Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 6, 2018

Effects of nanofillers on the characteristics and performance of PEBA-based mixed matrix membranes

  • Rokhsare Kardani , Morteza Asghari EMAIL logo , Toraj Mohammadi and Morteza Afsari

Abstract

Mixed matrix membranes (MMMs) with superior structural and functional properties provide an interesting approach to enhance the separation properties of polymer membranes. As a matter of fact, MMMs combine the advantages of both components; polymeric continuous phase and nanoparticle dispersed phase. Generally, the separation performance of polymeric membranes suffers from an upper-performance limit. Hence, the incorporation of nanoparticles helps to overcome such limitations. Block copolymers such as poly(ether-block-amide) (PEBA) composed of immiscible soft ether segments as well as hard amide segments have been shown as excellent materials for the synthesis of membranes. Consequently, PEBA membranes have been extensively used in scientific research and industrial processes. It is thus aimed to provide an overview of PEBA MMMs. This review is especially devoted to summarizing the effects of nanoparticle loading on PEBA performance and properties such as selectivity, permeability, thermal and mechanical properties, and others. In addition, the preparation techniques of PEBA MMMs and solvent selection are discussed. This article also discusses the many types of nanoparticles incorporated into PEBA membranes. Furthermore, the future direction in PEBA MMMs research for separation processes is briefly predicted.

References

Aburabie J, Peinemann KV. Crosslinked poly(ether block amide) composite membranes for organic solvent nanofiltration applications. J Memb Sci 2017; 523: 264–272.10.1016/j.memsci.2016.09.027Search in Google Scholar

Aghili F, Ghoreyshi AA, Rahimpour A, Rahimnejad M. Coating of mixed-matrix membranes with powdered activated carbon for fouling control and treatment of dairy effluent. Process Saf Environ Prot 2017; 107: 528–539.10.1016/j.psep.2017.03.013Search in Google Scholar

Ahir SV, Huang YY, Terentjev EM. Polymers with aligned carbon nanotubes: active composite materials. Polymer (Guildf) 2008; 49: 3841–3854.10.1016/j.polymer.2008.05.005Search in Google Scholar

Ahmad NA, Leo CP, Ahmad AL, Ramli WKW. Membranes with great hydrophobicity: a review on preparation and characterization. Sep Purif Rev 2014; 44: 109–134.10.1080/15422119.2013.848816Search in Google Scholar

Ahmadpour E, Shamsabadi AA, Behbahani RM, Aghajani M, Kargari A. Study of CO2 separation with PVC/Pebax composite membrane. J Nat Gas Sci Eng 2014; 21: 518–523.10.1016/j.jngse.2014.09.021Search in Google Scholar

Ahmadpour E, Sarfaraz MV, Behbahani RM, Shamsabadi AA, Aghajani M. Fabrication of mixed matrix membranes containing TiO2 nanoparticles in Pebax 1657 as a copolymer on an ultra-porous PVC support. J Nat Gas Sci Eng 2016; 35: 33–41.10.1016/j.jngse.2016.08.042Search in Google Scholar

Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin–nanotube composite. Science 1994; 265: 1212–1214.10.1126/science.265.5176.1212Search in Google Scholar PubMed

Akhtar FH, Kumar M, Peinemann K-V. Pebax®1657/graphene oxide composite membranes for improved water vapor separation. J Memb Sci 2016; 525: 187–194.10.1016/j.memsci.2016.10.045Search in Google Scholar

Ambashta RD, Sillanpää MET. Membrane purification in radioactive waste management: a short review. J Environ Radioact 2012; 105: 76–84.10.1016/j.jenvrad.2011.12.002Search in Google Scholar PubMed

Anderson M, Wang H, Lin YS. Inorganic membranes for carbon dioxide and nitrogen separation. Rev Chem Eng 2012; 28: 101–121.10.1515/revce-2012-0001Search in Google Scholar

Andrews R, Weisenberger MC. Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 2004; 8: 31–37.10.1016/j.cossms.2003.10.006Search in Google Scholar

Ardestani MA, Babaluo AA, Peyravi M, Aghjeh MKR, Jannatdoost E. Fabrication of PEBA/ceramic nanocomposite membranes in gas sweetening. Desalination 2010; 250: 1140–1143.10.1016/j.desal.2009.09.127Search in Google Scholar

Armstrong S, Freeman B, Hiltner A, Baer E. Gas permeability of melt-processed poly(ether block amide) copolymers and the effects of orientation. Polymer (Guildf) 2012; 53: 1383–1392.10.1016/j.polymer.2012.01.037Search in Google Scholar

Aroon MA, Ismail AF, Matsuura T, Montazer-Rahmati MM. Performance studies of mixed matrix membranes for gas separation: a review. Sep Purif Technol 2010; 75: 229–242.10.1016/j.seppur.2010.08.023Search in Google Scholar

Asghari M, Mahmudi A, Zargar V, Khanbabaei G. Effect of polyethyleneglycol on CH4 permeation through poly(amide-b-ethylene oxide)-based nanocomposite membranes. Appl Surf Sci 2014; 318: 218–222.10.1016/j.apsusc.2014.03.165Search in Google Scholar

Asghari M, Mohammadi T, Aziznia A, Danayi MR, Moosavi SH, Alamdari RF, Agand F. Preparation and characterization of a thin continuous faujasite membrane on tubular porous mullite support. Desalination 2008; 220: 65–71.10.1016/j.desal.2007.01.022Search in Google Scholar

Ayandele E, Sarkar B, Alexandridis P. Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials 2012; 2: 445–475.10.3390/nano2040445Search in Google Scholar PubMed PubMed Central

Azizi N, Mohammadi T, Behbahani RM. Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4. J Nat Gas Sci Eng 2017a; 37: 39–51.10.1016/j.jngse.2016.11.038Search in Google Scholar

Azizi N, Mohammadi T, Behbahani RM. Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 nanocomposite membranes for CO2/CH4 separation. Chem Eng Res Des 2017b; 117: 177–189.10.1016/j.cherd.2016.10.018Search in Google Scholar

Bae WS, Kwon OJ, Kim BC, Chae DW. Effects of multi-walled carbon nanotubes on rheological and physical properties of polyamide-based thermoplastic elastomers. Korea Aust Rheol J 2012; 24: 221–227.10.1007/s13367-012-0027-9Search in Google Scholar

Barbi V, Funari SS, Gehrke R, Scharnagl N, Stribeck N. SAXS and the gas transport in polyether-block-polyamide copolymer membranes. Macromolecules 2003; 36: 749–758.10.1021/ma0213403Search in Google Scholar

Barrer RM, Skirrow G. Transport and equilibrium phenomena in gas-elastomer systems. II. Equilibrium phenomena. Rubber Chem Technol 1949; 22: 440.10.5254/1.3542972Search in Google Scholar

