Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 12, 2016

Emerging roles of xenobiotic detoxification enzymes in metabolic diseases

  • Michael C. Petriello , Jessie B. Hoffman , Andrew J. Morris EMAIL logo and Bernhard Hennig EMAIL logo

Abstract

Mammalian systems have developed extensive molecular mechanisms to protect against the toxicity of many exogenous xenobiotic compounds. Interestingly, many detoxification enzymes, including cytochrome P450s and flavin-containing monooxygenases, and their associated transcriptional activators [e.g. the aryl hydrocarbon receptor (AhR)], have now been shown to have endogenous roles in normal physiology and the pathology of metabolic diseases. This mini-review will focus on two such instances: the role of flavin-containing monooxygenase 3 (FMO3) in the formation of the cardiometabolic disease biomarker trimethylamine-N-oxide (TMAO) and the role of AhR as a sensor of endogenous ligands such as those generated by the gut microbiota. Understanding the roles of xenobiotic sensing pathways in endogenous metabolism will undoubtedly lead to a better understanding of how exposure to environmental pollutants can perturb these physiological processes.

  1. Research funding: This work was supported in part by the National Institute of Environmental Health Sciences at the National Institutes of Health [P42ES007380].

  2. Conflict of interest: The authors declare that there are no competing financial interests.

References

1. Nagashima S, Shimizu M, Yano H, Murayama N, Kumai T, et al. Inter-individual variation in flavin-containing monooxygenase 3 in livers from Japanese: correlation with hepatic transcription factors. Drug Metab Pharmacokinet 2009;24(3):218–25.10.2133/dmpk.24.218Search in Google Scholar PubMed PubMed Central

2. Yamazaki M, Shimizu M, Uno Y, Yamazaki H. Drug oxygenation activities mediated by liver microsomal flavin-containing monooxygenases 1 and 3 in humans, monkeys, rats, and minipigs. Biochem Pharmacol 2014;90(2):159–65.10.1016/j.bcp.2014.04.019Search in Google Scholar PubMed

3. Jiang Y, Jin J, Iakova P, Hernandez JC, Jawanmardi N, et al. Farnesoid X receptor directly regulates xenobiotic detoxification genes in the long-lived Little mice. Mech Ageing Dev 2013;134(9):407–15.10.1016/j.mad.2013.08.003Search in Google Scholar PubMed PubMed Central

4. Celius T, Pansoy A, Matthews J, Okey AB, Henderson MC, et al. Flavin-containing monooxygenase-3: induction by 3-methylcholanthrene and complex regulation by xenobiotic chemicals in hepatoma cells and mouse liver. Toxicol Applied Pharm 2010;247(1):60–9.10.1016/j.taap.2010.05.018Search in Google Scholar PubMed PubMed Central

5. Klick DE, Shadley JD, Hines RN. Differential regulation of human hepatic flavin containing monooxygenase 3 (FMO3) by CCAAT/enhancer-binding protein beta (C/EBPbeta) liver inhibitory and liver activating proteins. Biochem pharmacol 2008;76(2):268–78.10.1016/j.bcp.2008.05.002Search in Google Scholar PubMed

6. Celius T, Roblin S, Harper PA, Matthews J, Boutros PC, et al. Aryl hydrocarbon receptor-dependent induction of flavin-containing monooxygenase mRNAs in mouse liver. Drug Metab Dispos 2008;36(12):2499–505.10.1124/dmd.108.023457Search in Google Scholar PubMed PubMed Central

7. Miao J, Ling AV, Manthena PV, Gearing ME, Graham MJ, et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun 2015;6:6498.10.1038/ncomms7498Search in Google Scholar PubMed PubMed Central

8. Zhang J, Tran Q, Lattard V, Cashman JR. Deleterious mutations in the flavin-containing monooxygenase 3 (FMO3) gene causing trimethylaminuria. Pharmacogenetics 2003;13(8):495–500.10.1097/00008571-200308000-00007Search in Google Scholar PubMed

