Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 25, 2022

Research trends in the development of anodes for electrochemical oxidation of wastewater

  • Devendra Rai ORCID logo and Shishir Sinha EMAIL logo

Abstract

The review focuses on the recent development in anode materials and their synthesis approach, focusing on their compatibility for treating actual industrial wastewater, improving selectivity, electrocatalytic activity, stability at higher concentration, and thereby reducing the mineralization cost for organic pollutant degradation. The advancement in sol–gel technique, including the Pechini method, is discussed in the first section. A separate discussion related to the selection of the electrodeposition method and its deciding parameters is also included. Furthermore, the effect of using advanced heating approaches, including microwave and laser deposition synthesis, is also discussed. Next, a separate discussion is provided on using different types of anode materials and their effect on active •OH radical generation, activity, and electrode stability in direct and indirect oxidation and future aspects. The effect of using different synthesis approaches, additives, and doping is discussed separately for each anode. Graphene, carbon nanotubes (CNTs), and metal doping enhance the number of active sites, electrochemical activity, and mineralization current efficiency (MCE) of the anode. While, microwave or laser heating approaches were proved to be an effective, cheaper, and fast alternative to conventional heating. The electrodeposition and nonaqueous solvent synthesis were convenient and environment-friendly techniques for conductive metallic and polymeric film deposition.


Corresponding author: Shishir Sinha, Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India, E-mail:

Funding source: Indian Institute of Technology Roorkee

Funding source: Ministry of Human Resources Department, Government of India

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge the help and financial support from the Indian Institute of Technology Roorkee and Ministry of Human Resources Department, Government of India.

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

Abbasi, M., Backstrom, J., and Cornell, A. (2018). Fabrication of spin-coated Ti/TiHx/Ni–Sb–SnO2 electrode: stability and electrocatalytic activity. J. Electrochem. Soc. 165: 568–574, doi:https://doi.org/10.1149/2.1171809jes.Search in Google Scholar

Agrahari, G.K., Verma, N., and Bhattacharya, P.K. (2014). Removal of benzoic acid from water by reactive extraction using hollow fiber membrane contactor: experiment and modeling. CLEAN – Soil, Air, Water 42: 901–908, https://doi.org/10.1002/clen.201300769.Search in Google Scholar

Almeida, L.C., Garcia-Segura, S., Arias, C., Bocchi, N., and Brillas, E. (2012). Electrochemical mineralization of the azo dye Acid Red 29 (Chromotrope 2R) by photoelectro-Fenton process. Chemosphere 89: 751–758, https://doi.org/10.1016/J.CHEMOSPHERE.2012.07.007.Search in Google Scholar

Ansari, A. and Nematollahi, D. (2018). A comprehensive study on the electrocatalytic degradation, electrochemical behavior and degradation mechanism of malachite green using electrodeposited nanostructured β–PbO2 electrodes. Water Res. 144: 462–473, doi:https://doi.org/10.1016/j.watres.2018.07.056.Search in Google Scholar PubMed

Ansari, A. and Nematollahi, D. (2020). Convergent paired electrocatalytic degradation of p-dinitrobenzene by Ti/SnO2–Sb/β–PbO2 anode. A new insight into the electrochemical degradation mechanism. Appl. Catal. B Environ. 261: 118226, doi:https://doi.org/10.1016/j.apcatb.2019.118226.Search in Google Scholar

Aquino, J.M., Rocha-Filho, R.C., Ruotolo, L.A.M., Bocchi, N., and Biaggio, S.R. (2014). Electrochemical degradation of a real textile wastewater using β-PbO2 and DSA® anodes. Chem. Eng. J. 251: 138–145, https://doi.org/10.1016/j.cej.2014.04.032.Search in Google Scholar

Barbari, K., Delimi, R., Benredjem, Z., Saaidia, S., Djemel, A., Chouchane, T., Oturan, N., and Oturan, M.A. (2018). Photocatalytically-assisted electrooxidation of herbicide fenuron using a new bifunctional electrode PbO2/SnO2–Sb2O3/Ti//Ti/TiO2. Chemosphere 203: 1–10, https://doi.org/10.1016/j.chemosphere.2018.03.126.Search in Google Scholar PubMed

Baronetto, D., Kodintsev, I.M., and Trasatti, S. (1994). Origin of ohmic losses at Co3O4/Ti electrodes. J. Appl. Electrochem. 24: 189–194, https://doi.org/10.1007/bf00242882.Search in Google Scholar

Basavarajappa, P.S., Patil, S.B., Ganganagappa, N., Raghava, K., Raghu, A.V., and Reddy, C.V. (2019). Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrogen Energy 45: 7764–7778, https://doi.org/10.1016/j.ijhydene.2019.07.241.Search in Google Scholar

Bergmann, M.E.H., Rollin, J., and Iourtchouk, T. (2009). The occurrence of perchlorate during drinking water electrolysis using BDD anodes. Electrochim. Acta 54: 2102–2107, https://doi.org/10.1016/j.electacta.2008.09.040.Search in Google Scholar

Bhattacharjee, A., Ahmaruzzaman, M., and Sinha, T. (2014). Surfactant effects on the synthesis of durable tin-oxide nanoparticles and its exploitation as a recyclable catalyst for the elimination of toxic dye: a green and efficient approach for wastewater treatment. RSC Adv. 4: 51418–51429, https://doi.org/10.1039/c4ra08461f.Search in Google Scholar

Bian, X., Xia, Y., Zhan, T., Wang, L., Zhou, W., Dai, Q., and Chen, J. (2019). Electrochemical removal of amoxicillin using a Cu doped PbO2 electrode: electrode characterization, operational parameters optimization and degradation mechanism. Chemosphere 233: 762–770, https://doi.org/10.1016/j.chemosphere.2019.05.226.Search in Google Scholar PubMed

Brillas, E., Bastida, R.M., Llosa, E., and Casado, J. (1995). Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a vcarbon-PTFE 02-fed cathode. J. Electrochem. Sci. Technol. 142: 1733–1741, doi:https://doi.org/10.1149/1.2044186.Search in Google Scholar

Bu, L., Ding, J., Zhu, N., Kong, M., Wu, Y., Shi, Z., Zhou, S., and Dionysiou, D.D. (2019). Unraveling different mechanisms of persulfate activation by graphite felt anode and cathode to destruct contaminants of emerging concern. Appl. Catal. B Environ. 253: 140–148, https://doi.org/10.1016/j.apcatb.2019.04.030.Search in Google Scholar

Buthiyappan, A., Abdul Aziz, A.R., and Wan Daud, W.M.A. (2016). Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Rev. Chem. Eng. 32: 1–47, https://doi.org/10.1515/revce-2015-0034.Search in Google Scholar

Cao, J., Zhao, H., Cao, F., and Zhang, J. (2007). The influence of F− doping on the activity of PbO2 film electrodes in oxygen evolution reaction. Electrochim. Acta 52: 7870–7876, https://doi.org/10.1016/j.electacta.2007.06.038.Search in Google Scholar

Carneiro, J.F., Aquino, J.M., Silva, A.J., Barreiro, J.C., Cass, Q.B., and Rocha-Filho, R.C. (2018). The effect of the supporting electrolyte on the electrooxidation of enrofloxacin using a flow cell with a BDD anode: kinetics and follow-up of oxidation intermediates and antimicrobial activity. Chemosphere 206: 674–681, https://doi.org/10.1016/j.chemosphere.2018.05.031.Search in Google Scholar PubMed

Castro Luna, A.M., Bonesi, A.R., Moreno, M.S., Zampieri, G., Bengió, S., and Triaca, W.E. (2014). Influence of metallic oxides on ethanol oxidation. Int. J. Hydrogen Energy 39: 8690–8696, https://doi.org/10.1016/j.ijhydene.2013.12.052.Search in Google Scholar

Chaplin, B.P., Wyle, I., Zeng, H., Carlisle, J.A., and Farrell, J. (2011). Characterization of the performance and failure mechanisms of boron-doped ultrananocrystalline diamond electrodes. J. Appl. Electrochem. 41: 1329–1340, https://doi.org/10.1007/s10800-011-0351-7.Search in Google Scholar

Chaturvedi, A., Rai, B.N., Singh, R.S., and Jaiswal, R.P. (2021). A comprehensive review on the integration of advanced oxidation processes with biodegradation for the treatment of textile wastewater containing azo dyes. Rev. Chem. Eng. 38: 617–639. https://doi.org/10.1515/revce-2020-0010.Search in Google Scholar

Chatzisymeon, E., Dimou, A., Mantzavinos, D., and Katsaounis, A. (2009). Electrochemical oxidation of model compounds and olive mill wastewater over DSA electrodes: 1. The case of Ti/IrO2 anode. J. Hazard. Mater. 167: 268–274, https://doi.org/10.1016/j.jhazmat.2008.12.117.Search in Google Scholar PubMed

Chauhan, R., Srivastava, V.C., and Hiwarkar, A.D. (2016). Electrochemical mineralization of chlorophenol by ruthenium oxide coated titanium electrode. J. Taiwan Inst. Chem. Eng. 69: 106–117, https://doi.org/10.1016/j.jtice.2016.10.016.Search in Google Scholar

Chauhan, R. and Srivastava, V.C. (2020). Electrochemical denitrification of highly contaminated actual nitrate wastewater by Ti/RuO2 anode and iron cathode. Chem. Eng. J. 386: 122065, https://doi.org/10.1016/j.cej.2019.122065.Search in Google Scholar

Chen, A., Xia, S., Ji, Z., and Lu, H. (2019). Insights into the origin of super-high oxygen evolution potential of Cu doped SnO2 anodes: a theoretical study. Appl. Surf. Sci. 471: 149–153, https://doi.org/10.1016/j.apsusc.2018.11.233.Search in Google Scholar

Chen, A., Zhu, X., Xi, J., Qin, H., and Ji, Z. (2016). Ultra-high oxidation potential of Ti/Cu–SnO2 anodes fabricated by spray pyrolysis for wastewater treatment. J. Alloys Compd. 683: 501–505, https://doi.org/10.1016/j.jallcom.2016.05.075.Search in Google Scholar

Chen, G., Chen, X., and Lock Yue, P. (2002). Electrochemical behavior of novel Ti/IrOx–Sb2O5–SnO2 anodes. J. Phys. Chem. B 106: 4364–4369, https://doi.org/10.1021/jp013547o.Search in Google Scholar

Chen, M., Li, S., Jin, C., Shao, M., and Huang, Z. (2021). Selective recovery of platinum by combining a novel reusable ionic liquid with electrodeposition. Separ. Purif. Technol. 259: 118204, https://doi.org/10.1016/j.seppur.2020.118204.Search in Google Scholar

Chen, M., Pan, S., Zhang, C., Wang, C., Zhang, W., Chen, Z., Zhao, X., and Zhao, Y. (2020). Electrochemical oxidation of reverse osmosis concentrates using enhanced TiO2–NTA/SnO2–Sb anodes with/without PbO2 layer. Chem. Eng. J. 399: 1–10, https://doi.org/10.1016/j.cej.2020.125756.Search in Google Scholar

