, B. Y.; Ahn, J. H.; Lee, Y. H.; Al-wabel, M. I.; Lee, S. E.; Lee, S. S. Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: chemical, microbial and spectroscopic assessments. J. Hazard. Mater. 2016, 301, 179–186.10.1016/j.jhazmat.2015.08.029Search in Google Scholar PubMed

Ahmed, I.; Jhung, S. H. Composites of metal-organic frameworks: preparation and application in adsorption. Mater. Today2014, 17, 136–146.10.1016/j.mattod.2014.03.002Search in Google Scholar

Ai, L.; Jiang, J. Removal of methylene blue from aqueous solution with self-assembled cylindrical graphene-carbon nanotube hybrid. Chem. Eng. J.2012, 192, 156–163.10.1016/j.cej.2012.03.056Search in Google Scholar

Ai, L.; Zhang, C.; Chen, Z. Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J. Hazard. Mater.2011, 192, 1515–1524.10.1016/j.jhazmat.2011.06.068Search in Google Scholar PubMed

Anbia, M.; Salehi, S. Removal of acid dyes from aqueous media by adsorption onto amino-functionalized nanoporous silica SBA-3. Dyes Pigments2012, 94, 1–9.10.1016/j.dyepig.2011.10.016Search in Google Scholar

Andjelkovic, I.; Tran, D. N. H; Kabiri, S.; Azari, S.; Markovic, M.; Losic, D. Graphene aerogels decorated with α-FeOOH nanoparticles for efficient adsorption of arsenic from contaminated waters. ACS Appl. Mater. Interfaces2015, 7, 9758–9766.10.1021/acsami.5b01624Search in Google Scholar PubMed

Bai, S.; Shen, X.; Zhong, X.; Liu, Y.; Zhu, G.; Xu, X.; Chen, K. One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal. Carbon2012, 50, 2337–2346.10.1016/j.carbon.2012.01.057Search in Google Scholar

Bai, L.; Li, Z.; Zhang, Y.; Wang, T.; Lu, R.; Zhou, W.; Gao, H.; Zhang, S. Synthesis of water-dispersible graphene-modified magnetic polypyrrole nanocomposite and its ability to efficiently adsorb methylene blue from aqueous solution. Chem. Eng. J. 2015, 279, 757–766.10.1016/j.cej.2015.05.068Search in Google Scholar

Bele, S.; Samanidou, V.; Deliyanni, E. Effect of the reduction degree of graphene oxide on the adsorption of bisphenol A. Chem. Eng. Res. Des. 2016, 109, 573–585.10.1016/j.cherd.2016.03.002Search in Google Scholar

Beltrán, F. J.; García-Araya, J. F.; Álvarez, P. M. Sodium dodecylbenzenesulfonate removal from water and wastewater. 1. kinetics of decomposition by ozonation. Ind. Eng. Chem. Res. 2000, 39, 2214–2227.10.1021/ie990721aSearch in Google Scholar

Benatti, C. T.; Granhen Tavares, C. R.; Lenzi, E. Sulfate removal from waste chemicals by precipitation. J. Environ. Manage. 2009, 90, 504–511.10.1016/j.jenvman.2007.12.006Search in Google Scholar PubMed

Bian, Y.; Bian, Z.; Zhang, J.; Ding, A.; Liu, S.; Wang, H. Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal. Appl. Surf. Sci. 2015, 329, 269–275.10.1016/j.apsusc.2014.12.090Search in Google Scholar

Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M. B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166.10.1016/j.jhazmat.2013.12.018Search in Google Scholar PubMed

Boruah, P. K.; Sharma, B.; Hussain, N.; Das, M. R. Magnetically recoverable Fe3O4/graphene nanocomposite towards efficient removal of triazine pesticides from aqueous solution: investigation of the adsorption phenomenon and specific ion effect. Chemosphere2017, 168, 1058–1067.10.1016/j.chemosphere.2016.10.103Search in Google Scholar PubMed

Cao, X.; Ma, L.; Liang, Y.; Gao, B.; Harris, W. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ. Sci. Technol.2011, 45, 4884–4889.10.1021/es103752uSearch in Google Scholar PubMed

Chandra, V.; Kim, K. S. Highly selective adsorption of Hg2+ by a polypyrrole-reduced graphene oxide composite. Chem. Commun. 2011, 47, 3942–3944.10.1039/c1cc00005eSearch in Google Scholar PubMed

Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I. C.; Kim, K. S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano2010, 4, 3979–3986.10.1021/nn1008897Search in Google Scholar PubMed

Chang, Y.; Yang, S.; Liu, J.; Dong, E.; Wang, Y.; Cao, A.; Liu, Y.; Wang, H. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett. 2011, 200, 201–210.10.1016/j.toxlet.2010.11.016Search in Google Scholar PubMed

Chao, Y.; Zhu, W.; Wu, X.; Hou, F.; Xun, S.; Wu, P.; Ji, H.; Xu, H.; Li, H. Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic. Chem. Eng. J.2014, 243, 60–67.10.1016/j.cej.2013.12.048Search in Google Scholar

Chatterjee, S.; Lee, M. W.; Woo, S. H. Adsorption of Congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour. Technol. 2010, 101, 1800–1806.10.1016/j.biortech.2009.10.051Search in Google Scholar PubMed

Chen, H.; Zheng, C.; Tu, C.; Shen, Z. Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere2000, 41, 229–234.10.1016/S0045-6535(99)00415-4Search in Google Scholar PubMed

Chen, J.; Hao, Y.; Liu, Y.; Gou, J. Magnetic graphene oxides as highly effective adsorbents for rapid removal of a cationic dye rhodamine B from aqueous solutions. RSC Adv.2013a, 3, 7254–7258.10.1039/c3ra22599bSearch in Google Scholar

Chen, Y.; Chen, L.; Bai, H.; Li, L. Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J. Mater. Chem. A2013b, 1, 1992–2001.10.1039/C2TA00406BSearch in Google Scholar

Chen, H.; Gao, B.; Li, H. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J. Hazard. Mater. 2015, 282, 201–207.10.1016/j.jhazmat.2014.03.063Search in Google Scholar PubMed

Chen, L.; Li, Y.; Du, Q.; Wang, Z.; Xia, Y.; Yedinak, E.; Lou, J.; Ci, L. High performance agar/graphene oxide composite aerogel for methylene blue removal. Carbohydr. Polym. 2017a, 155, 345–353.10.1016/j.carbpol.2016.08.047Search in Google Scholar PubMed

Chen, L.; Wang, C.; Li, H.; Qu, X.; Yang, S.; Chang, X. Bioaccumulation and toxicity of 13C-skeleton labeled graphene oxide in wheat. Environ. Sci. Technol. 2017b, 51, 10146–10153.10.1021/acs.est.7b00822Search in Google Scholar PubMed

Chen, L.; Yang, S.; Liu, Y.; Mo, M.; Guan, X.; Huang, L.; Sun, C.; Yang, S.; Chang, X. Toxicity of graphene oxide to naked oats (Avena sativa L.) in hydroponic and soil cultures. RSC Adv. 2018, 8, 15336–15343.10.1039/C8RA01753KSearch in Google Scholar PubMed PubMed Central

Cheng, Z.; Liao, J.; He, B.; Zhang, F.; Zhang, F.; Huang, X.; Zhou, L. One-step fabrication of graphene oxide enhanced magnetic composite gel for highly efficient dye adsorption and catalysis. ACS Sustain. Chem. Eng. 2015, 3, 1677–1685.10.1021/acssuschemeng.5b00383Search in Google Scholar

Chong, C.; Deng, J.; Lei, B.; He, A.; Zhang, X.; Ma, L.; Li, S.; Zhao, C. Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers. J. Hazard. Mater. 2013, 263, 467–478.10.1016/j.jhazmat.2013.09.065Search in Google Scholar PubMed

Conner, J. R. Chemical Fixation and Solidification of Hazardous Wastes. Van Nostrand Reinhold: New York, 1990, p. 692.Search in Google Scholar

Cui, L.; Wang, Y.; Gao, L.; Hu, L.; Yan, L.; Wei, Q.; Du, B. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: adsorption mechanism and separation property. Chem. Eng. J.2015, 281, 1–10.10.1016/j.cej.2015.06.043Search in Google Scholar

Dai, H.; Huang, Y.; Huang, H. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydr. Polym. 2018, 185, 1–11.10.1016/j.carbpol.2017.12.073Search in Google Scholar PubMed

Das, T. R.; Patra, S.; Madhuri, R.; Sharma, P. K. Bismuth oxide decorated graphene oxide nanocomposites synthesized via sonochemical assisted hydrothermal method for adsorption of cationic organic dyes. J. Colloid Interface Sci. 2018, 509, 82–93.10.1016/j.jcis.2017.08.102Search in Google Scholar PubMed

De Marchi, L.; Pretti, C.; Gabriel, B.; Marques, P. A. A. P.; Freitas, R.; Neto, V. An overview of graphene materials: properties, applications and toxicity on aquatic environments. Sci. Total Environ.2018, 631–632, 1440–1456.10.1016/j.scitotenv.2018.03.132Search in Google Scholar PubMed

Deng, X.; Lu, L.; Li, H.; Luo, F. The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. J. Hazard. Mater.2010, 183, 923–930.10.1016/j.jhazmat.2010.07.117Search in Google Scholar PubMed

Deng, J.; Zhang, X.; Zeng, G.; Gong, J.; Niu, Q.; Liang, J. Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chem. Eng. J. 2013, 226, 189–200.10.1016/j.cej.2013.04.045Search in Google Scholar

Dhal, B.; Thatoi, H. N.; Das, N. N.; Pandey, B. D. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J. Hazard. Mater. 2013, 250, 272–291.10.1016/j.jhazmat.2013.01.048Search in Google Scholar PubMed