Bastani D, Esmaeili N, Asadollahi M. Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: a review. J Ind Eng Chem 2013; 19: 375–393.10.1016/j.jiec.2012.09.019Search in Google Scholar

Baudot A, Marin M. Dairy aroma compounds recovery by pervaporation. J Memb Sci 1996; 120: 207–220.10.1016/0376-7388(96)00144-5Search in Google Scholar

Baudot A, Souchon I, Marin M. Total permeate pressure influence on the selectivity of the pervaporation of aroma compounds. J Memb Sci 1999; 158: 167–185.10.1016/S0376-7388(99)00018-6Search in Google Scholar

Bengtson G, Scheel H, Theis J, Fritsch D. Catalytic membrane reactor to simultaneously concentrate and react organics. Chem Eng J 2002; 85: 303–311.10.1016/S1385-8947(01)00159-0Search in Google Scholar

Bengtson G, Oehring M, Fritsch D. Improved dense catalytically active polymer membranes of different configuration to separate and react organics simultaneously by pervaporation. Chem Eng Process Process Intensif 2004; 43: 1159–1170.10.1016/j.cep.2004.01.009Search in Google Scholar

Ben Hamouda S, Nguyen QT, Langevin D, Chappey C, Roudesli S. Polyamide 12-polytetramethyleneoxide block copolymer membranes with silver nanoparticles – synthesis and water permeation properties. React Funct Polym 2007; 67: 893–904.10.1016/j.reactfunctpolym.2007.05.014Search in Google Scholar

Bernardo P, Jansen JC, Bazzarelli F, Tasselli F, Fuoco A, Friess K, Izák P, Jarmarová V, Kačírková M, Clarizia G. Gas transport properties of Pebax®/room temperature ionic liquid gel membranes. Sep Purif Technol 2012; 97: 73–82.10.1016/j.seppur.2012.02.041Search in Google Scholar

Bhattacharya A, Ghosh P. Nanofiltration and reverse osmosis membranes: theory and application in separation of electrolytes. Rev Chem Eng 2004; 20: 111–173.10.1515/REVCE.2004.20.1-2.111Search in Google Scholar

Blanks RF, Prausnitz JM. Thermodynamics of polymer solubility in polar and nonpolar systems. Ind Eng Chem Fundam 1964; 3: 1–8.10.1021/i160009a001Search in Google Scholar

Böddeker KW, Gatfield IL, Jähnig J, Schorm C. Pervaporation at the vapor pressure limit: vanillin. J Memb Sci 1997; 137: 155–158.10.1016/S0376-7388(97)00187-7Search in Google Scholar

Bondar VI, Freeman BD, Pinnau I. Gas sorption and characterization of poly(ether-b-amide) segmented block copolymers. J Polym Sci B Polym Phys 1999; 37: 2463–2475.10.1002/(SICI)1099-0488(19990901)37:17<2463::AID-POLB18>3.0.CO;2-HSearch in Google Scholar

Bondi AA. Physical properties of molecular crystals, liquids, and glasses. New York, NY, USA: Wiley, 1968.Search in Google Scholar

Bredeau S, Peeterbroeck S, Bonduel D, Alexandre M, Dubois P. From carbon nanotube coatings to high-performance polymer nanocomposites. Polym Int 2008; 57: 547–553.10.1002/pi.2375Search in Google Scholar

Buonomenna MG, Yave W, Golemme G. Some approaches for high performance polymer based membranes for gas separation: block copolymers, carbon molecular sieves and mixed matrix membranes. RSC Adv 2012; 2: 10745.10.1039/c2ra20748fSearch in Google Scholar

Car A, Stropnik C, Yave W, Peinemann KV. Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: performance with mixed gases. Sep Purif Technol 2008a; 62: 110–117.10.1016/j.seppur.2008.01.001Search in Google Scholar

Car A, Stropnik C, Yave W, Peinemann KV. PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J Memb Sci 2008b; 307: 88–95.10.1016/j.memsci.2007.09.023Search in Google Scholar

Castarlenas S, Téllez C, Coronas J. Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. J Memb Sci 2017; 526: 205–211.10.1016/j.memsci.2016.12.041Search in Google Scholar

Cen Y, Staudt-Bickel C, Lichtenthaler RN. Sorption properties of organic solvents in PEBA membranes. J Memb Sci 2002; 206: 341–349.10.1016/S0376-7388(01)00767-0Search in Google Scholar

Charcosset C. Preparation of emulsions and particles by membrane emulsification for the food processing industry. J Food Eng 2009; 92: 241–249.10.1016/j.jfoodeng.2008.11.017Search in Google Scholar

Checchetto R, Miotello A, Nicolais L, Carotenuto G. Gas transport through nanocomposite membrane composed by polyethylene with dispersed graphite nanoplatelets. J Memb Sci 2014; 463: 196–204.10.1016/j.memsci.2014.03.065Search in Google Scholar

Chen JC. Evaluation of polymeric membranes for gas separation processes: poly(ether-b-amide) (PEBAX® 2533) block copolymer 2002. MSc Thesis, University of Waterloo, Waterloo, Ontario, Canada. Available at: https://libuwspaceprd02.uwaterloo.ca/handle/10012/851.Search in Google Scholar

Chen JC, Feng X, Penlidis A. Gas permeation through poly(ether-b-amide) (Pebax 2533) block copolymer membranes. Sep Sci Technol 2004; 39: 149–164.10.1081/SS-120027406Search in Google Scholar

Chen Y, Wang B, Zhao L, Dutta P, Winston Ho WS. New Pebax®/zeolite Y composite membranes for CO2 capture from flue gas. J Memb Sci 2015; 495: 415–423.10.1016/j.memsci.2015.08.045Search in Google Scholar

Choudhari SK, Cerrone F, Woods T, Joyce K, O’Flaherty V, O’Connor K, Babu R. Pervaporation separation of butyric acid from aqueous and anaerobic digestion (AD) solutions using PEBA based composite membranes. J Ind Eng Chem 2015; 23: 163–170.10.1016/j.jiec.2014.08.010Search in Google Scholar

Chultheera P, Rirksomboon T, Kulprathipanja S, Liu C, Chinsirikul W, Kerddonfag N. Solid-liquid-polymer mixed matrix membrane using liquid additive adsorbed on activated carbon dispersed in polymeric membrane for CO2/CH4 separation. World Acad Sci Eng Technol 2017; 11: 425–428.Search in Google Scholar

Chung TS, Jiang LY, Li Y, Kulprathipanja S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 2007; 483–507.10.1016/j.progpolymsci.2007.01.008Search in Google Scholar

Clarizia G, Algieri C, Drioli E. Filler-polymer combination: a route to modify gas transport properties of a polymeric membrane. Polymer (Guildf) 2004; 45: 5671–5681.10.1016/j.polymer.2004.06.001Search in Google Scholar