Chen, S., He, P., Wang, X., Xiao, F., Zhou, P., He, Q., Jia, L., Dong, F., Zhang, H., Jia, B., et al.. (2020a). Co/Sm-modified Ti/PbO2 anode for atrazine degradation: effective electrocatalytic performance and degradation mechanism. Chemosphere 268: 128799, https://doi.org/10.1016/j.chemosphere.2020.128799.Search in Google Scholar PubMed

Chen, S., He, P., Zhou, P., Wang, X., Xiao, F., He, Q., Li, J., Jia, L., Zhang, H., Jia, B., et al.. (2021). Development of a novel graphitic carbon nitride and multiwall carbon nanotube co-doped Ti/PbO2 anode for electrocatalytic degradation of acetaminophen. Chemosphere 271: 129830, https://doi.org/10.1016/j.chemosphere.2021.129830.Search in Google Scholar PubMed

Chen, S., Li, J., Liu, L., He, Q., Zhou, L., Yang, T., Wang, X., He, P., Zhang, H., and Jia, B. (2020b). Fabrication of Co/Pr co-doped Ti/PbO2 anode for efficiently electrocatalytic degradation of β-naphthoxyacetic acid. Chemosphere 256: 127139, https://doi.org/10.1016/j.chemosphere.2020.127139.Search in Google Scholar PubMed

Chen, X., Liang, J., Zhou, Z., Duan, H., Li, B., and Yang, Q. (2010). The preparation of SnO2 film by electrodeposition. Mater. Res. Bull. 45: 2006–2011, https://doi.org/10.1016/j.materresbull.2010.07.029.Search in Google Scholar

Chen, Z., Lai, W., Xu, Y., Xie, G., Hou, W., Zhanchang, P., Kuang, C., and Li, Y. (2021a). Anodic oxidation of ciprofloxacin using different graphite felt anodes: kinetics and degradation pathways. J. Hazard. Mater. 405: 124262, https://doi.org/10.1016/j.jhazmat.2020.124262.Search in Google Scholar PubMed

Chen, Z., Xie, G., Pan, Z., Zhou, X., Lai, W., Zheng, L., and Xu, Y. (2021b). A novel Pb/PbO2 electrodes prepared by the method of thermal oxidation-electrochemical oxidation: characteristic and electrocatalytic oxidation performance. J. Alloys Compd. 851: 156834, https://doi.org/10.1016/j.jallcom.2020.156834.Search in Google Scholar

Ciríaco, L., Anjo, C., Correia, J., Pacheco, M.J., and Lopes, A. (2009). Electrochemical degradation of Ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes. Electrochim. Acta 54: 1464–1472, https://doi.org/10.1016/j.electacta.2008.09.022.Search in Google Scholar

Comninellis, C. (1994). Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim. Acta 39: 1857–1862, https://doi.org/10.1016/0013-4686(94)85175-1.Search in Google Scholar

Comninellis, C. and Nerini, A. (1995). Anodic oxidation of phenol in the presence of NaCI for wastewater treatment. J. Appl. Electrochem. 25: 23–28, https://doi.org/10.1007/bf00251260.Search in Google Scholar

Cornejo, O.M., Murrieta, M.F., Castañeda, L.F., and Nava, J.L. (2020). Characterization of the reaction environment in flow reactors fitted with BDD electrodes for use in electrochemical advanced oxidation processes: a critical review. Electrochim. Acta 331: 135373, https://doi.org/10.1016/j.electacta.2019.135373.Search in Google Scholar

Correa-Lozano, B., Comninellis, C., and Battisti, A.D.E. (1997). Service life of Ti/SnO2–Sb2O5 anodes. J. Appl. Electrochem. 27: 970–974, https://doi.org/10.1023/a:1018414005000.10.1023/A:1018414005000Search in Google Scholar

Costa, C.R., Botta, C.M.R., Espindola, E.L.G., and Olivi, P. (2008). Electrochemical treatment of tannery wastewater using DSA®electrodes. J. Hazard. Mater. 153: 616–627, https://doi.org/10.1016/j.jhazmat.2007.09.005.Search in Google Scholar PubMed

Cruz-Rizo, A., Gutiérrez-Granados, S., Salazar, R., and Peralta-Hernández, J.M. (2017). Application of electro-Fenton/BDD process for treating tannery wastewaters with industrial dyes. Sep. Purif. Technol. 172: 296–302, https://doi.org/10.1016/j.seppur.2016.08.029.Search in Google Scholar

Da Silva, L.M., Gonçalves, I.C., Teles, J.J.S., and Franco, D. V. (2014). Application of oxide fine-mesh electrodes composed of Sb-SnO2 for the electrochemical oxidation of Cibacron Marine FG using an SPE filter-press reactor. Electrochim. Acta 146: 714–732, https://doi.org/10.1016/J.ELECTACTA.2014.09.070.Search in Google Scholar

Danks, A.E., Hall, S.R., and Schnepp, Z. (2016). The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 3: 91–112, https://doi.org/10.1039/c5mh00260e.Search in Google Scholar

Darabizad, G., Rahmanifar, M.S., Mousavi, M.F., and Pendashteh, A. (2015). Electrodeposition of morphology- and size-tuned PbO2 nanostructures in the presence of PVP and their electrochemical studies. Mater. Chem. Phys. 156: 121–128, https://doi.org/10.1016/j.matchemphys.2015.02.037.Search in Google Scholar

de Mello, R., Santos, L.H.E., Pupo, M.M.S., Eguiluz, K.I.B., Salazar-Banda, G.R., and Motheo, A.J. (2018). Alachlor removal performance of Ti/Ru0.3Ti0.7O2 anodes prepared from ionic liquid solution. J. Solid State Electrochem. 22: 1571–1580, https://doi.org/10.1007/s10008-017-3700-6.Search in Google Scholar

de Oliveira Santiago Santos, G., Vasconcelos, V.M., da Silva, R.S., Rodrigo, M.A., Eguiluz, K.I.B., and Salazar-Banda, G.R. (2020). New laser-based method for the synthesis of stable and active Ti/SnO2–Sb anodes. Electrochim. Acta 332: 135478, https://doi.org/10.1016/j.electacta.2019.135478.Search in Google Scholar

de Santana Mota, W.J., de Oliveira Santiago Santos, G., Resende Dória, A., Rubens dos Reis Souza, M., Krause, L.C., Salazar-Banda, G.R., Barrios Eguiluz, K.I., López, J.A., and Hernández-Macedo, M.L. (2021). Enhanced HCB removal using bacteria from mangrove as post-treatment after electrochemical oxidation using a laser-prepared Ti/RuO2–IrO2–TiO2 anode. Chemosphere 279: 130875, https://doi.org/10.1016/j.chemosphere.2021.130875.Search in Google Scholar PubMed

Deng, D., Wu, X., Li, M., Qian, S., Tang, B., Wei, S., and Zhang, J. (2020). Electrochemical degradation of three phthalate esters in synthetic wastewater by using a Ce-doped Ti/PbO2 electrode. Chemosphere 259: 127488, https://doi.org/10.1016/j.chemosphere.2020.127488.Search in Google Scholar PubMed

Dimesso, L. (2016). Pechini Processes: An Alternate Approach of the Sol–Gel Method, Preparation, Properties, and Applications. In: Handbook of Sol-Gel Science and Technology. Springer International Publishing, Cham, pp. 1–22.10.1007/978-3-319-19454-7_123-1Search in Google Scholar

Divyapriya, G. and Nidheesh, P.V. (2020). Importance of graphene in the electro-Fenton process. ACS Omega 5: 4725–4732, https://doi.org/10.1021/acsomega.9b04201.Search in Google Scholar PubMed PubMed Central

dos Anjos Bezerra, C.W., de Oliveira Santiago Santos, G., Moura de Salles Pupo, M., de Andrade Gomes, M., Santos da Silva, R., Barrios Eguiluz, K.I., and Salazar-Banda, G.R. (2020). Novel eco-friendly method to prepare Ti/RuO2–IrO2 anodes by using polyvinyl alcohol as the solvent. J. Electroanal. Chem. 859: 113822, https://doi.org/10.1016/j.jelechem.2020.113822.Search in Google Scholar

Duan, P., Gao, S., Lei, J., Li, X., and Hu, X. (2020a). Electrochemical oxidation of ceftazidime with graphite/CNT–Ce/PbO2–Ce anode: parameter optimization, toxicity analysis and degradation pathway. Environ. Pollut. 263: 114436, https://doi.org/10.1016/j.envpol.2020.114436.Search in Google Scholar PubMed

Duan, T., Chen, Y., Wen, Q., and Duan, Y. (2014). Enhanced electrocatalytic activity of nano-TiN composited Ti/Sb–SnO2 electrode fabricated by pulse electrodeposition for methylene blue decolorization. RSC Adv. 4: 57463–57475, https://doi.org/10.1039/c4ra09145k.Search in Google Scholar

Duan, X., Wang, W., Wang, Q., Sui, X., Li, N., and Chang, L. (2020). Electrocatalytic degradation of perfluoroocatane sulfonate (PFOS) on a 3D graphene-lead dioxide (3DG–PbO2) composite anode: electrode characterization, degradation mechanism and toxicity. Chemosphere 260: 127587, https://doi.org/10.1016/j.chemosphere.2020.127587.Search in Google Scholar PubMed

Duan, Y., Chen, Y., Wen, Q., and Duan, T. (2016). Electrodeposition preparation of a cauliflower-like Sb–SnO2 electrode from DMSO solution for electrochemical dye decolorization. RSC Adv. 6: 48043–48048, https://doi.org/10.1039/c6ra07744g.Search in Google Scholar

Elaissaoui, I., Akrout, H., Grassini, S., Fulginiti, D., and Bousselmi, L. (2019). Effect of coating method on the structure and properties of a novel PbO2 anode for electrochemical oxidation of amaranth dye. Chemosphere 217: 26–34, https://doi.org/10.1016/j.chemosphere.2018.10.161.Search in Google Scholar PubMed

Espinoza, L.C., Aranda, M., Contreras, D., Henríquez, A., and Salazar, R. (2019). Effect of the sp3/sp2 ratio in boron-doped diamond electrodes on the degradation pathway of aniline by anodic oxidation. ChemElectroChem 6: 4801–4810, https://doi.org/10.1002/celc.201901218.Search in Google Scholar

Espinoza, C., Romero, J., Villegas, L., Cornejo-Ponce, L., and Salazar, R. (2016). Mineralization of the textile dye acid yellow 42 by solar photoelectro-Fenton in a lab-pilot plant. J. Hazard. Mater. 319: 24–33, https://doi.org/10.1016/j.jhazmat.2016.03.003.Search in Google Scholar PubMed