Diagboya, P. N.; Olu-Owolabi, B. I.; Zhou, D.; Han, B. Graphene oxide-tripolyphosphate hybrid used as a potent sorbent for cationic dyes. Carbon2014, 79, 174–182.10.1016/j.carbon.2014.07.057Search in Google Scholar

Dong, Z.; Wang, D.; Liu, X.; Pei, X.; Chen, L.; Jin, J. Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity. J. Mater. Chem. A2014, 2, 5034–5040.10.1039/C3TA14751GSearch in Google Scholar

Dong, S.; Dou, X.; Mohan, D.; Pittman, C. U.; Luo, J. Synthesis of graphene oxide/schwertmannite nanocomposites and their application in Sb(V) adsorption from water. Chem. Eng. J. 2015, 270, 205–214.10.1016/j.cej.2015.01.071Search in Google Scholar

Dong, S.; Sun, Y.; Gao, B.; Shi, X.; Xu, H.; Wu, J.; Wu, J. Retention and transport of graphene oxide in water-saturated limestone media. Chemosphere2017, 180, 506–512.10.1016/j.chemosphere.2017.04.052Search in Google Scholar PubMed

Du, Q.; Sun, J.; Li, Y.; Yang, X.; Wang, X.; Wang, Z.; Xia, L. Highly enhanced adsorption of Congo red onto graphene oxide/chitosan fibers by wet-chemical etching off silica nanoparticles. Chem. Eng. J. 2014, 245, 99–106.10.1016/j.cej.2014.02.006Search in Google Scholar

Dubey, R.; Bajpai, J.; Bajpai, A. K. Green synthesis of graphene sand composite (GSC) as novel adsorbent for efficient removal of Cr (VI) ions from aqueous solution. J. Water Process Eng. 2015, 5, 83–94.10.1016/j.jwpe.2015.01.004Search in Google Scholar

Fakhri, A. Adsorption characteristics of graphene oxide as a solid adsorbent for aniline removal from aqueous solutions: kinetics, thermodynamics and mechanism studies. J. Saudi Chem. Soc. 2017, 21, S52–S57.10.1016/j.jscs.2013.10.002Search in Google Scholar

Fan, L.; Luo, C.; Li, X.; Lu, F.; Qiu, H.; Sun, M. Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J. Hazard. Mater. 2012a, 215, 272–279.10.1016/j.jhazmat.2012.02.068Search in Google Scholar PubMed

Fan, L.; Luo, C.; Sun, M.; Qiu, H. Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal. J. Mater. Chem. 2012b, 22, 24577–24583.10.1039/c2jm35378dSearch in Google Scholar

Fan, W.; Gao, W.; Zhang, C.; Tjiu, W. W.; Pan, J.; Liu, T. Hybridization of graphene sheets and carbon-coated Fe3O4 nanoparticles as a synergistic adsorbent of organic dyes. J. Mater. Chem. 2012c, 22, 25108–25115.10.1039/c2jm35609kSearch in Google Scholar

Fan, L.; Luo, C.; Sun, M.; Qiu, H.; Li, X. Synthesis of magnetic β-cyclodextrin-chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloid Surface B2013, 103, 601–607.10.1016/j.colsurfb.2012.11.023Search in Google Scholar PubMed

Fang, Z.; Hu, Y.; Wu, X.; Qin, Y.; Cheng, J.; Chen, Y.; Tan, P.; Li, H. A novel magnesium ascorbyl phosphate graphene-based monolith and its superior adsorption capability for bisphenol A. Chem. Eng. J.2018, 334, 948–956.10.1016/j.cej.2017.10.067Search in Google Scholar

Farghali, A. A.; Bahgat, M.; El Rouby, W. M. A.; Khedr, M. H. Preparation, decoration and characterization of graphene sheets for methyl green adsorption. J. Alloy. Compd.2013, 555, 193–200.10.1016/j.jallcom.2012.11.190Search in Google Scholar

Fei, Y.; Yong, L.; Sheng, H.; Jie, M. Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution. J. Colloid Interf. Sci. 2016, 484, 196–204.10.1016/j.jcis.2016.08.068Search in Google Scholar PubMed

Fellet, G.; Marchiol, L.; Delle Vedove, G.; Peressotti, A. Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere2011, 83, 1262–1267.10.1016/j.chemosphere.2011.03.053Search in Google Scholar PubMed

Feriancikova, L.; Xu, S. Deposition and remobilization of graphene oxide within saturated sand packs. J. Hazard. Mater. 2012, 235, 194–200.10.1016/j.jhazmat.2012.07.041Search in Google Scholar PubMed

Gan, L.; Shang, S.; Hu, E.; Yuen, C. W. M.; Jiang, S. Konjac glucomannan/graphene oxide hydrogel with enhanced dyes adsorption capability for methyl blue and methyl orange. Appl. Surf. Sci. 2015, 357, 866–872.10.1016/j.apsusc.2015.09.106Search in Google Scholar

Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S. M.; Su, X. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interf. Sci. 2012, 368, 540–546.10.1016/j.jcis.2011.11.015Search in Google Scholar PubMed

Gao, H.; Sun, Y.; Zhou, J.; Xu, R.; Duan, H. Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl. Mater. Interfaces2013, 5, 425–432.10.1021/am302500vSearch in Google Scholar PubMed

Ge, H.; Ma, Z. Microwave preparation of triethylenetetramine modified graphene oxide/chitosan composite for adsorption of Cr(VI). Carbohyd. Polym. 2015, 131, 280–287.10.1016/j.carbpol.2015.06.025Search in Google Scholar PubMed

Ge, H.; Wang, C.; Liu, S.; Huang, Z. Synthesis of citric acid functionalized magnetic graphene oxide coated corn straw for methylene blue adsorption. Bioresour. Technol.2016, 221, 419–429.10.1016/j.biortech.2016.09.060Search in Google Scholar PubMed

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.10.1038/nmat1849Search in Google Scholar PubMed

Guo, L.; Ye, P.; Wang, J.; Fu, F.; Wu, Z. Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal. J. Hazard. Mater. 2015, 298, 28–35.10.1016/j.jhazmat.2015.05.011Search in Google Scholar PubMed

Guo, L.; Xu, Y.; Zhuo, M.; Liu, L.; Xu, Q.; Wang, L.; Shi, C.; Ye, B.; Fan, X.; Chen, W. Highly efficient removal of Gd(III) using hybrid hydrosols of carbon nanotubes/graphene oxide in dialysis bags and synergistic enhancement effect. Chem. Eng. J. 2018a, 348, 535–545.10.1016/j.cej.2018.04.212Search in Google Scholar

Guo, J.; Yan, X.; Liu, Q.; Li, Q.; Xu, X.; Kang, L.; Cao, Z.; Chai, G.; Chen, J.; Wang, Y.; Yao, J. The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. Nano Energy2018b, 46, 347–355.10.1016/j.nanoen.2018.02.026Search in Google Scholar

Gupta, K.; Khatri, O. P. Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: plausible adsorption pathways. J. Colloid Interface Sci. 2017, 501, 11–21.10.1016/j.jcis.2017.04.035Search in Google Scholar PubMed

Gupta, V. K.; Rastogi, A.; Nayak, A. Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J. Colloid Interf. Sci.2010, 342, 135–141.10.1016/j.jcis.2009.09.065Search in Google Scholar PubMed

Hameed, B. H.; Ahmad, A. A. Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J. Hazard. Mater. 2009, 164, 870–875.10.1016/j.jhazmat.2008.08.084Search in Google Scholar PubMed

Hao, L.; Song, H.; Zhang, L.; Wan, X.; Tang, Y.; Lv, Y. SiO2/graphene composite for highly selective adsorption of Pb(II) ion. J. Colloid Interf. Sci.2012, 369, 381–387.10.1016/j.jcis.2011.12.023Search in Google Scholar PubMed

He, F.; Fan, J.; Ma, D.; Zhang, L.; Leung, C.; Chan, H. L. The attachment of FeO nanoparticles to graphene oxide by covalent bonding. Carbon2010, 48, 3139–3144.10.1016/j.carbon.2010.04.052Search in Google Scholar

He, J.; Wang, D.; Fang, H.; Fu, Q.; Zhou, D. Inhibited transport of graphene oxide nanoparticles in granular quartz sand coated with Bacillus subtilis and Pseudomonas putida biofilms. Chemosphere2017, 169, 1–8.10.1016/j.chemosphere.2016.11.040Search in Google Scholar PubMed

Hu, X.; Liu, Y.; Wang, H.; Chen, A.; Zeng, G.; Liu, S.; Guo, Y.; Hu, X.; Li, T.; Wang, Y. Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Sep. Purif. Technol. 2013, 108, 189–195.10.1016/j.seppur.2013.02.011Search in Google Scholar

Huang, X.; Pan, M. The highly efficient adsorption of Pb(II) on graphene oxides: a process combined by batch experiments and modeling techniques. J. Mol. Liq. 2016, 215, 410–416.10.1016/j.molliq.2015.12.061Search in Google Scholar

Huang, Z.; Zheng, X.; Lv, W.; Wang, M.; Yang, Q.; Kang, F. Adsorption of lead (II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir2011, 27, 7558–7562.10.1021/la200606rSearch in Google Scholar PubMed

Huang, B.; Liu, Y.; Li, B.; Liu, S.; Zeng, G.; Zeng, Z.; Wang, X.; Ning, Q.; Zheng, B.; Yang, C. Effect of Cu(II) ions on the enhancement of tetracycline adsorption by Fe3O4@SiO2-chitosan/graphene oxide nanocomposite. Carbohyd. Polym. 2017, 157, 576–585.10.1016/j.carbpol.2016.10.025Search in Google Scholar PubMed

Huang, Q.; Chen, Y.; Yu, H.; Yan, L.; Zhang, J.; Wang, B.; Du, B.; Xing, L. Magnetic graphene oxide/MgAl-layered double hydroxide nanocomposite: one-pot solvothermal synthesis, adsorption performance and mechanisms for Pb2+, Cd2+, and Cu2+. Chem. Eng. J. 2018, 341, 1–9.10.1016/j.cej.2018.01.156Search in Google Scholar