Clendinning R, Farnham A, Johnson R. History and development of nylon 6. In: Seymour RB, Kirshenbaum GS, editors. High performance polymers: their origin and development. Dordrecht: Springer Netherlands, 1987. doi: 10.1007/978-94-011-7073–7074.10.1007/978-94-011-7073-7074Search in Google Scholar

Cong H, Radosz M, Towler B, Shen Y. Polymer-inorganic nanocomposite membranes for gas separation. Sep Purif Technol 2007; 55: 281–291.10.1016/j.seppur.2006.12.017Search in Google Scholar

Cordes DB, Lickiss PD, Rataboul F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 2010; 110: 2081–2173.10.1021/cr900201rSearch in Google Scholar PubMed

Dai Y, Ruan X, Yan Z, Yang K, Yu M, Li H, Zhao W, He G. Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture. Sep Purif Technol 2016; 166: 171–180.10.1016/j.seppur.2016.04.038Search in Google Scholar

De Lorenzo L, Tocci E, Gugliuzza A, Drioli E. Assembly of nanocomposite PEBAX membranes: a complementary study of affinity and clusterization phenomena. J Memb Sci 2012a; 421–422: 75–84.10.1016/j.memsci.2012.06.050Search in Google Scholar

De Lorenzo L, Tocci E, Gugliuzza A, Drioli E. Pure and modified co-poly(amide-12-b-ethylene oxide) membranes for gas separation studied by molecular investigations. Membranes (Basel) 2012b; 346–366; doi: 10.3390/membranes2030346.10.3390/membranes2030346Search in Google Scholar

Dennis GM, O’Brien G. Polyether block amide resins: bridging the gap between thermoplastics and rubbers. Pap Chem Soc Div Rubber Chem 2000; 1: 17–20.Search in Google Scholar

Desai AV, Haque MA. Mechanics of the interface for carbon nanotube-polymer composites. Thin-Walled Struct 2005; 43: 1787–1803.10.1016/j.tws.2005.07.003Search in Google Scholar

Ding C, Zhang X, Li C, Hao X, Wang Y, Guan G. ZIF-8 incorporated polyether block amide membrane for phenol permselective pervaporation with high efficiency. Sep Purif Technol 2016; 166: 252–261.10.1016/j.seppur.2016.04.027Search in Google Scholar

Djebbar MK, Nguyen QT, Clément R, Germain Y. Pervaporation of aqueous ester solutions through hydrophobic poly(ether-block-amide) copolymer membranes. J Memb Sci 1998; 146: 125–133.10.1016/S0376-7388(98)00090-8Search in Google Scholar

Dong G, Hou J, Wang J, Zhang Y, Chen V, Liu J. Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. J Memb Sci 2016; 520: 860–868.10.1016/j.memsci.2016.08.059Search in Google Scholar

Dong L, Chen M, Li J, Shi D, Dong W, Li X, Bai Y. Metal-organic framework-graphene oxide composites: a facile method to highly improve the CO2 separation performance of mixed matrix membranes. J Memb Sci 2016; 520: 801–811.10.1016/j.memsci.2016.08.043Search in Google Scholar

Dong L, Zhang C, Bai Y, Shi D, Li X, Zhang H, Chen M. High-performance PEBA2533-functional MMT mixed matrix membrane containing high-speed facilitated transport channels for CO2/N2 separation. ACS Sustain Chem Eng 2016; 4: 3486–3496.10.1021/acssuschemeng.6b00536Search in Google Scholar

Dror Y, Salalha W, Khalfin RL, Cohen Y, Yarin AL, Zussman E. Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 2003; 19: 7012–7020.10.1021/la034234iSearch in Google Scholar

Durkee JB. Cleaning with solvents. In: Rajiv K, Kashmiri L, editors. Developments in surface contamination and cleaning – fundamentals and applications. UK: William Andrew, 2008: 759–871. doi: 10.1016/B978-081551555-5.50017–50014.10.1016/B978-081551555-5Search in Google Scholar

Ehsani A, Pakizeh M. Synthesis, characterization and gas permeation study of ZIF-11/Pebax® 2533 mixed matrix membranes. J Taiwan Inst Chem Eng 2016; 66: 414–423.10.1016/j.jtice.2016.07.005Search in Google Scholar

Elimelech M, Phillip WA. The future of seawater desalination: energy, technology, and the environment. Science 2011; 333: 712–717.10.1126/science.1200488Search in Google Scholar

Enneking L, Heintz A, Lichtenthaler RN. Sorption equilibria of the ternary mixture benzene/cyclohexene/cyclohexane in polyurethane and PEBA membrane polymers. J Memb Sci 1996; 115: 161–170.10.1016/0376-7388(96)00011-7Search in Google Scholar

Estahbanati EG, Omidkhah M, Amooghin AE. Interfacial design of ternary mixed matrix membranes [BF4] for improved CO2 separation performance interfacial design of ternary mixed matrix membranes containing Pebax 1657/silver-nanopowder/[BMIM][BF4] for improved CO2 separation performance. ACS Appl Mater Interfaces 2017a; 9: 10094–10105.10.1021/acsami.6b16539Search in Google Scholar PubMed

Estahbanati EG, Omidkhah M, Amooghin AE. Preparation and characterization of novel ionic liquid/Pebax membranes for efficient CO2/light gases separation. J Ind Eng Chem 2017b; 51: 77–89.10.1016/j.jiec.2017.02.017Search in Google Scholar

Friess K, Hynek V, Šípek M, Kujawski WM, Vopička O, Zgažar M, Kujawski MW. Permeation and sorption properties of poly(ether-block-amide) membranes filled by two types of zeolites. Sep Purif Technol 2011; 80: 418–427.10.1016/j.seppur.2011.04.012Search in Google Scholar

Friess K, Šípek M, Hynek V, Sysel P, Bohatá K, Izák P. Comparison of permeability coefficients of organic vapors through non-porous polymer membranes by two different experimental techniques. J Memb Sci 2004; 240: 179–185.10.1016/j.memsci.2004.05.006Search in Google Scholar

Fu Q, Wong EHH, Kim J, Scofield JMP, Gurr PA, Kentish SE, Qiao GG. The effect of soft nanoparticles morphologies on thin film composite membrane performance. J Mater Chem A 2014; 2: 17751–17756.10.1039/C4TA02859GSearch in Google Scholar

Gascon J, Kapteijn F, Zornoza B, Sebastián V, Casado C, Coronas J. Practical approach to zeolitic membranes and coatings: state of the art, opportunities, barriers, and future perspectives. Chem Mater 2012; 24: 2829–2844.10.1021/cm301435jSearch in Google Scholar

George G, Bhoria N, Alhallaq S, Abdala A, Mittal V. Polymer membranes for acid gas removal from natural gas. Sep Purif Technol 2016; 158: 333–356.10.1016/j.seppur.2015.12.033Search in Google Scholar