Fan, C. and Piron, D.L. (1996). Study of anomalous nickel-cobalt electrodeposition with different electrolytes and current densities. Electrochim. Acta 41: 1713–1719, https://doi.org/10.1016/0013-4686(95)00488-2.Search in Google Scholar

Fernandes, A., Santos, D., Pacheco, M.J., Ciríaco, L., and Lopes, A. (2014). Nitrogen and organic load removal from sanitary landfill leachates by anodic oxidation at Ti/Pt/PbO2, Ti/Pt/SnO2–Sb2O4 and Si/BDD. Appl. Catal. B Environ. 148–149: 288–294, https://doi.org/10.1016/j.apcatb.2013.10.060.Search in Google Scholar

Fierro, S., Nagel, T., Baltruschat, H., and Comninellis, C. (2007). Investigation of the oxygen evolution reaction on Ti/IrO2 electrodes using isotope labelling and on-line mass spectrometry. Electrochem. Commun. 9: 1969–1974, https://doi.org/10.1016/j.elecom.2007.05.008.Search in Google Scholar

Gandini, D., Mahé, E., Michaud, P.A., Haenni, W., Perret, A., Comninellis, C. (2000). Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment. J. Appl. Electrochem. 30, 1345–1350. https://doi.org/10.1023/A:.Search in Google Scholar

Ganz, D., Reich, A., and Aegerter, M.A. (1997). Laser firing of transparent conducting SnO2 sol—gel coatings. J. Non-Cryst. Solids 218: 242–246, https://doi.org/10.1016/s0022-3093(97)00166-x.Search in Google Scholar

García-Gómez, C., Drogui, P., Seyhi, B., Gortáres-Moroyoqui, P., Buelna, G., Estrada-Alvgarado, M.I., and Álvarez, L.H. (2016). Combined membrane bioreactor and electrochemical oxidation using Ti/PbO2 anode for the removal of carbamazepine. J. Taiwan Inst. Chem. Eng. 64: 211–219, https://doi.org/10.1016/j.jtice.2016.04.024.Search in Google Scholar

García-Gómez, C., Drogui, P., Zaviska, F., Seyhi, B., Gortáres-Moroyoqui, P., Buelna, G., Neira-Sáenz, C., Estrada-Alvarado, M., and Ulloa-Mercado, R.G. (2014). Experimental design methodology applied to electrochemical oxidation of carbamazepine using Ti/PbO2 and Ti/BDD electrodes. J. Electroanal. Chem. 732: 1–10, https://doi.org/10.1016/j.jelechem.2014.08.032.Search in Google Scholar

Garcia-Segura, S., Vieira Dos Santos, E., and Martínez-Huitle, C.A. (2015). Role of sp3/sp2 ratio on the electrocatalytic properties of boron-doped diamond electrodes: a mini review. Electrochem. Commun. 59: 52–55, https://doi.org/10.1016/j.elecom.2015.07.002.Search in Google Scholar

Gherardini, L., Michaud, P.A., Panizza, M., Comninellis, C., and Vatistas, N. (2001). Electrochemical Oxidation of 4-Chlorophenol for Wastewater Treatment: Definition of Normalized Current Efficiency (φ). J. Electrochem. Soc. 148: D78, https://doi.org/10.1149/1.1368105.Search in Google Scholar

Ghosh, S. and Roy, S. (2014). Characterization of tin films synthesized from ethaline deep eutectic solvent. Mater. Sci. Eng. B 190: 104–110, https://doi.org/10.1016/j.mseb.2014.09.014.Search in Google Scholar

Gonzaga, I.M.D., Dória, A.R., Vasconcelos, V.M., Souza, F.M., dos Santos, M.C., Hammer, P., Rodrigo, M.A., Eguiluz, K.I.B., and Salazar-Banda, G.R. (2020). Microwave synthesis of Ti/(RuO2)0.5(IrO2)0.5 anodes: improved electrochemical properties and stability. J. Electroanal. Chem. 874: 114460, https://doi.org/10.1016/j.jelechem.2020.114460.Search in Google Scholar

Gu, C.D., Mai, Y.J., Zhou, J.P., and Tu, J.P. (2011). SnO2 nanocrystallite: novel synthetic route from deep eutectic solvent and lithium storage performance. Funct. Mater. Lett. 4: 377–381, https://doi.org/10.1142/s1793604711002251.Search in Google Scholar

Gui, L., Chen, Z., Chen, B., Song, Y., Yu, Q., Zhu, W., Hu, Q., Liu, Y., Zheng, Z., Lv, Z., et al.. (2020). Preparation and characterization of ZnO/PEG–Co(II)–PbO2 nanocomposite electrode and an investigation of the electrocatalytic degradation of phenol. J. Hazard. Mater. 399: 123018, https://doi.org/10.1016/j.jhazmat.2020.123018.Search in Google Scholar PubMed

Guinea, E., Arias, C., Cabot, P.L., Garrido, J.A., Rodríguez, R.M., Centellas, F., and Brillas, E. (2008). Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide. Water Res. 42: 499–511, https://doi.org/10.1016/j.watres.2007.07.046.Search in Google Scholar PubMed

Guo, X., Li, D., Wan, J., and Yu, X. (2015). Preparation and electrochemical property of TiO2/nano-graphite composite anode for electro-catalytic degradation of ceftriaxone sodium. Electrochim. Acta 180: 957–964, https://doi.org/10.1016/j.electacta.2015.09.055.Search in Google Scholar

Han, H., Lyu, J., Zhu, L., Wang, G., Ma, C., and Ma, H. (2020). Fabrication of BN modified Ti/PbO2 electrodes with tunable hydrophobic characteristics and their electrocatalytic performance. J. Alloys Compd. 828: 154049, https://doi.org/10.1016/j.jallcom.2020.154049.Search in Google Scholar

He, Y., Huang, W., Chen, R., Zhang, W., Lin, H., and Li, H. (2015). Anodic oxidation of aspirin on PbO2, BDD and porous Ti/BDD electrodes: mechanism, kinetics and utilization rate. Separ. Purif. Technol. 156: 124–131, https://doi.org/10.1016/j.seppur.2015.09.036.Search in Google Scholar

He, Y., Lin, H., Guo, Z., Zhang, W., Li, H., and Huang, W. (2019). Recent developments and advances in boron-doped diamond electrodes for electrochemical oxidation of organic pollutants. Separ. Purif. Technol. 212: 802–821, https://doi.org/10.1016/j.seppur.2018.11.056.Search in Google Scholar

Hong, M., Zou, J., and Chen, Z-G. (2021). Synthesis of thermoelectric materials. In: Thermoelectricity and Advanced Thermoelectric Materials. Elsevier, pp. 73–103.10.1016/B978-0-12-819984-8.00010-2Search in Google Scholar

Hoogenboom, R., Wilms, T.F.A., Erdmenger, T., Schubert, U.S., Hoogenboom, R., Wilms, T.F.A., Erdmenger, T., and Schubert, U.S. (2009). Microwave-assisted chemistry: a closer look at heating efficiency. Aust. J. Chem. 62: 236–243, https://doi.org/10.1071/ch08503.Search in Google Scholar

Hossain, M.D., Islam, M.M., Hossain, M.J., Yasmin, S., Shingho, S.R., Ananna, N.A., and Mustafa, C.M. (2020). Effects of additives on the morphology and stability of PbO2 films electrodeposited on nickel substrate for light weight lead-acid battery application. J. Energy Storage 27: 101108, https://doi.org/10.1016/j.est.2019.101108.Search in Google Scholar

Hu, J., Bian, X., Xia, Y., Weng, M., Zhou, W., and Dai, Q. (2020). Application of response surface methodology in electrochemical degradation of amoxicillin with Cu–PbO2 electrode: optimization and mechanism. Separ. Purif. Technol. 250: 117109, https://doi.org/10.1016/j.seppur.2020.117109.Search in Google Scholar

Hua, G., Zhicheng, X., Dan, Q., Dan, W., Hao, X., Wei, Y., and Xiaoliang, J. (2020). Fabrication and characterization of porous titanium-based PbO2 electrode through the pulse electrodeposition method: deposition condition optimization by orthogonal experiment. Chemosphere 261: 128157, https://doi.org/10.1016/j.chemosphere.2020.128157.Search in Google Scholar PubMed

Huang, J., Jing, H.X., Li, N., Li, L.X., and Jiao, W.Z. (2019). Fabrication of magnetically recyclable SnO2–TiO2/CoFe2O4 hollow core-shell photocatalyst: improving photocatalytic efficiency under visible light irradiation. J. Solid State Chem. 271: 103–109, https://doi.org/10.1016/j.jssc.2018.12.028.Search in Google Scholar

Irikura, K., Bocchi, N., Rocha-Filho, R.C., Biaggio, S.R., Iniesta, J., and Montiel, V. (2016). Electrodegradation of the acid green 28 dye using Ti/β–PbO2 and Ti–Pt/β–PbO2 anodes. J. Environ. Manag. 183: 306–313, https://doi.org/10.1016/j.jenvman.2016.08.061.Search in Google Scholar PubMed

Isarain-Chávez, E., De La Rosa, C., Godínez, L.A., Brillas, E., and Peralta-Hernández, J.M. (2014). Comparative study of electrochemical water treatment processes for a tannery wastewater effluent. J. Electroanal. Chem. 713: 62–69, https://doi.org/10.1016/j.jelechem.2013.11.016.Search in Google Scholar

Ivandini, T.A., Rao, T.N., Fujishima, A., and Einaga, Y. (2006). Electrochemical oxidation of oxalic acid at highly boron-doped diamond electrodes. Anal. Chem. 78: 3467–3471, https://doi.org/10.1021/ac052029x.Search in Google Scholar PubMed

Jaiswal, Y., Pal, S.L., Jaiswal, H., Jain, A., Kush, L., Rai, D., and Tatar, D. (2021). An investigation of changes in structural parameters and organic functional groups of inertinite rich lignite during acid treatment processes. Energy Sources, Part A Recover. Util. Environ. Eff.: 1–18, https://doi.org/10.1080/15567036.2021.1923867.Search in Google Scholar

Jalife-Jacobo, H., Feria-Reyes, R., Serrano-Torres, O., Gutiérrez-Granados, S., and Peralta-Hernández, J.M. (2016). Diazo dye Congo Red degradation using a Boron-doped diamond anode: An experimental study on the effect of supporting electrolytes. J. Hazard. Mater. 319: 78–83, https://doi.org/10.1016/j.jhazmat.2016.02.056.Search in Google Scholar PubMed

Jiang, Y., Hu, Z., Zhou, M., Zhou, L., and Xi, B. (2014). Efficient degradation of p-nitrophenol by electro-oxidation on Fe doped Ti/TiO2 nanotube/PbO2 anode. Separ. Purif. Technol. 128: 67–71, https://doi.org/10.1016/j.seppur.2014.03.015.Search in Google Scholar