Inyang, M.; Gao, B.; Zimmerman, A.; Zhang, M.; Chen, H. Synthesis, characterization, and dye sorption ability of carbon nanotube-biochar nanocomposites. Chem. Eng. J. 2014, 236, 39–46.10.1016/j.cej.2013.09.074Search in Google Scholar

Jabeen, H.; Chandra, V.; Jung, S.; Lee, J. W.; Kim, K. S.; Bin Kim, S. Enhanced Cr(VI) removal using iron nanoparticle decorated graphene. Nanoscale2011, 3, 3583–3585.10.1039/c1nr10549cSearch in Google Scholar PubMed

Jiang, J.; Xu, R.; Jiang, T.; Li, Z. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J. Hazard. Mater. 2012a, 229, 145–150.10.1016/j.jhazmat.2012.05.086Search in Google Scholar PubMed

Jiang, T.; Jiang, J.; Xu, R. K.; Li, Z. Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar. Chemosphere2012b, 89, 249–256.10.1016/j.chemosphere.2012.04.028Search in Google Scholar PubMed

Jiang, T.; Liu, W.; Mao, Y.; Zhang, L.; Cheng, J.; Gong, M.; Zhao, H.; Dai, L.; Zhang, S.; Zhao, Q. Adsorption behavior of copper ions from aqueous solution onto graphene oxide-CdS composite. Chem. Eng. J.2015, 259, 603–610.10.1016/j.cej.2014.08.022Search in Google Scholar

Jiang, L.; Liu, Y.; Zeng, G.; Xiao, F.; Hu, X.; Hu, X.; Wang, H.; Li, T.; Zhou, L.; Tan, X. Removal of 17β-estradiol by few-layered graphene oxide nanosheets from aqueous solutions: external influence and adsorption mechanism. Chem. Eng. J.2016, 284, 93–102.10.1016/j.cej.2015.08.139Search in Google Scholar

Jiang, L.; Liu, Y.; Liu, S.; Hu, X.; Zeng, G.; Hu, X.; Liu, S.; Liu, S.; Huang, B.; Li, M. Fabrication of β-cyclodextrin/poly (l-glutamic acid) supported magnetic graphene oxide and its adsorption behavior for 17β-estradiol. Chem. Eng. J.2017, 308, 597–605.10.1016/j.cej.2016.09.067Search in Google Scholar

Jin, Z.; Wang, X.; Sun, Y.; Ai, Y.; Wang, X. Adsorption of 4-n-nonylphenol and bisphenol-a on magnetic reduced graphene oxides: a combined experimental and theoretical studies. Environ. Sci. Technol. 2015, 49, 9168–9175.10.1021/acs.est.5b02022Search in Google Scholar PubMed

Jr, W. S. H.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.10.1021/ja01539a017Search in Google Scholar

Juang, R. S.; Shiau, R. C. Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. J. Membrane. Sci. 2000, 165, 159–167.10.1016/S0376-7388(99)00235-5Search in Google Scholar

Kabiri, S.; Tran, D. N. H.; Altalhi, T.; Losic, D. Outstanding adsorption performance of graphene-carbon nanotube aerogels for continuous oil removal. Carbon2014, 80, 523–533.10.1016/j.carbon.2014.08.092Search in Google Scholar

Kadam, M. M.; Lokare, O. R.; Kireeti, K. V. M. K.; Gaikar, V. G.; Jha, N. Impact of the degree of functionalization of graphene oxide on the electrochemical charge storage property and metal ion adsorption. RSC Adv. 2014, 4, 62737–62745.10.1039/C4RA08862JSearch in Google Scholar

Kerkez-Kuyumcu, O.; Bayazit, S. S.; Salam, M. A. Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets. J. Ind. Eng. Chem. 2016, 36, 198–205.10.1016/j.jiec.2016.01.040Search in Google Scholar

Kim, D.; Ryu, H. D.; Kim, M. S.; Kim, J.; Lee, S. I. Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate. J. Hazard. Mater. 2007, 146, 81–85.10.1016/j.jhazmat.2006.11.054Search in Google Scholar PubMed

Kim, H.; Kang, S. O.; Park, S.; Park, H. S. Adsorption isotherms and kinetics of cationic and anionic dyes on three-dimensional reduced graphene oxide macrostructure. J. Ind. Eng. Chem. 2015, 21, 1191–1196.10.1016/j.jiec.2014.05.033Search in Google Scholar

Konicki, W.; Aleksandrzak, M.; Moszynski, D.; Mijowska, E. Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: equilibrium, kinetic and thermodynamic studies. J. Colloid Interface Sci. 2017, 496, 188–200.10.1016/j.jcis.2017.02.031Search in Google Scholar PubMed

Kuang, L.; Liu, Y.; Fu, D.; Zhao, Y. FeOOH-graphene oxide nanocomposites for fluoride removal from water: acetate mediated nano FeOOH growth and adsorption mechanism. J. Colloid Interface Sci. 2017, 490, 259–269.10.1016/j.jcis.2016.11.071Search in Google Scholar PubMed

Kumar, A. S. K.; Jiang, S. J. Chitosan-functionalized graphene oxide: a novel adsorbent an efficient adsorption of arsenic from aqueous solution. J. Environ. Chem. Eng. 2016, 4, 1698–1713.10.1016/j.jece.2016.02.035Search in Google Scholar

Kumar, A. S. K.; Kakan, S. S.; Rajesh, N. A novel amine impregnated graphene oxide adsorbent for the removal of hexavalent chromium. Chem. Eng. J. 2013, 230, 328–337.10.1016/j.cej.2013.06.089Search in Google Scholar

Lakshmi, J.; Vasudevan, S. Graphene-a promising material for removal of perchlorate (ClO4) from water. Environ. Sci. Pollut. R.2013, 20, 5114–5124.10.1007/s11356-013-1499-ySearch in Google Scholar

Lee, S. M.; Davis, A. P. Removal of Cu(II) and Cd(II) from aqueous solution by seafood processing waste sludge. Water Res. 2001, 35, 534–540.10.1016/S0043-1354(00)00284-0Search in Google Scholar PubMed

Lee, K. Y.; Kim, K. W. Heavy metal removal from shooting range soil by hybrid electrokinetics with bacteria and enhancing agents. Environ. Sci. Technol. 2010, 44, 9482–9487.10.1021/es102615aSearch in Google Scholar PubMed

Lee, K. H.; Noh, N. S.; Shin, D. H.; Seo, Y. Comparison of plastic types for catalytic degradation of waste plastics into liquid product with spent FCC catalyst. Polym. Degrad. Stabil. 2002, 78, 539–544.10.1016/S0141-3910(02)00227-6Search in Google Scholar

Lei, Y.; Chen, F.; Luo, Y.; Zhang, L. Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal. J. Mater. Sci.2014, 49, 4236–4245.10.1007/s10853-014-8118-2Search in Google Scholar

Leng, Y.; Guo, W.; Su, S.; Yi, C.; Xing, L. Removal of antimony (III) from aqueous solution by graphene as an adsorbent. Chem. Eng. J. 2012, 211, 406–411.10.1016/j.cej.2012.09.078Search in Google Scholar

Li, S.; Niu, Z.; Zhong, X.; Yang, H.; Lei, Y.; Zhang, F.; Hu, W.; Dong, Z.; Jin, J.; Ma, J. Fabrication of magnetic Ni nanoparticles functionalized water-soluble graphene sheets nanocomposites as sorbent for aromatic compounds removal. J. Hazard. Mater. 2012a, 229, 42–47.10.1016/j.jhazmat.2012.05.053Search in Google Scholar PubMed

Li, Y.; Du, Q.; Liu, T.; Sun, J.; Jiao, Y.; Xia, Y.; Xia, L.; Wang, Z.; Zhang, W.; Wang, K. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene. Mater. Res. Bull. 2012b, 47, 1898–1904.10.1016/j.materresbull.2012.04.021Search in Google Scholar

Li, L.; Fan, L.; Sun, M.; Qiu, H.; Li, X.; Duan, H.; Luo, C. Adsorbent for hydroquinone removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan. Int. J. Biol. Macromol.2013a, 58, 169–175.10.1016/j.ijbiomac.2013.03.058Search in Google Scholar PubMed

Li, R.; Liu, L.; Yang, F. Preparation of polyaniline/reduced graphene oxide nanocomposite and its application in adsorption of aqueous Hg (II). Chem. Eng. J.2013b, 229, 460–468.10.1016/j.cej.2013.05.089Search in Google Scholar

Li, Y.; Du, Q.; Liu, T.; Sun, J.; Wang, Y.; Wu, S.; Wang, Z.; Xia, Y.; Xia, L. Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohyd. Polym. 2013c, 95, 501–507.10.1016/j.carbpol.2013.01.094Search in Google Scholar PubMed

Li, L.; Li, X.; Duan, H.; Wang, X.; Luo, C. Removal of Congo red by magnetic mesoporous titanium dioxide-graphene oxide core-shell microspheres for water purification. Dalton Trans. 2014a, 43, 8431–8438.10.1039/c3dt53474jSearch in Google Scholar PubMed

Li, L.; Zhou, G.; Weng, Z.; Shan, X.; Li, F.; Cheng, H. Monolithic Fe2O3/graphene hybrid for highly efficient lithium storage and arsenic removal. Carbon2014b, 67, 500–507.10.1016/j.carbon.2013.10.022Search in Google Scholar

Li, B.; Liu, X.; Zhang, X.; Chai, W.; Ma, Y.; Tao, J. Facile preparation of graphene-coated polyurethane sponge with superhydrophobic/superoleophilic properties. J. Polym. Res. 2015a, 22, 190.10.1007/s10965-015-0832-1Search in Google Scholar