Ghadimi A, Mohammadi T, Kasiri N. A novel chemical surface modification for the fabrication of PEBA/SiO 2 nanocomposite membranes to separate CO2 from syngas and natural gas streams. Ind Eng Chem Res 2014a; 53: 17476–17486.10.1021/ie503216pSearch in Google Scholar

Ghadimi A, Amirilargani M, Mohammadi T, Kasiri N, Sadatnia B. Preparation of alloyed poly(ether block amide)/poly(ethylene glycol diacrylate) membranes for separation of CO2/H2 (syngas application). J Memb Sci 2014b; 458: 14–26.10.1016/j.memsci.2014.01.048Search in Google Scholar

Ghadimi A, Mohammadi T, Kasiri N. Gas permeation, sorption and diffusion through PEBA/SiO2 nanocomposite membranes (chemical surface modification of nanoparticles). Int J Hydrogen Energy 2015; 40: 9723–9732.10.1016/j.ijhydene.2015.06.013Search in Google Scholar

Ghadimi A, Mohammadi T, Kasiri N. Mathematical modeling of the gas transport through PEBAX/(nonporous silica) nanocomposite membranes: development based on van Amerongen and van Krevelen relations. Sep Purif Technol 2016; 170: 280–293.10.1016/j.seppur.2016.06.043Search in Google Scholar

Goh PS, Ismail AF, Sanip SM, Ng BC, Aziz M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep Purif Technol 2011; 81: 243–264.10.1016/j.seppur.2011.07.042Search in Google Scholar

Groß A, Heintz A. Diffusion coefficients of aromatics in nonporous PEBA membranes. J Memb Sci 2000; 168: 233–242.10.1016/S0376-7388(99)00322-1Search in Google Scholar

Gu J, Zhang X, Bai Y, Yang L, Zhang C, Sun Y. ZSM-5 filled polyether block amide membranes for separating EA from aqueous solution by pervaporation. Int J Polym Sci 2013; 2013: 1–10.10.1155/2013/760156Search in Google Scholar

Gücüyener C, Van Den Bergh J, Gascon J, Kapteijn F. Ethane/ethene separation turned on its head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. J Am Chem Soc 2010; 132: 17704–17706.10.1021/ja1089765Search in Google Scholar PubMed

Habibiannejad SA, Aroujalian A, Raisi A. Pebax-1657 mixed matrix membrane containing surface modified multi-walled carbon nanotubes for gas separation. RSC Adv 2016; 6: 79563–79577.10.1039/C6RA14141BSearch in Google Scholar

Habibzare S, Morteza A, Djirsarai A. Nano composite PEBAX®/PEG membranes: effect of MWNT filler on CO2/CH4 separation. Int J Nanodimens 2014; 5: 247–254.Search in Google Scholar

Halim A, Fu Q, Yong Q, Gurr PA, Kentish SE, Qiao GG. Soft polymeric nanoparticle additives for next generation gas separation membranes. J Mater Chem A 2014; 2: 4999.10.1039/c3ta14170eSearch in Google Scholar

Halim KAA, Farrell JB, Kennedy JE. Preparation and characterisation of polyamide 11/montmorillonite (MMT) nanocomposites for use in angioplasty balloon applications. Mater Chem Phys 2013; 143: 336–348.10.1016/j.matchemphys.2013.09.007Search in Google Scholar

Hansen CM. Hansen solubility parameters: a user’s handbook, Washington, USA. 2013. doi: 10.1017/CBO9781107415324.004.10.1017/CBO9781107415324.004Search in Google Scholar

Hao X, Pritzker M, Feng X. Use of pervaporation for the separation of phenol from dilute aqueous solutions. J Memb Sci 2009; 335: 96–102.10.1016/j.memsci.2009.02.036Search in Google Scholar

He L, Zhang G, Dong Y, Zhang Z, Xue S, Jiang X. Polyetheramide templated synthesis of monodisperse Mn3O4 nanoparticles with controlled size and study of the electrochemical properties. Nano-micro Lett 2014; 6: 38–45.10.1007/BF03353767Search in Google Scholar

de Heer WA, Bacsa WS, Chatelain A, Gerfin T, Humphrey-Baker R, Forro L, Ugarte D. Aligned carbon nanotube films – production and optical and electronic properties. Science 1995; 268: 845–847.10.1126/science.268.5212.845Search in Google Scholar PubMed

Heitmann S, Krings J, Kreis P, Lennert A, Pitner WR, Górak A, Schulte MM. Recovery of n-butanol using ionic liquid-based pervaporation membranes. Sep Purif Technol 2012; 97: 108–114.10.1016/j.seppur.2011.12.033Search in Google Scholar

Hillock AMW, Miller SJ, Koros WJ. Crosslinked mixed matrix membranes for the purification of natural gas: effects of sieve surface modification. J Memb Sci 2008; 314: 193–199.10.1016/j.memsci.2008.01.046Search in Google Scholar

Huang JC. Carbon black filled conducting polymers and polymer blends. Adv Polym Technol 2002; 21: 299–313.10.1002/adv.10025Search in Google Scholar

Isanejad M, Azizi N, Mohammadi T. Pebax membrane for CO2/CH4 separation: effects of various solvents on morphology and performance. J Appl Polym Sci 2017; 134: 1–9.10.1002/app.44531Search in Google Scholar

Jang KS, Kim HJ, Johnson JR, Kim WG, Koros WJ, Jones CW, Nair S. Modified mesoporous silica gas separation membranes on polymeric hollow fibers. Chem Mater 2011; 23: 3025–3028.10.1021/cm200939dSearch in Google Scholar

Jazebizadeh MH, Khazraei S. Investigation of methane and carbon dioxide gases permeability through PEBAX/PEG/ZnO nanoparticle mixed matrix membrane. Silicon 2016; 9: 1–10.10.1007/s12633-016-9435-7Search in Google Scholar

Ji W, Sikdar SK, Hwang ST. Modeling of multicomponent pervaporation for removal of volatile organic compounds from water. J Memb Sci 1994; 93: 1–19.10.1016/0376-7388(94)85011-9Search in Google Scholar

Jiang X, Brinker CJ. Rigid templating of high surface-area, mesoporous, nanocrystalline rutile using a polyether block amide copolymer template. Chem Commun (Camb) 2010; 46: 6123–6125.10.1039/c0cc01394cSearch in Google Scholar

Jiraratananon R, Sampranpiboon P, Uttapap D, Huang RYM. Pervaporation separation and mass transport of ethylbutanoate solution by polyether block amide (PEBA) membranes. J Memb Sci 2002; 210: 389–409.10.1016/S0376-7388(02)00420-9Search in Google Scholar

Jomekian A, Behbahani RM, Mohammadi T, Kargari A. CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane. J Nat Gas Sci Eng 2016a; 31: 562–574.10.1016/j.jngse.2016.03.067Search in Google Scholar