Jiao, M., Zhu, L., Xie, C., Zhao, H., Zhang, C., Li, Y., He, Y., Teng, H., and Han, E. (2021). A novel electrodeposited sandwich electrode with an efficient performance in complex water treatment. Surf. Coatings Technol. 406: 126645, https://doi.org/10.1016/j.surfcoat.2020.126645.Search in Google Scholar

Jie, S., Ting-Yun, M., Hui-Xuan, Q., and Qi-Song, L. (2018). Preparation of black Cu–Sn alloy with single phase composition by electrodeposition method in 1-butyl-3-methylimidazolium chloride ionic liquids. Mater. Chem. Phys. 219: 421–424, https://doi.org/10.1016/j.matchemphys.2018.08.067.Search in Google Scholar

Jin, Y., Lv, Y., Yang, C., Cai, W., Zhang, Z., Tong, H., and Zhou, X. (2020). Fabrication of Superhydrophobic Ti/SnO2-Sb/α-PbO2/Fe-β-PbO2-PTFE Electrode and Application in Wastewater Treatment. J. Electron. Mater. 49: 2411–2418, https://doi.org/10.1007/s11664-019-07936-7.Search in Google Scholar

Johnson, I. and Kumar, M. (2020). Electrochemical oxidation of distillery wastewater by dimensionally stable Ti–RuO2 anodes. Environ. Technol. Innovat. 20: 101181, https://doi.org/10.1016/j.eti.2020.101181.Search in Google Scholar

Ju, P., Fan, H., Guo, D., Meng, X., Xu, M., and Ai, S. (2012). Electrocatalytic degradation of bisphenol A in water on a Ti-based PbO2–ionic liquids (ILs) electrode. Chem. Eng. J. 179: 99–106, https://doi.org/10.1016/j.cej.2011.10.065.Search in Google Scholar

Juang, Y., Nurhayati, E., Huang, C., Pan, J.R., and Huang, S. (2013). A hybrid electrochemical advanced oxidation/microfiltration system using BDD/Ti anode for acid yellow 36 dye wastewater treatment. Sep. Purif. Technol. 120: 289–295, https://doi.org/10.1016/J.SEPPUR.2013.09.042.Search in Google Scholar

Julian, H., Nurgirisia, N., Sutrisna, P.D., and Wenten, I.G. (2021). Advances in seawater membrane distillation (SWMD) towards stand-alone zero liquid discharge (ZLD) desalination. Rev. Chem. Eng. 38: 959–990. https://doi.org/10.1515/revce-2020-0073.Search in Google Scholar

Jung, J., Shin, D., Lee, Y., and Pak, J.J. (2021). Fabrication of solution-processed SnO2–based flexible ReRAM using laser-induced graphene transferred onto PDMS. Curr. Appl. Phys. 25: 70–74, https://doi.org/10.1016/j.cap.2021.02.009.Search in Google Scholar

Kaur, P., Kushwaha, J.P., and Sangal, V.K. (2018). Electrocatalytic oxidative treatment of real textile wastewater in continuous reactor: degradation pathway and disposability study. J. Hazard. Mater. 346: 242–252, https://doi.org/10.1016/j.jhazmat.2017.12.044.Search in Google Scholar PubMed

Kaur, R., Kushwaha, J.P., and Singh, N. (2019a). Amoxicillin electro-catalytic oxidation using Ti/RuO2 anode: mechanism, oxidation products and degradation pathway. Electrochim. Acta 296: 856–866, https://doi.org/10.1016/j.electacta.2018.11.114.Search in Google Scholar

Kaur, R., Kushwaha, J.P., and Singh, N. (2019b). Electro-oxidation of amoxicillin trihydrate in continuous reactor by Ti/RuO2 anode. Sci. Total Environ. 677: 84–97, https://doi.org/10.1016/j.scitotenv.2019.04.339.Search in Google Scholar PubMed

Kaur, R., Kushwaha, J.P., and Singh, N. (2018). Electro-oxidation of Ofloxacin antibiotic by dimensionally stable Ti/RuO2 anode: evaluation and mechanistic approach. Chemosphere 193: 685–694, https://doi.org/10.1016/j.chemosphere.2017.11.065.Search in Google Scholar PubMed

Ken, D.S. and Sinha, A. (2021). Dimensionally stable anode (Ti/RuO2) mediated electro-oxidation and multi-response optimization study for remediation of coke-oven wastewater. J. Environ. Chem. Eng. 9: 105025, https://doi.org/10.1016/j.jece.2021.105025.Search in Google Scholar

Kong, J., Shi, S., Kong, L., Zhu, X., and Ni, J. (2007). Preparation and characterization of PbO2 electrodes doped with different rare earth oxides. Electrochim. Acta 53: 2048–2054, https://doi.org/10.1016/j.electacta.2007.09.003.Search in Google Scholar

Kusmierek, E. (2019). Electrochemical and corrosion characterization of TiO2–RuO2/Ti electrodes modified with WO3. Electrocatalysis 10: 499–515, https://doi.org/10.1007/s12678-019-00537-2.Search in Google Scholar

Li, D., Guo, X., Song, H., Sun, T., and Wan, J. (2018). Preparation of RuO2–TiO2/nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium. J. Hazard. Mater. 351: 250–259, https://doi.org/10.1016/j.jhazmat.2018.03.007.Search in Google Scholar PubMed

Li, J., Li, M., Li, D., Wen, Q., and Chen, Z. (2020). Electrochemical pretreatment of coal gasification wastewater with Bi-doped PbO2 electrode: preparation of anode, efficiency and mechanism. Chemosphere 248: 126021, https://doi.org/10.1016/j.chemosphere.2020.126021.Search in Google Scholar PubMed

Li, P., Zhao, Y., Ding, B., and Wang, L. (2015). Effect of calcination temperature and molar ratio of tin and manganese on capacitance of Ti/SnO2–Sb–Mn/β–PbO2 electrode during phenol electro-oxidation. J. Electroanal. Chem. 747: 45–52, https://doi.org/10.1016/j.jelechem.2015.02.029.Search in Google Scholar

Li, R., Li, Y., Yang, P., Wang, D., Xu, H., Wang, B., Meng, F., Zhang, J., and An, M. (2021). Electrodeposition: synthesis of advanced transition metal-based catalyst for hydrogen production via electrolysis of water. J. Energy Chem. 57: 547–566, https://doi.org/10.1016/j.jechem.2020.08.040.Search in Google Scholar

Li, X., Xu, H., and Yan, W. (2016a). Preparation and characterization of PbO2 electrodes modified with polyvinyl alcohol (PVA). RSC Adv. 6: 82024–82032, https://doi.org/10.1039/c6ra17230j.Search in Google Scholar

Li, X., Xu, H., Yan, W., and Shao, D. (2016b). Electrocatalytic degradation of aniline by Ti/Sb–SnO2, Ti/Sb–SnO2/Pb3O4 and Ti/Sb–SnO2/PbO2 anodes in different electrolytes. J. Electroanal. Chem. 775: 43–51, https://doi.org/10.1016/j.jelechem.2016.05.033.Search in Google Scholar

Lin, H., Niu, J., Ding, S., and Zhang, L. (2012). Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2–Sb, Ti/SnO2–Sb/PbO2 and Ti/SnO2–Sb/MnO2 anodes. Water Res. 46: 2281–2289, https://doi.org/10.1016/j.watres.2012.01.053.Search in Google Scholar PubMed

Lin, H., Niu, J., Xu, J., Li, Y., and Pan, Y. (2013). Electrochemical mineralization of sulfamethoxazole by Ti/SnO2–Sb/Ce–PbO2 anode: kinetics, reaction pathways, and energy cost evolution. Electrochim. Acta 97: 167–174, https://doi.org/10.1016/j.electacta.2013.03.019.Search in Google Scholar

Liu, S., Cui, T., Xu, A., Han, W., Li, J., Sun, X., Shen, J., and Wang, L. (2018). Electrochemical treatment of flutriafol wastewater using a novel 3D macroporous PbO2 filter: operating parameters, mechanism and toxicity assessment. J. Hazard. Mater. 358: 187–197, https://doi.org/10.1016/j.jhazmat.2018.06.002.Search in Google Scholar PubMed

Liu, S., Wang, Y., Zhou, X., Han, W., Li, J., Sun, X., Shen, J., and Wang, L. (2017). Improved degradation of the aqueous flutriafol using a nanostructure macroporous PbO2 as reactive electrochemical membrane. Electrochim. Acta 253: 357–367, https://doi.org/10.1016/j.electacta.2017.09.055.Search in Google Scholar

Liu, X., Min, L., Yu, X., Zhou, Z., Sha, L., and Zhang, S. (2020). Changes of photoelectrocatalytic, electrocatalytic and pollutant degradation properties during the growth of β–PbO2 into black titanium oxide nanoarrays. Chem. Eng. J. 417: 127996, https://doi.org/10.1016/j.cej.2020.127996.Search in Google Scholar

Liu, Z., Luo, X., and Ji, D. (2021). Effect of phase composition of PbO2 on cycle stability of soluble lead flow batteries. J. Energy Storage 38: 102524, https://doi.org/10.1016/j.est.2021.102524.Search in Google Scholar

Lu, X.R., Ding, M.H., Zhang, C., and Tang, W.Z. (2018). Investigation on microstructure evolution and failure mechanism of boron doped diamond coated titanium electrode during accelerated life test. Thin Solid Films 660: 306–313, https://doi.org/10.1016/j.tsf.2018.06.039.Search in Google Scholar

Luu, T.. (2020). Tannery wastewater treatment after activated sludge pre-treatment using electro-oxidation on inactive anodes. Clean Technol. Environ. Policy 22, 1701–1713. https://doi.org/10.1007/s10098-020-01907-x.Search in Google Scholar

Luu, T., Stephane, D.D.F., Minh, N.H., Canh, N.D., Thanh, B.X. (2019a). Electrochemical oxidation as a post treatment for biologically tannery wastewater in batch reactor. Water Sci. Technol. 80, 1326–1337. https://doi.org/10.2166/wst.2019.380.Search in Google Scholar PubMed

Luu, T., Tien, T.T., Duong, N.B., Phuong, N.T.T. (2019b). Study of the treatment of tannery wastewater after biological pretreatment by using electrochemical oxidation on BDD/Ti anode. Desalin. Water Treat. 137, 194–201. https://doi.org/10.5004/dwt.2019.23352.Search in Google Scholar

Mandal, P., Yadav, M.K., Gupta, A.K., and Dubey, B.K. (2020). Chlorine mediated indirect electro-oxidation of ammonia using non-active PbO2 anode: influencing parameters and mechanism identification. Separ. Purif. Technol. 247: 116910, https://doi.org/10.1016/j.seppur.2020.116910.Search in Google Scholar

Martínez-Huitle, C.A., Quiroz, M.A., Comninellis, C., Ferro, S., and De Battisti, A. (2004). Electrochemical incineration of chloranilic acid using Ti/IrO2, Pb/PbO2 and Si/BDD electrodes. Electrochim. Acta 50: 949–956, https://doi.org/10.1016/j.electacta.2004.07.035.Search in Google Scholar