Li, X.; Wang, Z.; Li, Q.; Ma, J.; Zhu, M. Preparation, characterization, and application of mesoporous silica-grafted graphene oxide for highly selective lead adsorption. Chem. Eng. J.2015b, 273, 630–637.10.1016/j.cej.2015.03.104Search in Google Scholar

Li, F.; Wang, X.; Yuan, T.; Sun, R. Lignosulfonate-modified graphene hydrogel with ultrahigh adsorption capacity for Pb(II) removal. J. Mater. Chem. A2016, 4, 11888–11896.10.1039/C6TA03779HSearch in Google Scholar

Li, M.; Liu, Y.; Liu, S.; Shu, D.; Zeng, G.; Hu, X.; Tan, X.; Jiang, L.; Yan, Z.; Cai, X. Cu(II)-influenced adsorption of ciprofloxacin from aqueous solutions by magnetic graphene oxide/nitrilotriacetic acid nanocomposite: competition and enhancement mechanisms. Chem. Eng. J. 2017, 319, 219–228.10.1016/j.cej.2017.03.016Search in Google Scholar

Liang, Q.; Luo, H.; Geng, J.; Chen, J. Facile one-pot preparation of nitrogen-doped ultra-light graphene oxide aerogel and its prominent adsorption performance of Cr (VI). Chem. Eng. J. 2018, 338, 62–71.10.1016/j.cej.2017.12.145Search in Google Scholar

Lin, S.; Lin, C. Treatment of textile waste effluents by ozonation and chemical coagulation. Water Res. 1993, 27, 1743–1748.10.1016/0043-1354(93)90112-USearch in Google Scholar

Lin, K. Y. A.; Lee, W. D. Self-assembled magnetic graphene supported ZIF-67 as a recoverable and efficient adsorbent for benzotriazole. Chem. Eng. J. 2016, 284, 1017–1027.10.1016/j.cej.2015.09.075Search in Google Scholar

Lingamdinne, L. P.; Choi, Y. L.; Kim, I. S.; Yang, J. K.; Koduru, J. R.; Chang, Y. Y. Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides. J. Hazard. Mater. 2017, 326, 145–156.10.1016/j.jhazmat.2016.12.035Search in Google Scholar PubMed

Liu, M.; Chen, C.; Hu, J.; Wu, X.; Wang, X. Synthesis of magnetite/graphene oxide composite and application for Cobalt(II) removal. J. Phys. Chem. C2011, 115, 25234–25240.10.1021/jp208575mSearch in Google Scholar

Liu, F.; Chung, S.; Oh, G.; Seo, T. S. Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. ACS Appl. Mater. Interfaces2012a, 4, 922–927.10.1021/am201590zSearch in Google Scholar PubMed

Liu, J.; Yang, S.; Wang, H.; Chang, Y.; Cao, A.; Liu, Y. Effect of size and dose on the biodistribution of graphene oxide in mice. Nanomedicine2012b, 7, 1801–1812.10.2217/nnm.12.60Search in Google Scholar PubMed

Liu, L.; Li, C.; Bao, C.; Jia, Q.; Xiao, P.; Liu, X.; Zhang, Q. Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta2012c, 93, 350–357.10.1016/j.talanta.2012.02.051Search in Google Scholar PubMed

Liu, T.; Li, Y.; Du, Q.; Sun, J.; Jiao, Y.; Yang, G.; Wang, Z.; Xia, Y.; Zhang, W.; Wang, K.; Zhu, H.; Wu, D. Adsorption of methylene blue from aqueous solution by graphene. Colloid Surface B2012d, 90, 197–203.10.1016/j.colsurfb.2011.10.019Search in Google Scholar PubMed

Liu, L.; Gao, B.; Wu, L.; Yang, L.; Zhou, Z.; Wang, H. Effects of pH and surface metal oxyhydroxides on deposition and transport of carboxyl-functionalized graphene in saturated porous media. J. Nanopart. Res. 2013a, 15, 2079.10.1007/s11051-013-2079-2Search in Google Scholar

Liu, L.; Liu, S.; Zhang, Q.; Li, C.; Bao, C.; Liu, X.; Xiao, P. Adsorption of Au(III), Pd(II), and Pt(IV) from aqueous solution onto graphene oxide. J. Chem. Eng. Data2013b, 58, 209–216.10.1021/je300551cSearch in Google Scholar

Liu, J.; Liu, G.; Liu, W. Preparation of water-soluble β-cyclodextrin/poly(acrylic acid)/graphene oxide nanocomposites as new adsorbents to remove cationic dyes from aqueous solutions. Chem. Eng. J. 2014a, 257, 299–308.10.1016/j.cej.2014.07.021Search in Google Scholar

Liu, X.; Yan, L.; Yin, W.; Zhou, L.; Tian, G.; Shi, J.; Yang, Z.; Xiao, D.; Gu, Z.; Zhao, Y. A magnetic graphene hybrid functionalized with beta-cyclodextrins for fast and efficient removal of organic dyes. J. Mater. Chem. A2014b, 2, 12296–12303.10.1039/C4TA00753KSearch in Google Scholar

Liu, C.; Yang, J.; Tang, Y.; Yin, L.; Tang, H.; Li, C. Versatile fabrication of the magnetic polymer-based graphene foam and applications for oil-water separation. Colloid Surface A2015, 468, 10–16.10.1016/j.colsurfa.2014.12.005Search in Google Scholar

Liu, Y.; Xu, L.; Liu, J.; Liu, X.; Chen, C.; Li, G.; Meng, Y. Graphene oxides cross-linked with hyperbranched polyethylenimines: preparation, characterization and their potential as recyclable and highly efficient adsorption materials for lead(II) ions. Chem. Eng. J. 2016, 285, 698–708.10.1016/j.cej.2015.10.047Search in Google Scholar

Liu, Q.; Li, L.; Jin, X.; Wang, C.; Wang, T. Influence of graphene oxide sheets on the pore structure and filtration performance of a novel graphene oxide/silica/polyacrylonitrile mixed matrix membrane. J. Mater. Sci. 2018a, 53, 6505–6518.10.1007/s10853-018-1990-4Search in Google Scholar

Liu, X.; Sun, J.; Xu, X.; Alsaedi, A.; Hayat, T.; Li, J. Adsorption and desorption of U(VI) on different-size graphene oxide. Chem. Eng. J.2018b. doi:10.1016/j.cej.2018.04.050.10.1016/j.cej.2018.04.050Search in Google Scholar

Lou, L.; Wu, B.; Wang, L.; Luo, L.; Xu, X.; Hou, J.; Xun, B.; Hu, B.; Chen, Y. Sorption and ecotoxicity of pentachlorophenol polluted sediment amended with rice-straw derived biochar. Bioresour. Technol. 2011, 102, 4036–4041.10.1016/j.biortech.2010.12.010Search in Google Scholar PubMed

Luo, L.; Lou, L.; Cui, X.; Wu, B.; Hou, J.; Xun, B.; Xu, X.; Chen, Y. Sorption and desorption of pentachlorophenol to black carbon of three different origins. J. Hazard. Mater.2011, 185, 639–646.10.1016/j.jhazmat.2010.09.066Search in Google Scholar PubMed

Luo, X.; Wang, C.; Wang, L.; Deng, F.; Luo, S.; Tu, X.; Au, C. Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As(III) and As(V) from water. Chem. Eng. J. 2013, 220, 98–106.10.1016/j.cej.2013.01.017Search in Google Scholar

Luo, S.; Xu, X.; Zhou, G.; Liu, C.; Tang, Y.; Liu, Y. Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(II) from wastewater. J. Hazard. Mater. 2014, 274, 145–155.10.1016/j.jhazmat.2014.03.062Search in Google Scholar PubMed

Lyu, H.; Gong, Y.; Tang, J.; Huang, Y.; Wang, Q. Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide. Environ. Sci. Pollut. Res. 2016, 23, 14472–14488.10.1007/s11356-016-6621-5Search in Google Scholar PubMed

Ma, T.; Chang, P.; Zheng, P.; Zhao, F.; Ma, X. Fabrication of ultra-light graphene-based gels and their adsorption of methylene blue. Chem. Eng. J.2014, 240, 595–600.10.1016/j.cej.2013.10.077Search in Google Scholar

Ma, J.; Yang, M.; Yu, F.; Zheng, J. Water-enhanced removal of ciprofloxacin from water by porous graphene hydrogel. Sci. Rep. 2015, 5, 13578.10.1038/srep13578Search in Google Scholar PubMed PubMed Central

Ma, Y.; Kou, Y.; Xing, D.; Jin, P.; Shao, W.; Li, X.; Du, X.; La, P. Synthesis of magnetic graphene oxide grafted polymaleicamide dendrimer nanohybrids for adsorption of Pb(II) in aqueous solution. J. Hazard. Mater. 2017a, 340, 407–416.10.1016/j.jhazmat.2017.07.026Search in Google Scholar PubMed

Ma, Y.; Xing, D.; Shao, W.; Du, X.; La, P. Preparation of polyamidoamine dendrimers functionalized magnetic graphene oxide for the adsorption of Hg(II) in aqueous solution. J. Colloid Interface Sci. 2017b, 505, 352–363.10.1016/j.jcis.2017.05.104Search in Google Scholar PubMed

Madadrang, C. J.; Kim, H. Y.; Gao, G. H.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M. L.; Hou, S. Adsorption behavior of EDTA-graphene oxide for Pb(II) removal. ACS Appl. Mater. Interfaces2012, 4, 1186–1193.10.1021/am201645gSearch in Google Scholar PubMed

Maliyekkal, S. M.; Sreeprasad, T. S.; Krishnan, D.; Kouser, S.; Mishra, A. K.; Waghmare, U. V.; Pradeep, T. Graphene: a reusable substrate for unprecedented adsorption of pesticides. Small2013, 9, 273–283.10.1002/smll.201201125Search in Google Scholar PubMed