Jomekian A, Behbahani RM, Mohammadi T, Kargari A. High-speed spin coating in fabrication of Pebax 1657 based mixed matrix membrane filled with ultra-porous ZIF-8 particles for CO2/CH4 separation. Korean J Chem Eng 2016b; 34: 1–14.10.1007/s11814-016-0269-1Search in Google Scholar

Jomekian A, Bazooyar B, Behbahani RM, Mohammadi T, Kargari A. Ionic liquid-modified Pebax® 1657 membrane filled by ZIF-8 particles for separation of CO2 from CH4, N2 and H2. J Memb Sci 2016c; 524: 652–662.10.1016/j.memsci.2016.11.065Search in Google Scholar

Jusoh N, Fong Yeong Y, Leng Chew T, Keong Lau K, Mohd Shariff A. Current development and challenges of mixed matrix membranes for CO2/CH4 separation current development and challenges of mixed matrix membranes for CO2/CH4 separation. Sep Purif Rev 2016; 454: 321–344.10.1080/15422119.2016.1146149Search in Google Scholar

Kamal T, Park SY, Choi MC, Chang YW, Chuang WT, Jeng US. An in-situ simultaneous SAXS and WAXS survey of PEBAX® nanocomposites reinforced with organoclay and POSS during uniaxial deformation. Polymer 2012; 53: 3360–3367.10.1016/j.polymer.2012.05.037Search in Google Scholar

Karamouz F, Maghsoudi H, Yegani R. Synthesis and characterization of high permeable PEBA membranes for CO2/CH4 separation. J Nat Gas Sci Eng 2016; 35: 980–985.10.1016/j.jngse.2016.09.036Search in Google Scholar

Kawasumi M, Hasegawa N, Usuki A, Okada A. Liquid crystal/clay mineral composites. Appl Clay Sci 1999; 15: 93–9108.10.1016/S0169-1317(99)00029-0Search in Google Scholar

Kim JH, Lee YM. Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes. J Memb Sci 2001; 193: 209–225.10.1016/S0376-7388(01)00514-2Search in Google Scholar

Kim S, Marand E. High permeability nano-composite membranes based on mesoporous MCM-41 nanoparticles in a polysulfone matrix. Microporous Mesoporous Mater 2008; 114: 129–136.10.1016/j.micromeso.2007.12.028Search in Google Scholar

Kim JH, Ha SY, Lee YM. Gas permeation of poly(amide-6-ethylene oxide) copolymer. J Memb Sci 2001; 190: 179–193.10.1016/S0376-7388(01)00444-6Search in Google Scholar

Kim H, Kim HG, Kim S, Kim SS. PDMS-silica composite membranes with silane coupling for propylene separation. J Memb Sci 2009; 344: 211–218.10.1016/j.memsci.2009.08.004Search in Google Scholar

Kim J, Choi J, Kang YS, Won J. Matrix effect of mixed-matrix membrane containing CO2-selective MOFs. Appl Polym Sci 2016; 42853: 1–8.10.1002/app.42853Search in Google Scholar

Kimura T, Ago H, Tobita M, Ohshima S, Kyotani M, Yumura M. Polymer composites of carbon nanotubes aligned by a magnetic field. Adv Mater 2002; 14: 1380–1383.10.1002/1521-4095(20021002)14:19<1380::AID-ADMA1380>3.0.CO;2-VSearch in Google Scholar

Klee J, Hörhold H-H. Epoxide-amine addition polymers, linear. In: Salamone JO, edtior. Polymeric materials encyclopedia. USA: CRC press, 1996: 2182–2192.Search in Google Scholar

Koenhen DM, Smolders CA. The determination of solubility parameters of solvents and polymers. J Appl Polym Sci 1975; 19: 1163–1179.10.1002/app.1975.070190423Search in Google Scholar

Kondo M, Sato H. Treatment of wastewater from phenolic resin process by pervaporation. Desalination 1994; 98: 147–154.10.1016/0011-9164(94)00139-1Search in Google Scholar

Koros W. Barrier polymers and structures. Washington, DC: American Chemical Society, 1990.10.1021/bk-1990-0423Search in Google Scholar

Kujawski W, Gumkowska BO. Preparation and properties of organophilic membranes for pervaporation of water-organics mixtures. Sep Sci Technol 2007; 38: 37–41.10.1081/SS-120024223Search in Google Scholar

Kujawski W, Warszawski A, Ratajczak W. Removal of phenol from wastewater by different separation techniques. Desalination 2004a; 163: 287–296.10.1016/S0011-9164(04)90202-0Search in Google Scholar

Kujawski W, Warszawski A, Ratajczak W, Porȩbski T, Capała W, Ostrowska I. Application of pervaporation and adsorption to the phenol removal from wastewater. Sep Purif Technol 2004b; 40: 123–132.10.1016/j.seppur.2004.01.013Search in Google Scholar

Kuo S-W, Chang F-C. POSS related polymer nanocomposites. Prog Polym Sci 2011; 36: 1649–1696.10.1016/j.progpolymsci.2011.05.002Search in Google Scholar

Lara-Estévez JCI, Antônio L, De Almeida S, Schulte K, Bucio E. PEBAX™-silanized Al2O3 composite, synthesis and characterization. Sci Res 2012; 2012: 63–69.Search in Google Scholar

Le NL, Wang Y, Chung T. Poly(ether-block-amide)/POSS mixed matrix membranes for ethanol recovery from aqueous solutions. Membr Sci 2011; 379: 174–183.10.1016/j.memsci.2011.05.060Search in Google Scholar

Li Y, Chung T-S. Molecular-level mixed matrix membranes comprising Pebax® and POSS for hydrogen purification via preferential CO2 removal. Int J Hydrogen Energy 2010; 35: 10560–10568.10.1016/j.ijhydene.2010.07.124Search in Google Scholar

Li X, Wang S. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes. ACS Appl Mater Interfaces 2015; 7: 5528–5537.10.1021/acsami.5b00106Search in Google Scholar PubMed

Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G. Large-scale synthesis of aligned carbon nanotubes. Science 1996; 274: 1701–1703.10.1126/science.274.5293.1701Search in Google Scholar PubMed

Li Y, Chung T, Cao C, Kulprathipanja S. The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes. J Memb Sci 2005; 260: 45–55.10.1016/j.memsci.2005.03.019Search in Google Scholar

Li J-R, Kuppler RJ, Zhou H-C. Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 2009; 38: 1477–1504.10.1039/b802426jSearch in Google Scholar PubMed

Li T, Pan Y, Peinemann K-V, Lai Z. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J Memb Sci 2013; 425: 235–242.10.1016/j.memsci.2012.09.006Search in Google Scholar