9. Schugar RC, Brown JM. Emerging roles of flavin monooxygenase 3 in cholesterol metabolism and atherosclerosis. Curr Opin Lipidol 2015;26(5):426–31.10.1097/MOL.0000000000000215Search in Google Scholar PubMed PubMed Central

10. Tang WH, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest 2014;124(10):4204–11.10.1172/JCI72331Search in Google Scholar PubMed PubMed Central

11. Tang WH, Wang Z, Shrestha K, Borowski AG, Wu Y, et al. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail 2015;21(2):91–6.10.1016/j.cardfail.2014.11.006Search in Google Scholar PubMed PubMed Central

12. Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 2015;116(3):448–55.10.1161/CIRCRESAHA.116.305360Search in Google Scholar PubMed PubMed Central

13. Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 2013;17(1):49–60.10.1016/j.cmet.2012.12.011Search in Google Scholar PubMed PubMed Central

14. Wang Z, Tang WH, Buffa JA, Fu X, Britt EB, et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 2014;35(14):904–10.10.1093/eurheartj/ehu002Search in Google Scholar PubMed PubMed Central

15. Hazen SL, Brown JM. Eggs as a dietary source for gut microbial production of trimethylamine-N-oxide. Am J Clin Nutr 2014;100(3):741–3.10.3945/ajcn.114.094458Search in Google Scholar PubMed PubMed Central

16. Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New Engl J Med 2013;368(17):1575–84.10.1056/NEJMoa1109400Search in Google Scholar PubMed PubMed Central

17. Fogelman AM. TMAO is both a biomarker and a renal toxin. Circ Res 2015;116(3):396–7.10.1161/CIRCRESAHA.114.305680Search in Google Scholar PubMed PubMed Central

18. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 2016;165(1):111–24.10.1016/j.cell.2016.02.011Search in Google Scholar PubMed PubMed Central

19. Seldin MM, Meng Y, Qi H, Zhu W, Wang Z, et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kappaB. J Am Heart Assoc 2016;5(2).10.1161/JAHA.115.002767Search in Google Scholar PubMed PubMed Central

20. Warrier M, Shih DM, Burrows AC, Ferguson D, Gromovsky AD, et al. The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep 2015;10(3):326–38.10.1016/j.celrep.2014.12.036Search in Google Scholar PubMed PubMed Central

21. Shih DM, Wang Z, Lee R, Meng Y, Che N, et al. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res 2015;56(1):22–37.10.1194/jlr.M051680Search in Google Scholar

22. Kewley RJ, Whitelaw ML, Chapman-Smith A. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol 2004;36(2):189–204.10.1016/S1357-2725(03)00211-5Search in Google Scholar

23. Quintana FJ. The aryl hydrocarbon receptor: a molecular pathway for the environmental control of the immune response. Immunology 2013;138(3):183–9.10.1111/imm.12046Search in Google Scholar PubMed PubMed Central

24. Liu D, Perkins JT, Petriello MC, Hennig B. Exposure to coplanar PCBs induces endothelial cell inflammation through epigenetic regulation of NF-kappaB subunit p65. Toxicol Appl Pharm 2015;289(3):457–65.10.1016/j.taap.2015.10.015Search in Google Scholar PubMed PubMed Central

25. Perkins JT, Petriello MC, Newsome BJ, Hennig B. Polychlorinated biphenyls and links to cardiovascular disease. Environ Sci Pollut Res Int 2016;23(3):2160–72.10.1007/s11356-015-4479-6Search in Google Scholar PubMed PubMed Central

26. Petriello MC, Han SG, Newsome BJ, Hennig B. PCB 126 toxicity is modulated by cross-talk between caveolae and Nrf2 signaling. Toxicol Appl Pharm 2014;277(2):192–9.10.1016/j.taap.2014.03.018Search in Google Scholar PubMed PubMed Central

27. Schlezinger JJ, Struntz WD, Goldstone JV, Stegeman JJ. Uncoupling of cytochrome P450 1A and stimulation of reactive oxygen species production by co-planar polychlorinated biphenyl congeners. Aquat Toxicol 2006;77(4):422–32.10.1016/j.aquatox.2006.01.012Search in Google Scholar PubMed