Mattos-Costa, F.I., de Lima-Neto, P., Machado, S.A.S., and Avaca, L.A. (1998). Characterisation of surfaces modified by sol-gel derived RuxIr1-xO2 coatings for oxygen evolution in acid medium. Electrochem. Acta 44: 1515–1523, https://doi.org/10.1016/s0013-4686(98)00275-8.Search in Google Scholar

Mei, R., Wei, Q., Zhu, C., Ye, W., Zhou, B., Ma, L., Yu, Z., and Zhou, K. (2019). 3D macroporous boron-doped diamond electrode with interconnected liquid flow channels: A high-efficiency electrochemical degradation of RB-19 dye wastewater under low current. Appl. Catal. B Environ. 245: 420–427, https://doi.org/10.1016/j.apcatb.2018.12.074.Search in Google Scholar

Minh, B.Q., Long, N.N., Van Hien, P., and Dung, N.T. (2019). Rapid and efficient treatment of wastewater from fish sauce-manufacturing factories by using the electrochemical oxidation process. Vietnam J. Chem. 57: 406–410, https://doi.org/10.1002/vjch.201900009.Search in Google Scholar

Mirzaei, A. and Neri, G. (2016). Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: a review. Sensor. Actuator. B Chem. 237: 749–775, https://doi.org/10.1016/j.snb.2016.06.114.Search in Google Scholar

Monteil, H., Péchaud, Y., Oturan, N., and Oturan, M.A. (2019). A review on efficiency and cost effectiveness of electro- and bio-electro-Fenton processes: application to the treatment of pharmaceutical pollutants in water. Chem. Eng. J. 376: 119577, https://doi.org/10.1016/j.cej.2018.07.179.Search in Google Scholar

Moradi, M., Vasseghian, Y., Khataee, A., Kobya, M., Arabzade, H., and Dragoi, E.N. (2020). Service life and stability of electrodes applied in electrochemical advanced oxidation processes: a comprehensive review. J. Ind. Eng. Chem. 87: 18–39, https://doi.org/10.1016/j.jiec.2020.03.038.Search in Google Scholar

Moreira, F.C., Boaventura, R.A.R., Brillas, E., and Vilar, V.J.P. (2017). Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl. Catal. B Environ. 202: 217–261, https://doi.org/10.1016/j.apcatb.2016.08.037.Search in Google Scholar

Morschhäuser, R., Krull, M., Kayser, C., Boberski, C., Bierbaum, R., Püschner, P.A., Glasnov, T.N., and Kappe, C.O. (2012). Microwave-assisted continuous flow synthesis on industrial scale. Green Process. Synth. 1: 281–290, https://doi.org/10.1515/GPS-2012-0032/MACHINEREADABLECITATION/RIS.Search in Google Scholar

Moura de Salles Pupo, M., da Silva, L.M., de Oliveira Santiago Santos, G., Barrios Eguiluz, K.I., and Salazar-Banda, G.R. (2020). Synthesis and characterization of ternary metallic oxide electrodes containing (SnO2)93Sb5M2 (M = Ce, ta, Bi, Gd) using an ionic liquid as the precursor solvent. Chem. Eng. Commun. 207: 1736–1754, https://doi.org/10.1080/00986445.2019.1680367.Search in Google Scholar

Muddemann, T., Bulan, A., Sievers, M., and Kunz, U. (2018). Avoidance of chlorine formation during electrolysis at boron-doped diamond anodes in highly sodium chloride containing and organic-polluted wastewater. J. Electrochem. Soc. 165: J3281–J3287, https://doi.org/10.1149/2.0371815jes.Search in Google Scholar

Murugananthan, M., Latha, S.S., Bhaskar Raju, G., and Yoshihara, S. (2010). Anodic oxidation of ketoprofen-An anti-inflammatory drug using boron doped diamond and platinum electrodes. J. Hazard. Mater. 180: 753–758, https://doi.org/10.1016/j.jhazmat.2010.05.007.Search in Google Scholar PubMed

Naje, A.S., Chelliapan, S., Zakaria, Z., Ajeel, M.A., and Alaba, P.A. (2017). A review of electrocoagulation technology for the treatment of textile wastewater. Rev. Chem. Eng. 33: 263–292, https://doi.org/10.1515/revce-2016-0019.Search in Google Scholar

Nasr, B., Hsen, T., and Abdellatif, G. (2009). Electrochemical treatment of aqueous wastes containing pyrogallol by BDD-anodic oxidation. J. Environ. Manage. 90: 523–530, https://doi.org/10.1016/j.jenvman.2007.12.007.Search in Google Scholar PubMed

Nidheesh, P.V. and Gandhimathi, R. (2014a). Removal of rhodamine B from aqueous solution using graphite–graphite electro-Fenton system. Desalination Water Treat. 52: 1872–1877, https://doi.org/10.1080/19443994.2013.790321.Search in Google Scholar

Nidheesh, P.V. and Gandhimathi, R. (2014b). Effect of solution pH on the performance of three electrolytic advanced oxidation processes for the treatment of textile wastewater and sludge characteristics. RSC Adv. 4: 27946–27954, https://doi.org/10.1039/c4ra02958e.Search in Google Scholar

Naumczyk, J.H. and Kucharska, M.A. (2017). Electrochemical treatment of tannery wastewater—Raw, coagulated, and pretreated by AOPs. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 52: 649–664, https://doi.org/10.1080/10934529.2017.1297140.Search in Google Scholar PubMed

Nava, J.L., Núñez, F., and González, I. (2007). Electrochemical incineration of p-cresol and o-cresol in the filter-press-type FM01-LC electrochemical cell using BDD electrodes in sulfate media at pH 0. Electrochim. Acta 52: 3229–3235, https://doi.org/10.1016/j.electacta.2006.09.072.Search in Google Scholar

Nidheesh, P.V., Babu, D.S., Dasgupta, B., Behara, P., Ramasamy, B., and Kumar, M.S. (2020). Treatment of arsenite-contaminated water by electrochemical advanced oxidation processes. ChemElectroChem 7: 2418–2423, https://doi.org/10.1002/celc.202000549.Search in Google Scholar

Ntakirutimana, S., Tan, W., Anderson, M.A., and Wang, Y. (2020). Activated carbon electrode design: engineering tradeoff with respect to capacitive deionization performance. J. Electrochem. Soc. 167: 143501, https://doi.org/10.1149/1945-7111/abbfd7.Search in Google Scholar

Olu, P.Y., Ohnishi, T., Mochizuki, D., and Sugimoto, W. (2018). Uncovering the real active sites of ruthenium oxide for the carbon monoxide electro-oxidation reaction on platinum: the catalyst acts as a co-catalyst. J. Electroanal. Chem. 810: 109–118, https://doi.org/10.1016/j.jelechem.2017.12.070.Search in Google Scholar

Palma-Goyes, R.E., Vazquez-Arenas, J., Torres-Palma, R.A., Ostos, C., Ferraro, F., and González, I. (2015). The abatement of indigo carmine using active chlorine electrogenerated on ternary Sb2O5-doped Ti/RuO2–ZrO2 anodes in a filter-press FM01-LC reactor. Electrochim. Acta 174: 735–744, https://doi.org/10.1016/j.electacta.2015.06.037.Search in Google Scholar

Palneedi, H., Park, J.H., Maurya, D., Peddigari, M., Hwang, G.T., Annapureddy, V., Kim, J.W., Choi, J.J., Hahn, B.D., Priya, S., et al.. (2018). Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv. Mater. 30: 1705148, https://doi.org/10.1002/adma.201705148.Search in Google Scholar PubMed

Pan, Y., Luo, Y., Li, C., Wang, R., Yuan, Y., Li, M., and Na, P. (2020). Preparation and characterization of Ti/SnO2-Sb2O3/α-PbO2/Ce-Nd-β-PbO2 composite electrode for methyl orange degradation. J. Solid State Electrochem. 24: 545–555, https://doi.org/10.1007/s10008-019-04468-2.Search in Google Scholar

Panizza, M. and Cerisola, G. (2004). Electrochemical oxidation as a final treatment of synthetic tannery wastewater. Environ. Sci. Technol. 38: 5470–5475, https://doi.org/10.1021/es049730n.Search in Google Scholar PubMed

Panizza, M. and Cerisola, G. (2009). Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 109: 6541–6569, https://doi.org/10.1021/cr9001319.Search in Google Scholar PubMed

Panizza, M., Michaud, P.A., Cerisola, G., and Comninellis, C.H. (2001). Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. J. Electroanal. Chem. 507: 206–214, https://doi.org/10.1016/S0022-0728(01)00398-9.Search in Google Scholar

Panizza, M., Zolezzi, M., and Nicolella, C. (2006). Biological and electrochemical oxidation of naphthalenesulfonates. J. Chem. Technol. Biotechnol. 81: 225–232, https://doi.org/10.1002/jctb.1396.Search in Google Scholar

Polcaro, A.M., Vacca, A., Mascia, M., Palmas, S., Pompei, R., and Laconi, S. (2007). Characterization of a stirred tank electrochemical cell for water disinfection processes. Electrochim. Acta 52: 2595–2602, https://doi.org/10.1016/j.electacta.2006.09.015.Search in Google Scholar

Polcaro, A.M., Vacca, A., Mascia, M., Palmas, S., and Rodiguez Ruiz, J. (2009). Electrochemical treatment of waters with BDD anodes: kinetics of the reactions involving chlorides. J. Appl. Electrochem. 39: 2083–2092, https://doi.org/10.1007/s10800-009-9870-x.Search in Google Scholar

Popat, A., Nidheesh, P.V., Anantha Singh, T.S., and Suresh Kumar, M. (2019). Mixed industrial wastewater treatment by combined electrochemical advanced oxidation and biological processes. Chemosphere 237: 124419, https://doi.org/10.1016/j.chemosphere.2019.124419.Search in Google Scholar PubMed

Qing, G., Anari, Z., Abolhassani, M., Foster, S.L., Matlock, M., Thoma, G., and Greenlee, L.F. (2021). Electrochemical ammonia removal and disinfection of aquaculture wastewater using batch and flow reactors incorporating PtRu/graphite anode and graphite cathode. Aquacult. Eng. 93: 102155, https://doi.org/10.1016/j.aquaeng.2021.102155.Search in Google Scholar

Qu, C., Soomro, G.S., Ren, N., Liang, D.W., Lu, S.F., Xiang, Y., and Zhang, S.J. (2019). Enhanced electro-oxidation/peroxone (in situ) process with a Ti-based nickel-antimony doped tin oxide anode for phenol degradation. J. Hazard. Mater. 384: 121398, https://doi.org/10.1016/j.jhazmat.2019.121398.Search in Google Scholar PubMed