Li X, Jiang Z, Wu Y, Zhang H, Cheng Y, Guo R, Wu H. High-performance composite membranes incorporated with carboxylic acid nanogels for CO2 separation. J Memb Sci 2015; 495: 72–80.10.1016/j.memsci.2015.07.065Search in Google Scholar

Li H, Tuo L, Yang K, Jeong H, Dai Y, He G, Zhao W. Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: interfacial toughening effect of ionic liquid. J Memb Sci 2016; 511: 130–142.10.1016/j.memsci.2016.03.050Search in Google Scholar

Liang S, Zhang G, Min J, Ding J, Jiang X. Synthesis and antibacterial testing of silver/poly(ether amide) composite nanofibers with ultralow silver content. Nanomaterials 2014; 129: 1–10.10.1155/2014/684251Search in Google Scholar

Lin G, Zhang H. Silicalite-filled polyether-block-amides membranes for recovering ethanol from aqueous solution by pervaporation. Chem Eng Technol 2009; 32: 155–160.10.1002/ceat.200800252Search in Google Scholar

Liu L, Chakma A, Feng X. A novel method of preparing ultrathin poly(ether block amide) membranes. J Memb Sci 2004a; 235: 43–52.10.1016/j.memsci.2003.12.025Search in Google Scholar

Liu L, Chakma A, Feng X. Preparation of hollow fiber poly(ether block amide)/polysulfone composite membranes for separation of carbon dioxide from nitrogen. Chem Eng J 2004b; 105: 43–51.10.1016/j.cej.2004.08.005Search in Google Scholar

Liu Y, Su Y, Lai J. In situ crosslinking of chitosan and formation of chitosan-silica hybrid membranes with using g-glycidoxypropyltrimethoxysilane as a crosslinking agent. Polymer (Guildf) 2004c; 45: 6831–6837.10.1016/j.polymer.2004.08.006Search in Google Scholar

Liu F, Liu L, Feng X. Separation of acetone-butanol-ethanol (ABE) from dilute aqueous solutions by pervaporation. Sep Purif Technol 2005; 42: 273–282.10.1016/j.seppur.2004.08.005Search in Google Scholar

Liu L, Chakma A, Feng X. Sorption, diffusion, and permeation of light olefins in poly(ether block amide) membranes. Chem Eng Sci 2006a; 61: 6142–6153.10.1016/j.ces.2006.05.045Search in Google Scholar

Liu L, Chakma A, Feng X. Propylene separation from nitrogen by poly(ether block amide) composite membranes. J Memb Sci 2006b; 279: 645–654.10.1016/j.memsci.2005.12.058Search in Google Scholar

Liu L, Jiang N, Burns C M, Chakma A, Feng X. Substrate resistance in composite membranes for organic vapour/gas separations. J Memb Sci 2009; 338: 153–160.10.1016/j.memsci.2009.04.019Search in Google Scholar

Liu S, Liu G, Zhao X, Jin W. Hydrophobic-ZIF-71 filled PEBA mixed matrix membranes for recovery of biobutanol via pervaporation. J Memb Sci 2013; 446: 181–188.10.1016/j.memsci.2013.06.025Search in Google Scholar

Liu S, Liu G, Shen J, Jin W. Fabrication of MOFs/PEBA mixed matrix membranes and their application in bio-butanol production. Sep Purif Technol 2014a; 133: 40–47.10.1016/j.seppur.2014.06.034Search in Google Scholar

Liu Y, Yu S, Wu H, Li Y, Wang S, Tian Z, Jiang Z. High permeability hydrogel membranes of chitosan/poly ether-block-amide blends for CO2 separation. J Memb Sci 2014b; 469: 198–208.10.1016/j.memsci.2014.06.050Search in Google Scholar

Liu Y, Li X, Qin Y, Guo R, Zhang J. Pebax-polydopamine microsphere mixed-matrix membranes for efficient CO2 separation. J Appl Polym Sci 2016; 134: 1–10.Search in Google Scholar

Lovineh SG, Asghari M, Khanbabaei G. CO2 permeation through poly(amide-6-b-ethylene oxide)-nanosilica membranes. Appl Surf Sci 2014; 318: 176–179.10.1016/j.apsusc.2014.03.027Search in Google Scholar

Lua AC, Shen Y. Influence of inorganic fillers on the structural and transport properties of mixed matrix membranes. J Appl Polym Sci 2013; 128: 4058–4066.10.1002/app.38614Search in Google Scholar

Lyons JG, Kennedy JE, Higginbotham CL. Characterisation of the effects of a titanium micro particle filler on a polyether-block-amide host matrix. J Mater Sci 2010; 45: 3204–3214.10.1007/s10853-010-4328-4Search in Google Scholar

Magueijo VM, Anderson LG, Fletcher AJ, Shilton SJ. Polysulfone mixed matrix gas separation hollow fibre membranes filled with polymer and carbon xerogels. Chem Eng Sci 2013; 92: 13–20.10.1016/j.ces.2013.01.043Search in Google Scholar

Mahdi S, Afsari M, Asghari M. Effect of nano zinc oxide on gas permeation through mixed matrix poly(amide-6-b-ethylene oxide)-based membranes. Int J Nanodimens 2017; 8: 31–39.Search in Google Scholar

Mahmoudi A, Asghari M, Zargar V. CO2/CH4 separation through a novel commercializable three-phase PEBA/PEG/NaX nanocomposite membrane. J Ind Eng Chem 2014a; 23: 1–5.10.1016/j.jiec.2014.08.023Search in Google Scholar

Mahmoudi A, Namdari M, Zargar V, Khanbabaei G, Asghari M. Nano composite PEBAX® membranes: effect of zeolite X filler on CO2 permeation. Int J Nanodimens 2014b; 5: 83–89.Search in Google Scholar

Mahmoudi A, Asghari M, Zargar V. CO2/CH4 separation through a novel commercializable three-phase PEBA/PEG/NaX nanocomposite membrane. J Ind Eng Chem 2015; 23: 238–242.10.1016/j.jiec.2014.08.023Search in Google Scholar

Mandal MK, Bhattacharya PK. Poly(ether-block-amide) membrane for pervaporative separation of pyridine present in low concentration in aqueous solution. J Memb Sci 2006; 286: 115–124.10.1016/j.memsci.2006.09.022Search in Google Scholar

Manson JA, Chiu EH. Permeation of liquid water in a filled epoxy resin. J Polym Sci Polym Symp 2007; 41: 95–9108.10.1002/polc.5070410110Search in Google Scholar

Marcos SO, Camilo FF. A new method for producing highly concentrated non-aqueous dispersions of silver nanoparticles and the evaluation of their bactericidal activity. J Nanopart Res 2014; 16: 2723.10.1007/s11051-014-2723-5Search in Google Scholar