28. Majkova Z, Smart E, Toborek M, Hennig B. Up-regulation of endothelial monocyte chemoattractant protein-1 by coplanar PCB77 is caveolin-1-dependent. Toxicol Applied Pharm 2009;237(1):1–7.10.1016/j.taap.2009.02.016Search in Google Scholar PubMed PubMed Central

29. Lim EJ, Majkova Z, Xu S, Bachas L, Arzuaga X, et al. Coplanar polychlorinated biphenyl-induced CYP1A1 is regulated through caveolae signaling in vascular endothelial cells. Chem-Biol Interact 2008;176(2–3):71–8.10.1016/j.cbi.2008.08.007Search in Google Scholar PubMed PubMed Central

30. Gambier N, Marteau JB, Batt AM, Marie B, Thompson A, et al. Interaction between CYP1A1 T3801C and AHR G1661A polymorphisms according to smoking status on blood pressure in the Stanislas cohort. J Hypertens 2006;24(11):2199–205.10.1097/01.hjh.0000249697.26983.aaSearch in Google Scholar PubMed

31. Lanca V, Alcantara P, Braz-Nogueira J, Bicho MP. Cytochrome P450 1A1 (CYP1A1) T6325C polymorphism might modulate essential hypertension-associated stroke risk. Rev Port Cardiol 2004;23(3):343–55.Search in Google Scholar

32. Tian J, Feng Y, Fu H, Xie HQ, Jiang JX, et al. The aryl hydrocarbon receptor: a key bridging molecule of external and internal chemical signals. Environ Sci Technol 2015;49(16):9518–31.10.1021/acs.est.5b00385Search in Google Scholar PubMed PubMed Central

33. Mimura J, Yamashita K, Nakamura K, Morita M, Takagi TN, et al. Loss of teratogenic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking the Ah (dioxin) receptor. Genes Cells 1997;2(10):645–54.10.1046/j.1365-2443.1997.1490345.xSearch in Google Scholar PubMed

34. Schmidt JV, Su GH, Reddy JK, Simon MC, Bradfield CA. Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc Natl Acad Sci USA 1996;93(13):6731–6.10.1073/pnas.93.13.6731Search in Google Scholar PubMed PubMed Central

35. Fernandez-Salguero P, Pineau T, Hilbert DM, McPhail T, Lee SS, et al. Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science 1995;268(5211):722–6.10.1126/science.7732381Search in Google Scholar PubMed

36. Girer NG, Murray IA, Omiecinski CJ, Perdew GH. Hepatic aryl hydrocarbon receptor attenuates fibroblast growth factor 21 expression. The J Biol Chem 2016;291(29):15378–87.10.1074/jbc.M116.715151Search in Google Scholar PubMed PubMed Central

37. Lu P, Yan J, Liu K, Garbacz WG, Wang P, et al. Activation of aryl hydrocarbon receptor dissociates fatty liver from insulin resistance by inducing fibroblast growth factor 21. Hepatology 2015;61(6):1908–19.10.1002/hep.27719Search in Google Scholar PubMed PubMed Central

38. Thackaberry EA, Bedrick EJ, Goens MB, Danielson L, Lund AK, et al. Insulin regulation in AhR-null mice: embryonic cardiac enlargement, neonatal macrosomia, and altered insulin regulation and response in pregnant and aging AhR-null females. Toxicol Sci 2003;76(2):407–17.10.1093/toxsci/kfg229Search in Google Scholar PubMed

39. Xu CX, Wang C, Zhang ZM, Jaeger CD, Krager SL, et al. Aryl hydrocarbon receptor deficiency protects mice from diet-induced adiposity and metabolic disorders through increased energy expenditure. Int J Obesity 2015;39(8):1300–9.10.1038/ijo.2015.63Search in Google Scholar PubMed PubMed Central