Mi, X.; Huang, G.; Xie, W.; Wang, W.; Liu, Y.; Gao, J. Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon2012, 50, 4856–4864.10.1016/j.carbon.2012.06.013Search in Google Scholar

Mishra, A. K.; Ramaprabhu, S. Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination2011, 282, 39–45.10.1016/j.desal.2011.01.038Search in Google Scholar

Moussavi, G.; Hossaini, Z.; Pourakbar, M. High-rate adsorption of acetaminophen from the contaminated water onto double-oxidized graphene oxide. Chem. Eng. J. 2016, 287, 665–673.10.1016/j.cej.2015.11.025Search in Google Scholar

Nethaji, S.; Sivasamy, A.; Thennarasu, G.; Saravanan, S. Adsorption of Malachite Green dye onto activated carbon derived from Borassus aethiopum flower biomass. J. Hazard. Mater.2010, 181, 271–280.10.1016/j.jhazmat.2010.05.008Search in Google Scholar PubMed

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.10.1126/science.1102896Search in Google Scholar PubMed

Paaso, N.; Peuravuori, J.; Lehtonen, T.; Pihlaja, K. Sediment-dissolved organic matter equilibrium partitioning of pentachlorophenol: the role of humic matter. Environ. Int.2002, 28, 173–183.10.1016/S0160-4120(02)00027-2Search in Google Scholar PubMed

Pan, S.; Shen, H.; Zhou, L.; Chen, X.; Zhao, Y.; Cai, M.; Jin, M. Controlled synthesis of pentachlorophenol-imprinted polymers on the surface of magnetic graphene oxide for highly selective adsorption. J. Mater. Chem. A2014, 2, 15345–15356.10.1039/C4TA02600DSearch in Google Scholar

Pan, N.; Li, L.; Ding, J.; Li, S.; Wang, R.; Jin, Y.; Wang, X.; Xia, C. Preparation of graphene oxide-manganese dioxide for highly efficient adsorption and separation of Th(IV)/U(VI). J. Hazard. Mater. 2016, 309, 107–115.10.1016/j.jhazmat.2016.02.012Search in Google Scholar PubMed

Park, J. H.; Choppala, G. K.; Bolan, N. S.; Chung, J. W.; Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil2011, 348, 439–451.10.1007/s11104-011-0948-ySearch in Google Scholar

Pei, Z.; Li, L.; Sun, L.; Zhang, S.; Shan, X.; Yang, S.; Wen, B. Adsorption characteristics of 1, 2, 4-trichlorobenzene, 2, 4, 6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon2013, 51, 156–163.10.1016/j.carbon.2012.08.024Search in Google Scholar

Pei, S.; Wei, Q.; Huang, K.; Cheng, H.; Ren, W. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat. Commun. 2018, 9, 145.10.1038/s41467-017-02479-zSearch in Google Scholar PubMed PubMed Central

Periasamy, A. P.; Wu, W.; Ravindranath, R.; Roy, P.; Lin, G.; Chang, H. Polymer/reduced graphene oxide functionalized sponges as super absorbents for oil removal and recovery. Mar. Pollut. Bull. 2017, 114, 888–895.10.1016/j.marpolbul.2016.11.005Search in Google Scholar PubMed

Pourmand, S.; Abdouss, M.; Rashidi, A. Fabrication of nanoporous graphene by chemical vapor deposition (CVD) and its application in oil spill removal as a recyclable nanosorbent. J. Ind. Eng. Chem. 2015, 22, 8–18.10.1016/j.jiec.2014.06.018Search in Google Scholar

Qi, Z.; Zhang, L.; Chen, W. Transport of graphene oxide nanoparticles in saturated sandy soil. Environ. Sci. Proc. Imp. 2014, 16, 2268–2277.10.1039/C4EM00063CSearch in Google Scholar PubMed

Qiu, B.; Xing, M.; Zhang, J. Recent advances in three-dimensional graphene based materials for catalysis applications. Chem. Soc. Rev. 2018, 47, 2165–2216.10.1039/C7CS00904FSearch in Google Scholar PubMed

Ragavan, K. V.; Rastogi, N. K. β-Cyclodextrin capped graphene-magnetite nanocomposite for selective adsorption of bisphenol-A. Carbohydr. Polym. 2017, 168, 129–137.10.1016/j.carbpol.2017.03.045Search in Google Scholar PubMed

Ramesha, G. K.; Kumara, A. V.; Muralidhara, H. B.; Sampath, S. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J. Colloid Interf. Sci. 2011, 361, 270–277.10.1016/j.jcis.2011.05.050Search in Google Scholar PubMed

Ren, Y.; Yan, N.; Feng, J.; Ma, J.; Wen, Q.; Li, N.; Dong, Q. Adsorption mechanism of copper and lead ions onto graphene nanosheet/δ-MnO2. Mater. Chem. Phys. 2012, 136, 538–544.10.1016/j.matchemphys.2012.07.023Search in Google Scholar

Ren, H.; Kulkarni, D. D.; Kodiyath, R.; Xu, W.; Choi, I.; Tsukruk, V. V. Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide. ACS Appl. Mater. Interfaces2014, 6, 2459–2470.10.1021/am404881pSearch in Google Scholar PubMed

Ren, F.; Li, Z.; Tan, W.; Liu, X.; Sun, Z.; Ren, P.; Yan, D. Facile preparation of 3D regenerated cellulose/graphene oxide composite aerogel with high-efficiency adsorption towards methylene blue. J. Colloid Interface Sci. 2018, 532, 58–67.10.1016/j.jcis.2018.07.101Search in Google Scholar PubMed

Robati, D.; Mirza, B.; Rajabi, M.; Moradi, O.; Tyagi, I.; Agarwal, S.; Gupta, V. K. Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem. Eng. J. 2016, 284, 687–697.10.1016/j.cej.2015.08.131Search in Google Scholar

Robinson, B. H.; Banuelos, G.; Conesa, H. M.; Evangelou, M. W. H.; Schulin, R. The phytomanagement of trace elements in soil. Crit. Rev. Plant Sci.2009, 28, 240–266.10.1080/07352680903035424Search in Google Scholar

Saeed, A.; Akhter, M. W.; Iqbal, M. Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Sep. Purif. Technol.2005, 45, 25–31.10.1016/j.seppur.2005.02.004Search in Google Scholar

Sereshti, H.; Samadi, S.; Asgari, S.; Karimi, M. Preparation and application of magnetic graphene oxide coated with a modified chitosan pH-sensitive hydrogel: an efficient biocompatible adsorbent for catechin. RSC Adv. 2015, 5, 9396–9404.10.1039/C4RA11572DSearch in Google Scholar

Shen, Y.; Chen, B. Sulfonated graphene nanosheets as a superb adsorbent for various environmental pollutants in water. Environ. Sci. Technol.2015, 49, 7364–7372.10.1021/acs.est.5b01057Search in Google Scholar PubMed

Sheshmani, S.; Ashori, A.; Hasanzadeh, S. Removal of acid orange 7 from aqueous solution using magnetic graphene/chitosan: a promising nano-adsorbent. Int. J. Biol. Macromol. 2014, 68, 218–224.10.1016/j.ijbiomac.2014.04.057Search in Google Scholar PubMed

Shu, D.; Feng, F.; Han, H.; Ma, Z. Prominent adsorption performance of amino-functionalized ultra-light graphene aerogel for methyl orange and amaranth. Chem. Eng. J. 2017, 324, 1–9.10.1016/j.cej.2017.04.136Search in Google Scholar

Sitko, R.; Zawisza, B.; Talik, E.; Janik, P.; Osoba, G.; Feist, B.; Malicka, E. Spherical silica particles decorated with graphene oxide nanosheets as a new sorbent in inorganic trace analysis. Anal. Chim. Acta. 2014, 834, 22–29.10.1016/j.aca.2014.05.014Search in Google Scholar PubMed

Song, S.; Yang, H.; Su, C.; Jiang, Z.; Lu, Z. Ultrasonic-microwave assisted synthesis of stable reduced graphene oxide modified melamine foam with superhydrophobicity and high oil adsorption capacities. Chem. Eng. J. 2016, 306, 504–511.10.1016/j.cej.2016.07.086Search in Google Scholar

Steiner, C.; Teixeira, W. G.; Lehmann, J.; Nehls, T.; de Macedo, J. L. V.; Blum, W. E. H.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central amazonian upland soil. Plant Soil2007, 291, 275–290.10.1007/s11104-007-9193-9Search in Google Scholar

Stockinger, H.; Heinzle, E.; Kut, O. M. Removal of chloro and nitro aromatic wastewater pollutants by ozonation and biotreatment. Environ. Sci. Technol. 1995, 29, 2016–2022.10.1021/es00008a021Search in Google Scholar PubMed

Sui, K.; Li, Y.; Liu, R.; Zhang, Y.; Zhao, X.; Liang, H.; Xia, Y. Biocomposite fiber of calcium alginate/multi-walled carbon nanotubes with enhanced adsorption properties for ionic dyes. Carbohyd. Polym. 2012, 90, 399–406.10.1016/j.carbpol.2012.05.057Search in Google Scholar PubMed

Sui, Z.; Cui, Y.; Zhu, J.; Han, B. Preparation of three-dimensional graphene oxide-polyethylenimine porous materials as dye and gas adsorbents. ACS Appl. Mater. Interfaces2013, 5, 9172–9179.10.1021/am402661tSearch in Google Scholar PubMed

Sun, L.; Yu, H.; Fugetsu, B. Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution. J. Hazard. Mater.2012, 203, 101–110.10.1016/j.jhazmat.2011.11.097Search in Google Scholar PubMed

Sun, Y.; Shao, D.; Chen, C.; Yang, S.; Wang, X. Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ. Sci. Technol. 2013, 47, 9904–9910.10.1021/es401174nSearch in Google Scholar PubMed

Sun, Y.; Yang, S.; Chen, Y.; Ding, C.; Cheng, W.; Wang, X. Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ. Sci. Technol. 2015, 49, 4255–4262.10.1021/es505590jSearch in Google Scholar PubMed