Radjenovic, J. and Sedlak, D.L. (2015). Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ. Sci. Technol. 49: 11292–11302, https://doi.org/10.1021/acs.est.5b02414.Search in Google Scholar PubMed

Rahmani, A., Seid-Mohammadi, A., Leili, M., Shabanloo, A., Ansari, A., Alizadeh, S., and Nematollahi, D. (2021). Electrocatalytic degradation of diuron herbicide using three-dimensional carbon felt/β–PbO2 anode as a highly porous electrode: influencing factors and degradation mechanisms. Chemosphere 276: 130141, https://doi.org/10.1016/j.chemosphere.2021.130141.Search in Google Scholar PubMed

Rakočevic, L., Strbac, S., Potočnik, J., Popovic, M., Jugovic, D., and Simatovic, I.S. (2021). The Nax MnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries. Ceram. Int. 47: 4595–4603, https://doi.org/10.1016/j.ceramint.2020.10.025.Search in Google Scholar

Recio, F.J., Herrasti, P., Sirés, I., Kulak, A.N., Bavykin, D.V., Ponce-De-León, C., and Walsh, F.C. (2011). The preparation of PbO2 coatings on reticulated vitreous carbon for the electro-oxidation of organic pollutants. Electrochim. Acta 56: 5158–5165, https://doi.org/10.1016/j.electacta.2011.03.054.Search in Google Scholar

Rivera, F.F., Rodríguez, F.A., Rivero, E.P., and Cruz-Díaz, M.R. (2018). Parametric mathematical modelling of cristal violet dye electrochemical oxidation using a flow electrochemical reactor with BDD and DSA anodes in sulfate media. Int. J. Chem. React. Eng. 16: 1–17, https://doi.org/10.1515/ijcre-2017-0116.Search in Google Scholar

Saadi, S., Moteshaker, P.M., Rokni, S.E., Ahmadidoust, G., Farnoodian, N., and Yousefi, A. (2020). The electrochemical degradation of the metronidazole (MNZ) antibiotic using electrochemical oxidation on a stainless steel316 coated with beta lead oxide (SS316/β–PbO2) anode. Int. J. Chem. React. Eng. 18: 20190226, https://doi.org/10.1515/ijcre-2019-0226.Search in Google Scholar

Salazar-Banda, G.R., de Oliveira Santiago Santos, G., Duarte Gonzaga, I.M., Dória, A.R., and Barrios Eguiluz, K.I. (2021). Developments in electrode materials for wastewater treatment. Curr. Opin. Electrochem. 26: 100663, https://doi.org/10.1016/j.coelec.2020.100663.Search in Google Scholar

Samarghandi, M.R., Dargahi, A., Shabanloo, A., Nasab, H.Z., Vaziri, Y., and Ansari, A. (2020). Electrochemical degradation of methylene blue dye using a graphite doped PbO2 anode: optimization of operational parameters, degradation pathway and improving the biodegradability of textile wastewater. Arab. J. Chem. 13: 6847–6864, https://doi.org/10.1016/j.arabjc.2020.06.038.Search in Google Scholar

Santos, G.O.S., Eguiluz, K.I.B., Salazar-Banda, G.R., Saez, C., and Rodrigo, M.A. (2020). Photoelectrolysis of clopyralid wastes with a novel laser-prepared MMO–RuO2–TiO2 anode. Chemosphere 244: 125455, https://doi.org/10.1016/j.chemosphere.2019.125455.Search in Google Scholar PubMed

Santos, G.O.S., Silva, L.R.A., Alves, Y.G.S., Silva, R.S., Eguiluz, K.I.B., and Salazar-Banda, G.R. (2019). Enhanced stability and electrocatalytic properties of Ti/RuxIr1-xO2 anodes produced by a new laser process. Chem. Eng. J. 355: 439–447, https://doi.org/10.1016/j.cej.2018.08.145.Search in Google Scholar

Santos, J.E.L., de Moura, D.C., Cerro-López, M., Quiroz, M.A., and Martínez-Huitle, C.A. (2020). Electro- and photo-electrooxidation of 2,4,5-trichlorophenoxiacetic acid (2,4,5-T) in aqueous media with PbO2, Sb-doped SnO2, BDD and TiO2–NTs anodes: a comparative study. J. Electroanal. Chem. 873: 114438, https://doi.org/10.1016/j.jelechem.2020.114438.Search in Google Scholar

Santos, J.P.T.D.S., Tonholo, J., de Andrade, A.R., Del Colle, V., and Zanta, C.L.D.P.E.S. (2021). The electro-oxidation of tetracycline hydrochloride in commercial DSA® modified by electrodeposited platinum. Environ. Sci. Pollut. Res. 28: 23595–23609, https://doi.org/10.1007/s11356-020-09919-2.Search in Google Scholar PubMed

Santos, M.O., Santos, G.D.O.S., Mattedi, S., Griza, S., Eguiluz, K.I.B., and Salazar-Banda, G.R. (2018). Influence of the calcination temperature and ionic liquid used during synthesis procedure on the physical and electrochemical properties of Ti/(RuO2)0.8–(Sb2O4)0.2 anodes. J. Electroanal. Chem. 829: 116–128, https://doi.org/10.1016/j.jelechem.2018.10.013.Search in Google Scholar

Santos, T.É.S., Silva, R.S., Meneses, C.T., Martínez-Huitle, C.A., Eguiluz, K.I.B., and Salazar-Banda, G.R. (2016). Unexpected enhancement of electrocatalytic nature of Ti/(RuO2)x–(Sb2O5)y anodes prepared by the ionic liquid-thermal decomposition method. Ind. Eng. Chem. Res. 55: 3182–3187, https://doi.org/10.1021/acs.iecr.5b04690.Search in Google Scholar

Saranya, A., Devasena, T., Sivaram, H., and Jayavel, R. (2019). Role of hexamine in ZnO morphologies at different growth temperature with potential application in dye sensitized solar cell. Mater. Sci. Semicond. Process. 92: 108–115, https://doi.org/10.1016/j.mssp.2018.03.028.Search in Google Scholar

Sasidharan Pillai, I.M. and Gupta, A.K. (2015). Potentiostatic electrodeposition of a novel cost effective PbO2 electrode: degradation study with emphasis on current efficiency and energy consumption. J. Electroanal. Chem. 749: 16–25, https://doi.org/10.1016/j.jelechem.2015.04.020.Search in Google Scholar

Shao, D., Liang, J., Cui, X., Xu, H., and Yan, W. (2014a). Electrochemical oxidation of lignin by two typical electrodes: Ti/SbSnO2 and Ti/PbO2. Chem. Eng. J. 244: 288–295, https://doi.org/10.1016/j.cej.2014.01.074.Search in Google Scholar

Shao, D., Lyu, W., Cui, J., Zhang, X., Zhang, Y., Tan, G., and Yan, W. (2020a). Polyaniline nanoparticles magnetically coated Ti/Sb–SnO2 electrode as a flexible and efficient electrocatalyst for boosted electrooxidation of biorefractory wastewater. Chemosphere 241: 1–11, https://doi.org/10.1016/j.chemosphere.2019.125103.Search in Google Scholar PubMed

Shao, D., Yan, W., Li, X., and Xu, H. (2015). Fe3O4/Sb–SnO2 granules loaded on Ti/Sb–SnO2 electrode shell by magnetic force: good recyclability and high electro-oxidation performance. ACS Sustain. Chem. Eng. 3: 1777–1785, https://doi.org/10.1021/acssuschemeng.5b00321.Search in Google Scholar

Shao, D., Yan, W., Li, X., Yang, H., and Xu, H. (2014b). A highly stable Ti/TiHx/Sb–SnO2 anode: preparation, characterization and application. Ind. Eng. Chem. Res. 53: 3898–3907, https://doi.org/10.1021/ie403768f.Search in Google Scholar

Shao, D., Zhang, Y., Lyu, W., Zhang, X., Tan, G., Xu, H., and Yan, W. (2020b). A modular functionalized anode for efficient electrochemical oxidation of wastewater: inseparable synergy between OER anode and its magnetic auxiliary electrodes. J. Hazard. Mater. 390: 122174, https://doi.org/10.1016/j.jhazmat.2020.122174.Search in Google Scholar PubMed

Shang, H., Xia, Y., Zhou, Y., Liu, G., and Hu, X. (2020). Removal of aniline from wastewater by electro-polymerization with superior energy efficiency. Environ. Res. 190: 109931, https://doi.org/10.1016/j.envres.2020.109931.Search in Google Scholar PubMed

Shao, Y.A., Chen, Y.T., and Chen, P.Y. (2019). Cu and CuPb electrodes prepared via potentiostatic electrodeposition from metal oxides in hydrophobic protic amide-type ionic liquid/water mixture under ambient air for nonenzymatic nitrate reduction. Electrochim. Acta 313: 488–496, https://doi.org/10.1016/j.electacta.2019.05.057.Search in Google Scholar

Singh, M.B., Kumar, V.S., Chaudhary, M., and Singh, P. (2021). A mini review on synthesis, properties and applications of deep eutectic solvents. J. Indian Chem. Soc. 98: 100210, https://doi.org/10.1016/j.jics.2021.100210.Search in Google Scholar

Smith, E.L., Abbott, A.P., and Ryder, K.S. (2014). Deep eutectic solvents (DESs) and their applications. Chem. Rev. 114: 11060–11082, https://doi.org/10.1021/cr300162p.Search in Google Scholar PubMed

Song, S., Fan, J., He, Z., Zhan, L., Liu, Z., Chen, J., and Xu, X. (2010). Electrochemical degradation of azo dye C.I. reactive red 195 by anodic oxidation on Ti/SnO2–Sb/PbO2 electrodes. Electrochim. Acta 55: 3606–3613, https://doi.org/10.1016/j.electacta.2010.01.101.Search in Google Scholar

Sopaj, F., Oturan, N., Pinson, J., Podvorica, F., and Oturan, M.A. (2016). Effect of the anode materials on the efficiency of the electro-Fenton process for the mineralization of the antibiotic sulfamethazine. Appl. Catal. B Environ. 199: 331–341, https://doi.org/10.1016/j.apcatb.2016.06.035.Search in Google Scholar

Soumya, S.S. and Xavier, T.S. (2022). Effect of cobalt doping on the microstructural, optical and electrical properties of SnO2 thin films by sol-gel spin coating technique. Phys. B Condens. Matter 624: 413432, https://doi.org/10.1016/j.physb.2021.413432.Search in Google Scholar

Souza, F.L., Aquino, J.M., Irikura, K., Miwa, D.W., Rodrigo, M.A., and Motheo, A.J. (2014). Electrochemical degradation of the dimethyl phthalate ester on a fluoride-doped Ti/β–PbO2 anode. Chemosphere 109: 187–194, https://doi.org/10.1016/j.chemosphere.2014.02.018.Search in Google Scholar PubMed