Matteucci S, Kusuma VA, Kelman SD, Freeman BD. Gas transport properties of MgO filled poly(1-trimethylsilyl-1-propyne) nanocomposites. Polymer (Guildf) 2008; 49: 1659–1675.10.1016/j.polymer.2008.01.004Search in Google Scholar

McClory C, Chin SJ, McNally T. Polymer/carbon nanotube composites. Aust J Chem 2009; 62: 762.10.1071/CH09131Search in Google Scholar

Meléndez-Ortiz HI, Castruita-de León G, Perera-Mercado Y, Mercado-Silva JA, Puente-Urbina B, García-Rodríguez S, García-Cerda LA. Preparation and characterization of hybrid membranes based on poly(ether-b-amide). In: Maciel-Cerda A, editor. Membranes: materials, simulations, and applications. Cham, Switzerland: Springer International Publishing, 2017.Search in Google Scholar

Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, Hill AJ. Ultrapermeable, reverse-selective nanocomposite membranes. Science 2002; 296: 519–522.10.1126/science.1069580Search in Google Scholar

Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, Hill AJ. Sorption, transport, and structural evidence for enhanced free volume in poly(4-methyl-2-pentyne)/fumed silica nanocomposite membranes. Chem Mater 2003; 15: 109–123.10.1021/cm020672jSearch in Google Scholar

Miller P, Wang YB, You C, Parsonage E. Medical devices comprising a multilayer construction 2006. Google Patents.Search in Google Scholar

Miller-Chou BA, Koenig JL. A review of polymer dissolution. Prog Polym Sci 2003; 28: 1223–1270.10.1016/S0079-6700(03)00045-5Search in Google Scholar

Mohamadi S, Sanjani NS. Studies on PEBAX/organoclay nanocomposites by melt-intercalation process: effect of organoclay surface. E-Polymers 2009; 9: 1606–1619.10.1515/epoly.2009.9.1.1606Search in Google Scholar

Mohammadi T. Ion-exchanged zeolite X membranes: synthesis and characterisation. Membr Technol 2008; 2008: 9–11.10.1016/S0958-2118(08)70086-7Search in Google Scholar

Mohammadi T, Kikhavani T. Pervaporation separation of ethyl butyrate/water mixture: experimental and mass transfer investigation. J Pet Sci Res 2013; 2: 1–8.Search in Google Scholar

Mohammadi T, Kikhavandi T, Moghbeli M. Synthesis and characterization of poly(ether-block-amide) membranes for the pervaporation of organic/aqueous mixtures. J Appl Polym Sci 2008a; 107: 1917–1923.10.1002/app.27222Search in Google Scholar

Mohammadi T, Kikhavandi T, Moghbeli M. Synthesis and characterization of poly(ether-block-amide) membranes. Macromol Symp 2008b; 264: 127–134.10.1002/masy.200850420Search in Google Scholar

Moniruzzaman M, Winey KI. Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006; 39: 5194–5205.10.1021/ma060733pSearch in Google Scholar

Moore TT, Koros WJ. Non-ideal effects in organic–inorganic materials for gas separation membranes. J Mol Struct 2005; 739: 87–98.10.1016/j.molstruc.2004.05.043Search in Google Scholar

Mosleh S, Khanbabaei G, Mozdianfard M, Hemmati M. Application of poly(amide-b-ethylene oxide)/zeolitic imidazolate framework nanocomposite membrane in gas separation. Iran Polym J 2016a; 25: 977–990.10.1007/s13726-016-0484-ySearch in Google Scholar

Mosleh S, Mozdianfard MR, Hemmati M, Khanbabaei G. Synthesis and characterization of rubbery/glassy blend membranes for CO2/CH4 gas separation. J Polym Res 2016b; 23: 120.10.1007/s10965-016-1005-6Search in Google Scholar

Mujiburohman M, Feng X. Permselectivity, solubility and diffusivity of propyl propionate/water mixtures in poly(ether block amide) membranes. J Memb Sci 2007; 300: 95–9103.10.1016/j.memsci.2007.05.011Search in Google Scholar

Müller J, Peinemann KV, Müller J. Development of facilitated transport membranes for the separation of olefins from gas streams. Desalination 2002; 145: 339–345.10.1016/S0011-9164(02)00433-2Search in Google Scholar

Murali RS, Sridhar S, Sankarshana T, Ravikumar YVL. Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Ind Eng Chem Res 2010; 49: 6530–6538.10.1021/ie9016495Search in Google Scholar

Murali RS, Ismail AF, Rahman MA, Sridhar S. Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Sep Purif Technol 2014a; 129: 1–8.10.1016/j.seppur.2014.03.017Search in Google Scholar

Murali RS, Kumar KP, Ismail AF, Sridhar S. Nanosilica and H-mordenite incorporated poly(ether-block-amide)-1657 membranes for gaseous separations. Microporous Mesoporous Mater 2014b; 197: 291–298.10.1016/j.micromeso.2014.07.001Search in Google Scholar

Nafisi V, Hägg M. Development of nanocomposite membranes containing modified Si nanoparticles in PEBAX-2533 as a block copolymer and 6FDA-durene diamine as a glassy polymer. ACS Appl Mater Interfaces 2014a; 6: 15643–15652.10.1021/am500532aSearch in Google Scholar

Nafisi V, Hägg M. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. J Memb Sci 2014b; 459: 244–255.10.1016/j.memsci.2014.02.002Search in Google Scholar

Nagar H, Sumana C, Rao VVB, Sridhar S. Performance evaluation of sodium alginate-Pebax polyion complex membranes for application in direct methanol fuel cells. J Appl Polym Sci 2017; 134: 1–11.10.1002/app.44485Search in Google Scholar

Najafi M, Mousavi SM, Saljoughi E. Preparation and characterization of poly(ether block amide)/graphene membrane for recovery of isopropanol from aqueous solution via pervaporation. Polym Compos 2016; 1: 1–9.10.1002/pc.24203Search in Google Scholar

Nejad MN, Asghari M, Afsari M. Investigation of carbon nanotubes in mixed matrix membranes for gas separation: a review. Chem Bio Eng Rev 2016; 6: 1–24.10.1002/cben.201600012Search in Google Scholar

Nunes SP, Sforça ML, Peinemann K-V. Dense hydrophilic composite membranes for ultrafiltration. J Memb Sci 1995; 106: 49–56.10.1016/0376-7388(95)00076-OSearch in Google Scholar

Pal R. Permeation models for mixed matrix membranes. J Colloid Interface Sci 2008; 317: 191–198.10.1016/j.jcis.2007.09.032Search in Google Scholar PubMed

Panek D, Konieczny K. Preparation and applying the membranes with carbon black to pervaporation of toluene from the diluted aqueous solutions. Sep Purif Technol 2007; 57: 507–512.10.1016/j.seppur.2006.10.011Search in Google Scholar