Tan, P.; Sun, J.; Hu, Y.; Fang, Z.; Bi, Q.; Chen, Y.; Cheng, J. Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. J. Hazard. Mater.2015, 297, 251–260.10.1016/j.jhazmat.2015.04.068Search in Google Scholar PubMed

Tang, Y.; Guo, H.; Xiao, L.; Yu, S.; Gao, N.; Wang, Y. Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloid Surface A2013, 424, 74–80.10.1016/j.colsurfa.2013.02.030Search in Google Scholar

Thangavel, S.; Venugopal, G. Understanding the adsorption property of graphene-oxide with different degrees of oxidation levels. Powder Technol.2014, 257, 141–148.10.1016/j.powtec.2014.02.046Search in Google Scholar

Tiwari, J. N.; Mahesh, K.; Le, N. H.; Kemp, K. C.; Timilsina, R.; Tiwari, R. N.; Kim, K. S. Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon2013, 56, 173–182.10.1016/j.carbon.2013.01.001Search in Google Scholar

Uchimiya, M.; Klasson, K. T.; Wartelle, L. H.; Lima, I. M. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere2011, 82, 1431–1437.10.1016/j.chemosphere.2010.11.050Search in Google Scholar PubMed

Uchimiya, M.; Bannon, D. I.; Wartelle, L. H. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil. J. Agric. Food Chem. 2012, 60, 1798–1809.10.1021/jf2047898Search in Google Scholar PubMed

Vadahanambi, S.; Lee, S. H.; Kim, W. J.; Oh, I. K. Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures. Environ. Sci. Technol. 2013, 47, 10510–10517.10.1021/es401389gSearch in Google Scholar PubMed

Vithanage, M.; Rajapaksha, A. U.; Zhang, M.; Thiele-Bruhn, S.; Lee, S. S.; Ok, Y. S. Acid-activated biochar increased sulfamethazine retention in soils. Environ. Sci. Pollut. Res.2015, 22, 2175–2186.10.1007/s11356-014-3434-2Search in Google Scholar PubMed

Wang, C.; Feng, C.; Gao, Y.; Ma, X.; Wu, Q.; Wang, Z. Preparation of a graphene-based magnetic nanocomposite for the removal of an organic dye from aqueous solution. Chem. Eng. J. 2011, 173, 92–97.10.1016/j.cej.2011.07.041Search in Google Scholar

Wang, J.; Tsuzuki, T.; Tang, B.; Hou, X.; Sun, L.; Wang, X. Reduced graphene oxide/ZnO composite: reusable adsorbent for pollutant management. ACS Appl. Mater. Interfaces2012, 4, 3084–3090.10.1021/am300445fSearch in Google Scholar PubMed

Wang, H.; Yuan, X.; Wu, Y.; Huang, H.; Zeng, G.; Liu, Y.; Wang, X.; Lin, N.; Qi, Y. Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl. Surf. Sci. 2013, 279, 432–440.10.1016/j.apsusc.2013.04.133Search in Google Scholar

Wang, J.; Chen, Z.; Chen, B. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environ. Sci. Technol. 2014a, 48, 4817–4825.10.1021/es405227uSearch in Google Scholar PubMed

Wang, P.; Cao, M.; Wang, C.; Ao, Y.; Hou, J.; Qian, J. Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene-carbon nanotube composite. Appl. Surf. Sci.2014b, 290, 116–124.10.1016/j.apsusc.2013.11.010Search in Google Scholar

Wang, X.; Huang, S.; Zhu, L.; Tian, X.; Li, S.; Tang, H. Correlation between the adsorption ability and reduction degree of graphene oxide and tuning of adsorption of phenolic compounds. Carbon2014c, 69, 101–112.10.1016/j.carbon.2013.11.070Search in Google Scholar

Wang, X.; Liu, Z.; Ye, X.; Hu, K.; Zhong, H.; Yu, J.; Jin, M.; Guo, Z. A facile one-step approach to functionalized graphene oxide-based hydrogels used as effective adsorbents toward anionic dyes. Appl. Surf. Sci.2014d, 308, 82–90.10.1016/j.apsusc.2014.04.103Search in Google Scholar

Wang, Y.; Liu, X.; Wang, H.; Xia, G.; Huang, W.; Song, R. Microporous spongy chitosan monoliths doped with graphene oxide as highly effective adsorbent for methyl orange and copper nitrate (Cu(NO3)2) ions. J. Colloid Interf. Sci.2014e, 416, 243–251.10.1016/j.jcis.2013.11.012Search in Google Scholar PubMed

Wang, D.; Liu, L.; Jiang, X.; Yu, J.; Chen, X. Adsorption and removal of malachite green from aqueous solution using magnetic β-cyclodextrin-graphene oxide nanocomposites as adsorbents. Colloid Surface A2015a, 466, 166–173.10.1016/j.colsurfa.2014.11.021Search in Google Scholar

Wang, D.; Liu, L.; Jiang, X.; Yu, J.; Chen, X.; Chen, X. Adsorbent for p-phenylenediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin. Appl. Surf. Sci.2015b, 329, 197–205.10.1016/j.apsusc.2014.12.161Search in Google Scholar

Wang, F.; Wang, F.; Zhu, D.; Chen, W. Effects of sulfide reduction on adsorption affinities of colloidal graphene oxide nanoparticles for phenanthrene and 1-naphthol. Environ. Pollut. 2015c, 196, 371–378.10.1016/j.envpol.2014.10.027Search in Google Scholar

Wang, Y.; Xia, G.; Wu, C.; Sun, J.; Song, R.; Huang, W. Porous chitosan doped with graphene oxide as highly effective adsorbent for methyl orange and amido black 10B. Carbohyd. Polym.2015d, 115, 686–693.10.1016/j.carbpol.2014.09.041Search in Google Scholar

Wang, H.; Gao, H.; Chen, M.; Xu, X.; Wang, X.; Pan, C.; Gao, J. Microwave-assisted synthesis of reduced graphene oxide/titania nanocomposites as an adsorbent for methylene blue adsorption. Appl. Surf. Sci. 2016a, 360, 840–848.10.1016/j.apsusc.2015.11.075Search in Google Scholar

Wang, X.; Fan, Q.; Yu, S.; Chen, Z.; Ai, Y.; Sun, Y.; Hobiny, A.; Alsaedi, A.; Wang, X. High sorption of U(VI) on graphene oxides studied by batch experimental and theoretical calculations. Chem. Eng. J. 2016b, 287, 448–455.10.1016/j.cej.2015.11.066Search in Google Scholar

Wang, X.; Meng, H.; Ma, F.; Li, Z.; Zhang, L. Influence of preparation method on oxidation degree of grapheme oxide and adsorption for Th(IV) and U(VI). J. Inorg. Mater. 2016c, 31, 454–460.10.15541/jim20150486Search in Google Scholar

Wang, M.; Gao, B.; Tang, D.; Sun, H.; Yin, X.; Yu, C. Effects of temperature on graphene oxide deposition and transport in saturated porous media. J. Hazard. Mater.2017, 331, 28–35.10.1016/j.jhazmat.2017.02.014Search in Google Scholar PubMed

Wei, G.; Miao, Y.; Zhang, C.; Yang, Z.; Liu, Z.; Tjiu, W. W.; Liu, T. Ni-doped graphene/carbon cryogels and their applications as versatile sorbents for water purification. ACS Appl. Mater. Interfaces2013, 5, 7584–7591.10.1021/am401887gSearch in Google Scholar PubMed

Wen, T.; Wu, X.; Tan, X.; Wang, X.; Xu, A. One-pot synthesis of water-swellable Mg-Al layered double hydroxides and graphene oxide nanocomposites for efficient removal of As(V) from aqueous solutions. ACS Appl. Mater. Interfaces2013, 5, 3304–3311.10.1021/am4003556Search in Google Scholar PubMed

Wu, J.; Eiteman, M. A.; Law, S. E. Evaluation of membrane filtration and ozonation processes for treatment of reactive-dye wastewater. J. Environ. Eng. ASCE1998, 124, 272–277.10.1061/(ASCE)0733-9372(1998)124:3(272)Search in Google Scholar

Wu, Z.; Zhang, Y.; Tao, T.; Zhang, L.; Fong, H. Silver nanoparticles on amidoxime fibers for photo-catalytic degradation of organic dyes in waste water. Appl. Surf. Sci. 2010, 257, 1092–1097.10.1016/j.apsusc.2010.08.022Search in Google Scholar

Wu, T.; Cai, X.; Tan, S.; Li, H.; Liu, J.; Yang, W. Adsorption characteristics of acrylonitrile, p-toluenesulfonic acid, 1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions. Chem. Eng. J.2011, 173, 144–149.10.1016/j.cej.2011.07.050Search in Google Scholar

Wu, Q.; Feng, C.; Wang, C.; Wang, Z. A facile one-pot solvothermal method to produce superparamagnetic graphene-Fe3O4 nanocomposite and its application in the removal of dye from aqueous solution. Colloid Surface B2013a, 101, 210–214.10.1016/j.colsurfb.2012.05.036Search in Google Scholar PubMed

Wu, W.; Yang, Y.; Zhou, H.; Ye, T.; Huang, Z.; Liu, R.; Kuang, Y. Highly efficient removal of Cu (II) from aqueous solution by using graphene oxide. Water Air Soil Poll. 2013b, 224, 1372.10.1007/s11270-012-1372-5Search in Google Scholar

Wu, Z.; Zhong, H.; Yuan, X.; Wang, H.; Wang, L.; Chen, X.; Zeng, G.; Wu, Y. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater. Water Res. 2014, 67, 330–344.10.1016/j.watres.2014.09.026Search in Google Scholar PubMed