Sripriya, R., Chandrasekaran, M., Subramanian, K., Asokan, K., and Noel, M. (2007). Electrochemical destruction of p-chlorophenol and p-nitrophenol – influence of surfactants and anode materials. Chemosphere 69: 254–261, https://doi.org/10.1016/j.chemosphere.2007.03.064.Search in Google Scholar PubMed

Sun, D., Hong, X., Wu, K., Hui, K.S., Du, Y., and Hui, K.N. (2020). Simultaneous removal of ammonia and phosphate by electro-oxidation and electrocoagulation using RuO2–IrO2/Ti and microscale zero-valent iron composite electrode. Water Res. 169: 115239, https://doi.org/10.1016/j.watres.2019.115239.Search in Google Scholar PubMed

Sun, P. and Chen, D. (2016). Electrochemical degradation of reactive brilliant red X-3B with the (CeO2/C)–β–PbO2–PTFE composite electrode. J. Rare Earths 34: 507–520, https://doi.org/10.1016/s1002-0721(16)60056-x.Search in Google Scholar

Sun, Y., Cheng, S., Mao, Z., Lin, Z., Ren, X., and Yu, Z. (2020). High electrochemical activity of a Ti/SnO2–Sb electrode electrodeposited using deep eutectic solvent. Chemosphere 239: 124715, https://doi.org/10.1016/j.chemosphere.2019.124715.Search in Google Scholar PubMed

Tang, C.B., Lu, Y.X., Wang, F., Niu, H., Yu, L.H., and Xue, J.Q. (2020). Influence of a MnO2-WC interlayer on the stability and electrocatalytic activity of titanium-based PbO2 anodes. Electrochim. Acta 331: 135381, https://doi.org/10.1016/j.electacta.2019.135381.Search in Google Scholar

Sunde, T.O.L., Grande, T., and Einarsrud, M-A. (2016). Modified Pechini Synthesis of Oxide Powders and Thin Films. In: Handbook of Sol-Gel Science and Technology. Springer International Publishing, Cham, pp. 1–30.10.1007/978-3-319-19454-7_130-1Search in Google Scholar

Tan, X., Zhao, Y., Sun, W., Jin, C., Chen, L., Wei, H., and Sun, C. (2020). Three-dimensional hierarchically porous PbO2 electrode for electrochemical degradation of m-cresol. J. Electroanal. Chem. 856: 113726, https://doi.org/10.1016/j.jelechem.2019.113726.Search in Google Scholar

Terezo, A.J. and Pereira, E.C. (2002). Preparation and characterisation of Ti/RuO2 anodes obtained by sol – gel and conventional routes. Mater. Lett. 53: 339–345, https://doi.org/10.1016/s0167-577x(01)00504-3.Search in Google Scholar

The IUPAC Stability Constants Database. Academic Software. (n.d.).Search in Google Scholar

Tien, T.T. and Le Luu, T. (2020). Electrooxidation of tannery wastewater with continuous flow system: role of electrode materials. Environ. Eng. Res. 25: 324–334, https://doi.org/10.4491/eer.2018.349.Search in Google Scholar

Velasco-Hernández, A., Esparza-Muñoz, R.A., de Moure-Flores, F.J., Santos-Cruz, J., and Mayén-Hernández, S.A. (2020). Synthesis and characterization of graphene oxide – TiO2 thin films by sol-gel for photocatalytic applications. Mater. Sci. Semicond. Process. 114: 105082, https://doi.org/10.1016/J.MSSP.2020.105082.Search in Google Scholar

Vieira, L., Burt, J., Richardson, P.W., Schloffer, D., Fuchs, D., Moser, A., Bartlett, P.N., Reid, G., and Gollas, B. (2017). Tin, bismuth, and tin–bismuth alloy electrodeposition from chlorometalate salts in deep eutectic solvents. ChemistryOpen 6: 393–401, https://doi.org/10.1002/open.201700045.Search in Google Scholar PubMed PubMed Central

Vilar, D.S., Carvalho, G.O., Pupo, M.M.S., Aguiar, M.M., Torres, N.H., Américo, J.H.P., Cavalcanti, E.B., Eguiluz, K.I.B., Salazar-Banda, G.R., Leite, M.S., et al.. (2018). Vinasse degradation using Pleurotus sajor-caju in a combined biological – electrochemical oxidation treatment. Separ. Purif. Technol. 192: 287–296, https://doi.org/10.1016/j.seppur.2017.10.017.Search in Google Scholar

Wang, C., Niu, J., Yin, L., Huang, J., and Hou, L. (2018). Electrochemical degradation of fluoxetine on nanotube array intercalated anode with enhanced electronic transport and hydroxyl radical production. Chem. Eng. J. 346: 662–671, https://doi.org/10.1016/j.cej.2018.03.159.Search in Google Scholar

Wang, C., Wang, F., Xu, M., Zhu, C., Fang, W., and Wei, Y. (2015). Electrocatalytic degradation of methylene blue on Co doped Ti/TiO2 nanotube/PbO2 anodes prepared by pulse electrodeposition. J. Electroanal. Chem. 759: 158–166, https://doi.org/10.1016/j.jelechem.2015.11.009.Search in Google Scholar

Wang, C., Yu, Y., Yin, L., Niu, J., and Hou, L. (2016). Insights of ibuprofen electro-oxidation on metal-oxide-coated Ti anodes: kinetics, energy consumption and reaction mechanisms. Chemosphere 163: 584–591, https://doi.org/10.1016/j.chemosphere.2016.08.057.Search in Google Scholar PubMed

Wang, J., Xu, M., Liang, X., Zhang, Y., Yang, D., Pan, L., Fang, W., Zhu, C.G., and Wang, F. (2021). Development of a novel 2D Ni-MOF derived NiO@C nanosheet arrays modified Ti/TiO2NTs/PbO2 electrode for efficient electrochemical degradation of salicylic acid wastewater. Separ. Purif. Technol. 263: 118368, https://doi.org/10.1016/j.seppur.2021.118368.Search in Google Scholar

Wang, J., Yao, J., Wang, L., Xue, Q., Hu, Z., and Pan, B. (2020). Multivariate optimization of the pulse electrochemical oxidation for treating recalcitrant dye wastewater. Separ. Purif. Technol. 230: 115851, https://doi.org/10.1016/j.seppur.2019.115851.Search in Google Scholar

Wang, W., Wang, K., Hao, W., Zhang, T., Liu, Y., Yu, L., and Li, W. (2022). Preparation of Ti-based Yb-doped SnO2–RuO2 electrode and electrochemical oxidation treatment of coking wastewater. J. Rare Earths 40: 763–771. https://doi.org/10.1016/j.jre.2021.04.001.Search in Google Scholar

Wang, X., Wu, Q., Ma, H., Ma, C., Yu, Z., Fu, Y., and Dong, X. (2019). Fabrication of PbO2 tipped Co3O4 nanowires for efficient photoelectrochemical decolorization of dye (reactive brilliant blue KN-R) wastewater. Sol. Energy Mater. Sol. Cells 191: 381–388, https://doi.org/10.1016/j.solmat.2018.12.005.Search in Google Scholar

Wang, Y., Chen, M., Wang, C., Meng, X., Zhang, W., Chen, Z., and Crittenden, J. (2019). Electrochemical degradation of methylisothiazolinone by using Ti/SnO2–Sb2O3/α, β–PbO2 electrode: kinetics, energy efficiency, oxidation mechanism and degradation pathway. Chem. Eng. J. 374: 626–636, https://doi.org/10.1016/j.cej.2019.05.217.Search in Google Scholar

Wei, F., Liao, D., Lin, Y., Hu, C., Ju, J., Chen, Y., and Feng, D. (2021). Electrochemical degradation of reverse osmosis concentrate (ROC) using the electrodeposited Ti/TiO2–NTs/PbO2 electrode. Separ. Purif. Technol. 258: 118056, https://doi.org/10.1016/j.seppur.2020.118056.Search in Google Scholar

Wu, J., Zhang, H., Oturan, N., Wang, Y., Chen, L., and Oturan, M.A. (2012). Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2–IrO2) anode. Chemosphere 87: 614–620, https://doi.org/10.1016/j.chemosphere.2012.01.036.Search in Google Scholar PubMed

Wu, M., Ouyang, Y., Zhao, K., Ma, Y., Wang, M., Liu, D., Su, Y., and Jin, P. (2016). A novel fabrication method for titanium dioxide/activated carbon fiber electrodes and the effects of titanium dioxide on phenol degradation. J. Environ. Chem. Eng. 4: 3646–3653, https://doi.org/10.1016/j.jece.2016.07.030.Search in Google Scholar

Xia, Y., Bian, X., Xia, Y., Zhou, W., Wang, L., Fan, S., Xiong, P., Zhan, T., Dai, Q., and Chen, J. (2020b). Effect of indium doping on the PbO2 electrode for the enhanced electrochemical oxidation of aspirin: an electrode comparative study. Separ. Purif. Technol. 237: 116321, https://doi.org/10.1016/j.seppur.2019.116321.Search in Google Scholar

Xia, Y., Feng, J., Fan, S., Zhou, W., and Dai, Q. (2021). Fabrication of a multi-layer CNT–PbO2 anode for the degradation of isoniazid: kinetics and mechanism. Chemosphere 263: 128069, https://doi.org/10.1016/j.chemosphere.2020.128069.Search in Google Scholar PubMed

Xia, Y., Wang, G., Guo, L., Dai, Q., and Ma, X. (2020a). Electrochemical oxidation of acid orange 7 azo dye using a PbO2 electrode: parameter optimization, reaction mechanism and toxicity evaluation. Chemosphere 241: 125010, https://doi.org/10.1016/j.chemosphere.2019.125010.Search in Google Scholar PubMed

Xing, J., Chen, D., Zhao, W., Peng, X., Bai, Z., Zhanga, W., and Zhao, X. (2015). Preparation and characterization of a novel porous Ti/SnO2–Sb2O3–CNT/PbO2 electrode for the anodic oxidation of phenol wastewater. RSC Adv. 5: 53504–53513, https://doi.org/10.1039/c5ra07146a.Search in Google Scholar

Xu, M., Mao, Y., Song, W., Ouyang, X., Hu, Y., Wei, Y., Zhu, C., Fanga, W., Shaoa, B., Lua, R., et al.. (2018). Preparation and characterization of Fe–Ce co-doped Ti/TiO2 NTs/PbO2 nanocomposite electrodes for efficient electrocatalytic degradation of organic pollutants. J. Electroanal. Chem. J. 823: 193–202, https://doi.org/10.1016/j.jelechem.2018.06.007.Search in Google Scholar

Xue, B., Zhang, Y., and Wang, J.Y. (2011). Electrochemical oxidation of bisphenol A on Ti/SnO2–Sb2O5/PbO2 anode for waste water treatment. Procedia Environ. Sci. 10: 647–652, https://doi.org/10.1016/j.proenv.2011.09.104.Search in Google Scholar