40. Baker NA, Shoemaker R, English V, Larian N, Sunkara M, et al. Effects of adipocyte aryl hydrocarbon receptor deficiency on PCB-induced disruption of glucose homeostasis in lean and obese mice. Environ Health Perspect 2015;123(10):944–50.10.1289/ehp.1408594Search in Google Scholar PubMed PubMed Central

41. Barouki R, Coumoul X, Fernandez-Salguero PM. The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett 2007;581(19):3608–15.10.1016/j.febslet.2007.03.046Search in Google Scholar PubMed

42. Rannug U, Rannug A, Sjoberg U, Li H, Westerholm R, et al. Structure elucidation of two tryptophan-derived, high affinity Ah receptor ligands. Chem Biol 1995;2(12):841–5.10.1016/1074-5521(95)90090-XSearch in Google Scholar

43. Kawasaki H, Chang HW, Tseng HC, Hsu SC, Yang SJ, et al. A tryptophan metabolite, kynurenine, promotes mast cell activation through aryl hydrocarbon receptor. Allergy 2014;69(4):445–52.10.1111/all.12346Search in Google Scholar PubMed

44. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 2011;478(7368):197–203.10.1038/nature10491Search in Google Scholar PubMed

45. Sarsero JP, Merino E, Yanofsky C. A Bacillus subtilis operon containing genes of unknown function senses tRNATrp charging and regulates expression of the genes of tryptophan biosynthesis. Proc Natl Acad Sci USA 2000;97(6):2656–61.10.1073/pnas.050578997Search in Google Scholar PubMed PubMed Central

46. Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013;39(2):372–85.10.1016/j.immuni.2013.08.003Search in Google Scholar PubMed

47. Takamura T, Harama D, Fukumoto S, Nakamura Y, Shimokawa N, et al. Lactobacillus bulgaricus OLL1181 activates the aryl hydrocarbon receptor pathway and inhibits colitis. Immunol Cell Biol 2011;89(7):817–22.10.1038/icb.2010.165Search in Google Scholar PubMed PubMed Central

48. Stevens EA, Mezrich JD, Bradfield CA. The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology 2009;127(3):299–311.10.1111/j.1365-2567.2009.03054.xSearch in Google Scholar PubMed PubMed Central

49. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 2008;453(7191):65–71.10.1038/nature06880Search in Google Scholar PubMed

50. De Abrew KN, Phadnis AS, Crawford RB, Kaminski NE, Thomas RS. Regulation of Bach2 by the aryl hydrocarbon receptor as a mechanism for suppression of B-cell differentiation by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Applied Pharm 2011;252(2):150–8.10.1016/j.taap.2011.01.020Search in Google Scholar PubMed PubMed Central

51. Shi LZ, Faith NG, Nakayama Y, Suresh M, Steinberg H, et al. The aryl hydrocarbon receptor is required for optimal resistance to Listeria monocytogenes infection in mice. J Immunol 2007;179(10):6952–62.10.4049/jimmunol.179.10.6952Search in Google Scholar PubMed PubMed Central

52. Kiss EA, Vonarbourg C, Kopfmann S, Hobeika E, Finke D, et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 2011;334(6062):1561–5.10.1126/science.1214914Search in Google Scholar PubMed

53. Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 2012;13(2):144–51.10.1038/ni.2187Search in Google Scholar PubMed PubMed Central

54. Monteleone I, MacDonald TT, Pallone F, Monteleone G. The aryl hydrocarbon receptor in inflammatory bowel disease: linking the environment to disease pathogenesis. Curr Opin Gastroen 2012;28(4):310–3.10.1097/MOG.0b013e328352ad69Search in Google Scholar PubMed

55. Monteleone I, Rizzo A, Sarra M, Sica G, Sileri P, et al. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 2011;141(1):237–48, 48 e1.10.1053/j.gastro.2011.04.007Search in Google Scholar PubMed

Received: 2016-9-15
Accepted: 2016-9-30
Published Online: 2016-11-12
Published in Print: 2017-3-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/reveh-2016-0050/html
Scroll to top button