Wu, S.; Zhang, K.; Wang, X.; Jia, Y.; Sun, B.; Luo, T.; Meng, F.; Jin, Z.; Lin, D.; Shen, W. Enhanced adsorption of cadmium ions by 3D sulfonated reduced graphene oxide. Chem. Eng. J. 2015, 262, 1292–1302.10.1016/j.cej.2014.10.092Search in Google Scholar

Wu, R.; Yu, B.; Liu, X.; Li, H.; Bai, Y.; Ming, Z.; Chen, L.; Yang, S.; Chang, X. Graphene/polyester staple composite for the removal of oils and organic solvents. Mater. Res. Express2016a, 3, 065601.10.1088/2053-1591/3/6/065601Search in Google Scholar

Wu, R.; Yu, B.; Liu, X.; Li, H.; Wang, W.; Chen, L.; Bai, Y.; Ming, Z.; Yang, S. One-pot hydrothermal preparation of graphene sponge for the removal of oils and organic solvents. Appl. Surf. Sci. 2016b, 362, 56–62.10.1016/j.apsusc.2015.11.215Search in Google Scholar

Wu, X.; Shi, Y.; Zhong, S.; Lin, H.; Chen, J. Facile synthesis of Fe3O4-graphene@mesoporous SiO2 nanocomposites for efficient removal of methylene blue. Appl. Surf. Sci. 2016c, 378, 80–86.10.1016/j.apsusc.2016.03.226Search in Google Scholar

Xie, J.; Li, J.; Zhao, L.; Zhang, X.; Yu, B.; Wu, R.; Wang, R.; Liu, J.; Xue, F.; Yang, S. Fabrication of TiO2-graphene oxide aerogel for the adsorption of copper ions. Nanosci. Nanotech. Lett. 2014a, 6, 1018–1023.10.1166/nnl.2014.1863Search in Google Scholar

Xie, Y.; Yan, B.; Xu, H.; Chen, J.; Liu, Q.; Deng, Y.; Zeng, H. Highly regenerable mussel-inspired Fe3O4@polydopamine-Ag core-shell microspheres as catalyst and adsorbent for methylene blue removal. ACS Appl. Mater. Interfaces2014b, 6, 8845–8852.10.1021/am501632fSearch in Google Scholar PubMed

Xie, J.; Ming, Z.; Li, H.; Yang, H.; Yu, B.; Wu, R.; Liu, X.; Bai, Y.; Yang, S. Toxicity of graphene oxide to white rot fungus phanerochaete chrysosporium. Chemosphere2016, 151, 324–331.10.1016/j.chemosphere.2016.02.097Search in Google Scholar PubMed

Xing, M.; Xu, L.; Wang, J. Mechanism of Co(II) adsorption by zero valent iron/graphene nanocomposite. J. Hazard. Mater. 2016, 301, 286–296.10.1016/j.jhazmat.2015.09.004Search in Google Scholar PubMed

Xu, T.; Lou, L.; Luo, L.; Cao, R.; Duan, C.; Chen, Y. Effect of bamboo biochar on pentachlorophenol leachability and bioavailability in agricultural soil. Sci. Total. Environ. 2012, 414, 727–731.10.1016/j.scitotenv.2011.11.005Search in Google Scholar PubMed

Xu, J.; Cao, Z.; Zhang, Y.; Yuan, Z.; Lou, Z.; Xu, X.; Wang, X. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism. Chemosphere2018, 195, 351–364.10.1016/j.chemosphere.2017.12.061Search in Google Scholar PubMed

Yamaguchi, N. U.; Bergamasco, R.; Hamoudi, S. Magnetic MnFe2O4-graphene hybrid composite for efficient removal of glyphosate from water. Chem. Eng. J. 2016, 295, 391–402.10.1016/j.cej.2016.03.051Search in Google Scholar

Yan, H.; Tao, X.; Yang, Z.; Li, K.; Yang, H.; Li, A.; Cheng, R. Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue. J. Hazard. Mater.2014, 268, 191–198.10.1016/j.jhazmat.2014.01.015Search in Google Scholar PubMed

Yan, H.; Wu, H.; Li, K.; Wang, Y.; Tao, X.; Yang, H.; Li, A.; Cheng, R. Influence of the surface structure of graphene oxide on the adsorption of aromatic organic compounds from water. ACS Appl. Mater. Interfaces2015, 7, 6690–6697.10.1021/acsami.5b00053Search in Google Scholar PubMed

Yang, S.; Chang, Y.; Wang, H.; Liu, G.; Chen, S.; Wang, Y.; Liu, Y.; Cao, A. Folding/aggregation of graphene oxide and its application in Cu2+ removal. J. Colloid Interf. Sci.2010, 351, 122.10.1016/j.jcis.2010.07.042Search in Google Scholar PubMed

Yang, J. E.; Skogley, E. O.; Ok, Y. S. Carbonaceous resin capsule for vapor-phase monitoring of volatile monoaromatic hydrocarbons in soil. Soil Sediment Contam. 2011a, 20, 205–220.10.1080/15320383.2011.536596Search in Google Scholar

Yang, S.; Chen, S.; Chang, Y.; Cao, A.; Liu, Y.; Wang, H. Removal of methylene blue from aqueous solution by graphene oxide. J. Colloid Interf. Sci.2011b, 359, 24–29.10.1016/j.jcis.2011.02.064Search in Google Scholar PubMed

Yang, H.; Sun, L.; Zhai, J.; Li, H.; Zhao, Y.; Yu, H. In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water. J. Mater. Chem. A2013a, 2, 326–332.10.1039/C3TA13548ASearch in Google Scholar

Yang, S.; Luo, J.; Liu, J.; Zhou, Q.; Wan, J.; Ma, C.; Liao, R.; Wang, H.; Liu, Y. Graphene oxide/chitosan composite for methylene blue adsorption. Nanosci. Nanotech. Lett.2013b, 5, 372–376.10.1166/nnl.2013.1535Search in Google Scholar

Yang, Y.; Xie, Y.; Pang, L.; Li, M.; Song, X.; Wen, J.; Zhao, H. Preparation of reduced graphene oxide/poly(acrylamide) nanocomposite and its adsorption of Pb(II) and methylene blue. Langmuir2013c, 29, 10727–10736.10.1021/la401940zSearch in Google Scholar PubMed

Yang, H.; Li, H.; Zhai, J.; Sun, L.; Zhao, Y.; Yu, H. Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil. Chem. Eng. J.2014a, 246, 10–19.10.1016/j.cej.2014.02.060Search in Google Scholar

Yang, J.; Wu, J. X.; Lu, Q.; Lin, T. Facile preparation of lignosulfonate-graphene oxide-polyaniline ternary nanocomposite as an effective adsorbent for Pb (II) ions. ACS Sustain. Chem. Eng. 2014b, 2, 1203–1211.10.1021/sc500030vSearch in Google Scholar

Yang, W.; Gao, H.; Zhao, Y.; Bi, K.; Li, X. Facile preparation of nitrogen-doped graphene sponge as a highly efficient oil absorption material. Mater. Lett. 2016, 178, 95–99.10.1016/j.matlet.2016.04.131Search in Google Scholar

Yang, M.; Liu, X.; Qi, Y.; Sun, W.; Men, Y. Preparation of κ-carrageenan/graphene oxide gel beads and their efficient adsorption for methylene blue. J. Colloid Interface Sci. 2017a, 506, 669–677.10.1016/j.jcis.2017.07.093Search in Google Scholar PubMed

Yang, Q.; Wang, J.; Zhang, W.; Liu, F.; Yue, X.; Liu, Y.; Yang, M.; Li, Z.; Wang, J. Interface engineering of metal organic framework on graphene oxide with enhanced adsorption capacity for organophosphorus pesticide. Chem. Eng. J. 2017b, 313, 19–26.10.1016/j.cej.2016.12.041Search in Google Scholar

Yang, A.; Zhu, Y.; Huang, C. Facile preparation and adsorption performance of graphene oxide-manganese oxide composite for uranium. Sci. Rep. 2018a, 8, 9058.10.1038/s41598-018-27111-ySearch in Google Scholar PubMed PubMed Central

Yang, H.; Feng, S.; Ma, Q.; Ming, Z.; Bai, Y.; Chen, L.; Yang, S. Influence of reduced graphene oxide on the growth, structure and decomposition activity of white-rot fungus Phanerochaete chrysosporium. RSC Adv. 2018b, 8, 5026–5033.10.1039/C7RA12364GSearch in Google Scholar

Yao, Y.; Miao, S.; Liu, S.; Ma, L. P.; Sun, H.; Wang, S. Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem. Eng. J. 2012, 184, 326–332.10.1016/j.cej.2011.12.017Search in Google Scholar

Yoon, Y.; Park, W. K.; Hwang, T. M.; Yoon, D. H.; Yang, W. S.; Kang, J. W. Comparative evaluation of magnetite-graphene oxide and magnetite-reduced graphene oxide composite for As(III) and As(V) removal. J. Hazard. Mater.2016, 304, 196–204.10.1016/j.jhazmat.2015.10.053Search in Google Scholar PubMed

Yu, X.; Ying, G.; Kookana, R. S. Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere2009, 76, 665–671.10.1016/j.chemosphere.2009.04.001Search in Google Scholar PubMed

Yu, B.; Zhang, X.; Xie, J.; Wu, R.; Liu, X.; Li, H.; Chen, F.; Yang, H.; Ming, Z.; Yang, S. Magnetic graphene sponge for the removal of methylene blue. Appl. Surf. Sci.2015, 351, 765–771.10.1016/j.apsusc.2015.05.185Search in Google Scholar

Yu, B.; Bai, Y.; Ming, Z.; Yang, H.; Chen, L.; Hu, X.; Feng, S.; Yang, S. Adsorption behaviors of tetracycline on magnetic graphene oxide sponge. Mater. Chem. Phys. 2017a, 198, 283–290.10.1016/j.matchemphys.2017.05.042Search in Google Scholar