Yan, Z., Liu, H., Hao, Z., Yu, M., Chen, X., and Chen, J. (2020). Electrodeposition of (hydro)oxides for an oxygen evolution electrode. Chem. Sci. 11: 10614, https://doi.org/10.1039/d0sc01532f.Search in Google Scholar PubMed PubMed Central

Yang, K., Liu, Y., and Qiao, J. (2017). Electrodeposition preparation of Ce-doped Ti/SnO2–Sb electrodes by using selected addition agents for efficient electrocatalytic oxidation of methylene blue in water. Separ. Purif. Technol. 189: 459–466, https://doi.org/10.1016/j.seppur.2017.08.036.Search in Google Scholar

Yang, Y., Cui, L., Li, M., and Yao, Y. (2019a). Electrochemical removal of metribuzin in aqueous solution by a novel PbO2/WO3 composite anode: characterization, influencing parameters and degradation pathways. J. Taiwan Inst. Chem. Eng. 102: 170–181, https://doi.org/10.1016/j.jtice.2019.05.023.Search in Google Scholar

Yang, Y., Cui, L., Li, M., Zhang, L., and Yao, Y. (2019b). Electrocatalytic degradation of the herbicide metamitron using lead dioxide anode: influencing parameters, intermediates, and reaction pathways. Environ. Sci. Pollut. Res. 26: 27032–27042, https://doi.org/10.1007/s11356-019-05868-7.Search in Google Scholar PubMed

Yao, N., Wang, J., and Zhou, Y. (2014). Rapid determination of the chemical oxygen demand of water using a thermal biosensor. Sensors 14: 9949–9960, https://doi.org/10.3390/s140609949.Search in Google Scholar PubMed PubMed Central

Yao, Y., Jiao, L., Cui, L., Yu, N., Wei, F., and Lu, Z. (2015). Preparation and characterization of PbO2–CeO2 nanocomposite electrode with high cerium content and its application in the electrocatalytic degradation of malachite green. J. Electrochem. Soc. 162: H693–H698, https://doi.org/10.1149/2.0961509jes.Search in Google Scholar

Yao, Y., Li, M., Yang, Y., Cui, L., and Guo, L. (2019). Electrochemical degradation of insecticide hexazinone with Bi-doped PbO2 electrode: influencing factors, intermediates and degradation mechanism. Chemosphere 216: 812–822, https://doi.org/10.1016/j.chemosphere.2018.10.191.Search in Google Scholar PubMed

Yaqub, A., Isa, H.M., Kutty, S.R.M., and Ajab, H. (2014). Surface characteristics of Ti/IrO2 anode material and its electrocatalytic properties for polycyclic aromatic hydrocarbons (PAHs) degradation in aqueous solution. J. N. Mater. Electrochem. Syst. 17: 39–44, https://doi.org/10.14447/jnmes.v17i1.442.Search in Google Scholar

Yaqub, A., Isa, M.H., Ajab, H., Kutty, S.R.M., and Ezechi, E.H. (2018). Preparation of Ti/IrO2 anode with low iridium content by thermal decomposition process: electrochemical removal of organic pollutants in water. Electrochem. Energy Technol. 4: 1–5, https://doi.org/10.1515/eetech-2018-0001.Search in Google Scholar

Yavuz, A., Kaplan, K., and Bedir, M. (2020). SnO–SnO2 film on carbon steel cycling in a choline chloride-based ionic liquid electrolyte for energy storage devices. J. Electroanal. Chem. 877: 114635, https://doi.org/10.1016/j.jelechem.2020.114635.Search in Google Scholar

Yu, H., Zhang, Z., Zhang, L., Dong, H., and Yu, H. (2021a). Improved norfloxacin degradation by urea precipitation Ti/SnO2–Sb anode under photo-electro catalysis and kinetics investigation by BP-neural-network-physical modeling. J. Clean. Prod. 280: 124412, https://doi.org/10.1016/j.jclepro.2020.124412.Search in Google Scholar

Yu, Y., Jin, H., Li, Q., Zhang, X., Zhang, Y., and Chen, X. (2021b). Pseudocapacitive Ti/RuO2–IrO2–RhOx electrodes with high bipolar stability for phenol degradation. Separ. Purif. Technol. 263: 118395, https://doi.org/10.1016/j.seppur.2021.118395.Search in Google Scholar

Zhang, C., Jiang, Y., Li, Y., Hu, Z., Zhou, L., and Zhou, M. (2013). Three-dimensional electrochemical process for wastewater treatment: a general review. Chem. Eng. J. 228: 455–467, https://doi.org/10.1016/j.cej.2013.05.033.Search in Google Scholar

Zhang, X., Shao, D., Lyu, W., Tan, G., and Ren, H. (2019). Utilizing discarded SiC heating rod to fabricate SiC/Sb–SnO2 anode for electrochemical oxidation of wastewater. Chem. Eng. J. 361: 862–873, https://doi.org/10.1016/j.cej.2018.12.085.Search in Google Scholar

Zhang, X., Shao, D., Lyu, W., Xu, H., Yang, L., Zhang, Y., Wang, Z., Liu, P., Yan, W., and Tan, G. (2020). Design of magnetically assembled electrode (MAE) with Ti/PbO2 and heterogeneous auxiliary electrodes (AEs): the functionality of AEs for efficient electrochemical oxidation. Chem. Eng. J. 395: 125145, https://doi.org/10.1016/j.cej.2020.125145.Search in Google Scholar

Zhang, Z., Yi, G., Li, P., Wang, X., Wang, X., Zhang, C., and Zhang, Y. (2021). Recent progress in engineering approach towards the design of PbO2-based electrodes for the anodic oxidation of organic pollutants. J. Water Proc. Eng. 42: 102173, https://doi.org/10.1016/j.jwpe.2021.102173.Search in Google Scholar

Zhao, B., Yu, H., Liu, Y., Lu, Y., Fan, W., Qin, W., and Huo, M. (2021). Enhanced photoelectrocatalytic degradation of acetaminophen using a bifacial electrode of praseodymium-polyethylene glycol-PbO2//Ti//TiO2-nanotubes. Chem. Eng. J. 410: 128337, https://doi.org/10.1016/j.cej.2020.128337.Search in Google Scholar

Zhao, G., Cui, X., Liu, M., Li, P., Zhang, Y., Cao, T., Li, H., Lei, Y., Liu, L., and Li, D. (2009). Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode. Environ. Sci. Technol. 43: 1480–1486, https://doi.org/10.1021/es802155p.Search in Google Scholar PubMed

Zhao, J., Zhu, C., Lu, J., Hu, C., Peng, S., and Chen, T. (2014). Electro-catalytic degradation of bisphenol A with modified Co3O4/β–PbO2/Ti electrode. Electrochim. Acta 118: 169–175, https://doi.org/10.1016/j.electacta.2013.12.005.Search in Google Scholar

Zhao, W., Xing, J., Chen, D., Bai, Z., and Xia, Y. (2015). Study on the performance of an improved Ti/SnO2–Sb2O3/PbO2 based on porous titanium substrate compared with planar titanium substrate. RSC Adv. 5: 26530–26539, https://doi.org/10.1039/c4ra13492c.Search in Google Scholar

Zhao, W., Xing, J., Chen, D., Jin, D., and Shen, J. (2016). Electrochemical degradation of musk ketone in aqueous solutions using a novel porous Ti/SnO2–Sb2O3/PbO2 electrodes. J. Electroanal. Chem. 775: 179–188, https://doi.org/10.1016/j.jelechem.2016.05.050.Search in Google Scholar

Zhi, D., Zhang, J., Wang, J., Luo, L., Zhou, Y., and Zhou, Y. (2020). Electrochemical treatments of coking wastewater and coal gasification wastewater with Ti/Ti4O7 and Ti/RuO2–IrO2 anodes. J. Environ. Manag. 265: 110571, https://doi.org/10.1016/j.jenvman.2020.110571.Search in Google Scholar

Zhong, C., Wei, K., Han, W., Wang, L., Sun, X., and Li, J. (2013). Electrochemical degradation of tricyclazole in aqueous solution using Ti/SnO2–Sb/PbO2 anode. J. Electroanal. Chem. 705: 68–74, https://doi.org/10.1016/j.jelechem.2013.07.027.Search in Google Scholar

Zhou, C., Wang, Y., Chen, J., and Niu, J. (2019a). Electrochemical degradation of sunscreen agent benzophenone-3 and its metabolite by Ti/SnO2-Sb/Ce-PbO2 anode: Kinetics, mechanism, toxicity and energy consumption. Sci. Total Environ. 688: 75–82, https://doi.org/10.1016/j.scitotenv.2019.06.197.Search in Google Scholar

Zhou, C., Wang, Y., Chen, J., Xu, L., Huang, H., and Niu, J. (2019b). High-efficiency electrochemical degradation of antiviral drug abacavir using a penetration fl ux porous Ti/SnO2-Sb anode. Chemosphere 225: 304–310, https://doi.org/10.1016/j.chemosphere.2019.03.036.Search in Google Scholar

Zhou, M., Dai, Q., Lei, L., Ma, C., and Wang, D. (2005). Long life modified lead dioxide anode for organic wastewater treatment: electrochemical characteristics and degradation mechanism. Environ. Sci. Technol. 39: 363–370, https://doi.org/10.1021/es049313a.Search in Google Scholar

Zhou, M., Liu, L., Jiao, Y., Wang, Q., and Tan, Q. (2011). Treatment of high-salinity reverse osmosis concentrate by electrochemical oxidation on BDD and DSA electrodes. Desalination 277: 201–206, https://doi.org/10.1016/j.desal.2011.04.030.Search in Google Scholar

Zhou, Y., Li, Z., Hao, C., Zhang, Y., Chai, S., Han, G., Xu, H., Lu, J., Dang, Y., Sun, X., et al.. (2020). Electrocatalysis enhancement of α, β–PbO2 nanocrystals induced via rare earth Er(III) doping strategy: principle, degradation application and electrocatalytic mechanism. Electrochim. Acta 333: 135535, https://doi.org/10.1016/j.electacta.2019.135535.Search in Google Scholar

Zhuo, Q., Han, J., Niu, J., and Zhang, J. (2020). Degradation of a persistent organic pollutant perfluorooctane sulphonate with Ti/SnO2–Sb2O5/PbO2-PTFE anode. Emerg. Contam. 6: 44–52, https://doi.org/10.1016/j.emcon.2019.11.002.Search in Google Scholar

Zuo, J., Zhu, J., Zhang, M., Hong, Q., Han, J., and Liu, J. (2020). Synergistic photoelectrochemical performance of La-doped RuO2–TiO2/Ti electrodes. Appl. Surf. Sci. 502: 144288, https://doi.org/10.1016/j.apsusc.2019.144288.Search in Google Scholar

Received: 2021-07-28
Accepted: 2021-12-27
Published Online: 2022-03-25
Published in Print: 2023-07-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.6.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2021-0067/html
Scroll to top button