Yu, B.; Chen, L.; Wu, R.; Liu, X.; Li, H.; Yang, H.; Ming, Z.; Bai, Y.; Yang, S. Effect of reduction degree on the adsorption properties of graphene sponge for dyes. Mater. Res. Express2017b, 4, 045008.10.1088/2053-1591/aa6bc1Search in Google Scholar

Yuan, Y.; Zhang, G.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. Poly(amidoamine) modified graphene oxide as an efficient adsorbent for heavy metal ions. Polym. Chem. 2013, 4, 2164–2167.10.1039/c3py21128bSearch in Google Scholar

Zhang, H.; Lin, K.; Wang, H.; Gan, J. Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Environ. Pollut.2010a, 158, 2821–2825.10.1016/j.envpol.2010.06.025Search in Google Scholar PubMed

Zhang, K.; Dwivedi, V.; Chi, C.; Wu, J. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. J. Hazard. Mater.2010b, 182, 162–168.10.1016/j.jhazmat.2010.06.010Search in Google Scholar PubMed

Zhang, W.; Zhou, C.; Zhou, W.; Lei, A.; Zhang, Q.; Wan, Q.; Zou, B. Fast and considerable adsorption of methylene blue dye onto graphene oxide. Bull. Environ. Contam. Toxicol.2011, 87, 86–90.10.1007/s00128-011-0304-1Search in Google Scholar PubMed

Zhang, S.; Zeng, M.; Xu, W.; Li, J.; Li, J.; Xu, J.; Wang, X. Polyaniline nanorods dotted on graphene oxide nanosheets as a novel super adsorbent for Cr (VI). Dalton Trans. 2013a, 42, 7854–7858.10.1039/c3dt50149cSearch in Google Scholar PubMed

Zhang, W.; Shi, X.; Zhang, Y.; Gu, W.; Li, B.; Xian, Y. Synthesis of water-soluble magnetic graphene nanocomposites for recyclable removal of heavy metal ions. J. Mater. Chem. A2013b, 1, 1745–1753.10.1039/C2TA00294ASearch in Google Scholar

Zhang, X.; Cheng, C.; Zhao, J.; Ma, L.; Sun, S.; Zhao, C. Polyethersulfone enwrapped graphene oxide porous particles for water treatment. Chem. Eng. J. 2013c, 215, 72–81.10.1016/j.cej.2012.11.009Search in Google Scholar

Zhang, Y.; Tang, Y.; Li, S.; Yu, S. Sorption and removal of tetrabromobisphenol A from solution by graphene oxide. Chem. Eng. J. 2013d, 222, 94–100.10.1016/j.cej.2013.02.027Search in Google Scholar

Zhang, Y.; Cheng, Y.; Chen, N.; Zhou, Y.; Li, B.; Gu, W.; Shi, X.; Xian, Y. Recyclable removal of bisphenol A from aqueous solution by reduced graphene oxide-magnetic nanoparticles: adsorption and desorption. J. Colloid Interf. Sci. 2014a, 421, 85–92.10.1016/j.jcis.2014.01.022Search in Google Scholar PubMed

Zhang, Y.; Yan, L.; Xu, W.; Guo, X.; Cui, L.; Gao, L.; Wei, Q.; Du, B. Adsorption of Pb(II) and Hg(II) from aqueous solution using magnetic CoFe2O4-reduced graphene oxide. J. Mol. Liq. 2014b, 191, 177–182.10.1016/j.molliq.2013.12.015Search in Google Scholar

Zhang, L.; Li, H.; Lai, X.; Su, X.; Liang, T.; Zeng, X. Thiolated graphene-based superhydrophobic sponges for oil-water separation. Chem. Eng. J. 2017, 316, 736–743.10.1016/j.cej.2017.02.030Search in Google Scholar

Zhang, L.; Chen, B.; Ghaffar, A.; Zhu, X. Nanocomposite membrane with polyethylenimine-grafted graphene oxide as a novel additive to enhance pollutant filtration performance. Environ. Sci. Technol.2018a, 52, 5920–5930.10.1021/acs.est.8b00524Search in Google Scholar PubMed

Zhang, Y.; Cui, W.; An, W.; Liu, L.; Liang, Y.; Zhu, Y. Combination of photoelectrocatalysis and adsorption for removal of bisphenol A over TiO2-graphene hydrogel with 3D network structure. Appl. Catal B-Environ. 2018b, 221, 36–46.10.1016/j.apcatb.2017.08.076Search in Google Scholar

Zhao, X.; Liu, P. Hydrophobic-polymer-grafted graphene oxide nanosheets as an easily separable adsorbent for the removal of tetrabromobisphenol A. Langmuir2014, 30, 13699–13706.10.1021/la504077xSearch in Google Scholar PubMed

Zhao, G.; Li, J.; Ren, X.; Chen, C.; Wang, X. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol.2011a, 45, 10454–10462.10.1021/es203439vSearch in Google Scholar PubMed

Zhao, G.; Ren, X.; Gao, X.; Tan, X.; Li, J.; Chen, C.; Huang, Y.; Wang, X. Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans. 2011b, 40, 10945–10952.10.1039/c1dt11005eSearch in Google Scholar PubMed

Zhao, G.; Wen, T.; Yang, X.; Yang, S.; Liao, J.; Hu, J.; Shao, D.; Wang, X. Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans. 2012a, 41, 6182–6188.10.1039/c2dt00054gSearch in Google Scholar PubMed

Zhao, J.; Ren, W.; Cheng, H. Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J. Mater. Chem. 2012b, 22, 20197–20202.10.1039/c2jm34128jSearch in Google Scholar

Zhao, L.; Dong, P.; Xie, J.; Li, J.; Wu, L.; Yang, S.; Luo, J. Porous graphene oxide-chitosan aerogel for tetracycline removal. Mater. Res. Express2014, 1, 015601.10.1088/2053-1591/1/1/015601Search in Google Scholar

Zhao, L.; Xue, F.; Yu, B.; Xie, J.; Zhang, X.; Wu, R.; Wang, R.; Hu, Z.; Yang, S.; Luo, J. TiO2-graphene sponge for the removal of tetracycline. J. Nanopart. Res. 2015a, 17, 16.10.1007/s11051-014-2825-0Search in Google Scholar

Zhao, L.; Yu, B.; Xue, F.; Xie, J.; Zhang, X.; Wu, R.; Wang, R.; Hu, Z.; Yang, S.; Luo, J. Facile hydrothermal preparation of recyclable S-doped graphene sponge for Cu2+ adsorption. J. Hazard. Mater.2015b, 286, 449–456.10.1016/j.jhazmat.2015.01.021Search in Google Scholar PubMed

Zhao, L.; Yang, S.; Feng, S.; Ma, Q.; Peng, X.; Wu, D. Preparation and application of carboxylated graphene oxide sponge in dye removal. Int. J. Env. Res. Public Health2017, 14, 1301.10.3390/ijerph14111301Search in Google Scholar PubMed PubMed Central

Zhou, Y.; Apul, O. G.; Karanfil, T. Adsorption of halogenated aliphatic contaminants by graphene nanomaterials. Water Res. 2015, 79, 57–67.10.1016/j.watres.2015.04.017Search in Google Scholar PubMed

Zhou, S.; Hao, G.; Zhou, X.; Jiang, W.; Wang, T.; Zhang, N.; Yu, L. One-pot synthesis of robust superhydrophobic, functionalized graphene/polyurethane sponge for effective continuous oil-water separation. Chem. Eng. J. 2016, 302, 155–162.10.1016/j.cej.2016.05.051Search in Google Scholar

Zhou, Y.; Zhang, G.; Yu, M.; Wang, X.; Lv, J.; Yang, F. Free-standing 3D porous N-doped graphene aerogel supported platinum nanocluster for efficient hydrogen production from ammonia electrolysis. ACS Sustainable Chem. Eng. 2018, 6, 8437–8446.10.1021/acssuschemeng.8b00586Search in Google Scholar

Zhu, J.; Wei, S.; Gu, H.; Rapole, S. B.; Wang, Q.; Luo, Z.; Haldolaarachchige, N.; Young, D. P.; Guo, Z. One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ. Sci. Technol. 2011, 46, 977–985.10.1021/es2014133Search in Google Scholar PubMed

Zhu, J.; Xu, M.; Wang, F.; Gao, M.; Zhang, Z.; Xu, Y.; Chen, W.; Liu, S. Low-dose exposure to graphene oxide significantly increases the metal toxicity to macrophages by altering their cellular priming state. Nano Res. 2018, 11, 4111–4122.10.1007/s12274-018-1996-xSearch in Google Scholar

Zhuang, Y.; Yu, F.; Ma, J.; Chen, J. Graphene as a template and structural scaffold for the synthesis of a 3D porous bio-adsorbent to remove antibiotics from water. RSC Adv. 2015, 5, 27964–27969.10.1039/C4RA12413HSearch in Google Scholar

Zhuang, Y.; Yu, F.; Chen, H.; Zheng, J.; Ma, J.; Chen, J. Alginate/graphene double-network nanocomposite hydrogel beads with low-swelling, enhanced mechanical properties, and enhanced adsorption capacity. J. Mater. Chem. A2016, 4, 10885–10892.10.1039/C6TA02738ESearch in Google Scholar

Zhuang, Y.; Yu, F.; Ma, J.; Chen, J. Enhanced adsorption removal of antibiotics from aqueous solutions by modified alginate/graphene double network porous hydrogel. J. Colloid Interface Sci. 2017, 507, 250–259.10.1016/j.jcis.2017.07.033Search in Google Scholar PubMed

Zong, P.; Wang, S.; Zhao, Y.; Wang, H.; Pan, H.; He, C. Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem. Eng. J. 2013, 220, 45–52.10.1016/j.cej.2013.01.038Search in Google Scholar

Received: 2018-10-16
Accepted: 2018-12-17
Published Online: 2019-02-22
Published in Print: 2019-03-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/revic-2018-0020/html
Scroll to top button