Panek D, Konieczny K. Applying filled and unfilled polyether-block-amide membranes to separation of toluene from wastewaters by pervaporation. Desalination 2008; 222: 280–285.10.1016/j.desal.2007.01.172Search in Google Scholar

Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 2006; 103: 10186–10191.10.1073/pnas.0602439103Search in Google Scholar PubMed PubMed Central

Park CH, Tocci E, Fontananova E, Bahattab MA, Aljlil SA, Drioli E. Mixed matrix membranes containing functionalized multiwalled carbon nanotubes: mesoscale simulation and experimental approach for optimizing dispersion. J Memb Sci 2016; 514: 195–209.10.1016/j.memsci.2016.04.011Search in Google Scholar

Pechar T, Kim S, Vaughan B, Marand E, Baranauskas V, Riffle J, Jeong H, Tsapatsis M. Preparation and characterization of a poly(imide siloxane) and zeolite L mixed matrix membrane. J Memb Sci 2006; 277: 210–218.10.1016/j.memsci.2005.10.031Search in Google Scholar

Pendergast MM, Hoek EMV. A review of water treatment membrane nanotechnologies. Energy Environ Sci 2011; 4: 1946.10.1039/c0ee00541jSearch in Google Scholar

Peng D, Wang S, Tian Z, Wu X, Wu Y, Wu H, Xin Q, Chen J, Cao X, Jiang Z. Facilitated transport membranes by incorporating graphene nanosheets with high zinc ion loading for enhanced CO2 separation. J Memb Sci 2017; 522: 351–362.10.1016/j.memsci.2016.09.040Search in Google Scholar

Potreck J, Nijmeijer K, Kosinski T, Wessling M. Mixed water vapor/gas transport through the rubbery polymer PEBAX® 1074. J Memb Sci 2009; 338: 11–16.10.1016/j.memsci.2009.03.051Search in Google Scholar

Prasad NS, Moulik S, Bohra S, Rani KY, Sridhar S. Solvent resistant chitosan/poly(ether-block-amide) composite membranes for pervaporation of n-methyl-2-pyrrolidone/water mixtures. Carbohydr Polym 2016; 136: 1170–1181.10.1016/j.carbpol.2015.10.037Search in Google Scholar PubMed

Qadir D, Mukhtar H, Keong LK. Mixed matrix membranes for water purification application. Sep Purif Rev 2016; 2119: 62–80.10.1080/15422119.2016.1196460Search in Google Scholar

Qiu S, Wu L, Shi G, Zhang L, Chen H, Gao C. Preparation and pervaporation property of chitosan membrane with functionalized multiwalled carbon nanotubes. Ind Eng Chem Res 2010; 49: 11667–11675.10.1021/ie101223kSearch in Google Scholar

Qiu Y, Ren J, Zhao D, Li H, Deng M. Poly(amide-6-b-ethylene oxide)/[Bmim][Tf2N] blend membranes for carbon dioxide separation. J Energy Chem 2016; 25: 122–130.10.1016/j.jechem.2015.10.009Search in Google Scholar

Rabiee H, Ghadimi A, Abbasi S, Mohammadi T. CO2 separation performance of poly(ether-b-amide6)/PTMEG blended membranes: permeation and sorption properties. Chem Eng Res Des 2015a; 98: 96–9106.10.1016/j.cherd.2015.03.026Search in Google Scholar

Rabiee H, Ghadimi A, Mohammadi T. Gas transport properties of reverse-selective poly(ether-b-amide6)/[Emim][BF4] gel membranes for CO2/light gases separation. J Memb Sci 2015b; 476: 286–302.10.1016/j.memsci.2014.11.037Search in Google Scholar

Rabiee H, Meshkat Alsadat S, Soltanieh M, Mousavi SA, Ghadimi A. Gas permeation and sorption properties of poly(amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. J Ind Eng Chem 2015c; 27: 223–239.10.1016/j.jiec.2014.12.039Search in Google Scholar

Rahman M, Filiz V, Shishatskiy S, Abetz C, Neumann S, Bolmer S, Khan MM, Abetz V. PEBAX® with PEG functionalized POSS as nanocomposite membranes for CO2 separation. J Memb Sci 2013; 437: 286–297.10.1016/j.memsci.2013.03.001Search in Google Scholar

Rahman M, Filiz V, Munir M, Gacal BN, Abetz V. Reactive & functional polymers functionalization of POSS nanoparticles and fabrication of block copolymer nanocomposite membranes for CO2 separation. React Funct Polym 2014a; 9: 1–8.10.1016/j.reactfunctpolym.2014.07.006Search in Google Scholar

Rahman M, Shishatskiy S, Abetz C, Georgopanos P, Neumann S, Munir M, Filiz V, Abetz V. Influence of temperature upon properties of tailor-made PEBAX s MH 1657 nanocomposite membranes for post-combustion CO2 capture. J Memb Sci 2014b; 469: 344–354.10.1016/j.memsci.2014.06.048Search in Google Scholar

Reid BD, Ruiz-Trevino FA, Musselman IH, Balkus KJ, Ferraris JP. Gas permeability properties of polysulfone membranes containing the mesoporous molecular sieve MCM-41. Chem Mater 2001; 13: 2366–2373.10.1021/cm000931+Search in Google Scholar

Reijerkerk SR, Knoef MH, Nijmeijer K, Wessling M. Poly(ethylene glycol) and poly(dimethyl siloxane): combining their advantages into efficient CO2 gas separation membranes. J Memb Sci 2010; 352: 126–135.10.1016/j.memsci.2010.02.008Search in Google Scholar

Ren Z, Huang Z, Xu J, Wang J, Bush P, Siegal M, Provencio P. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 1998; 282: 1105–1107.10.1126/science.282.5391.1105Search in Google Scholar PubMed

Ren X, Ren J, Li H, Feng S, Deng M. Poly(amide-6-b-ethylene oxide) multilayer composite membrane for carbon dioxide separation. Int J Greenhouse Gas Control 2012a; 8: 111–120.10.1016/j.ijggc.2012.01.017Search in Google Scholar

Ren X, Ren J, Deng M. Poly(amide-6-b-ethylene oxide) membranes for sour gas separation. Sep Purif Technol 2012b; 89: 1–8.10.1016/j.seppur.2012.01.004Search in Google Scholar

Rezakazemi M, Amooghin AE, Montazer-Rahmati MM, Ismail AF, Matsuura T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 2014; 39: 817–861.10.1016/j.progpolymsci.2014.01.003Search in Google Scholar

Robeson LM. Correlation of separation factor versus permeability for polymeric membranes. J Memb Sci 1991; 62: 165–185.10.1016/0376-7388(91)80060-JSearch in Google Scholar

Robeson LM. The upper bound revisited. J Memb Sci 2008; 320: 390–400.10.1016/j.memsci.2008.04.030Search in Google Scholar

Robeson LM, Burgoyne WF, Langsam M, Savoca AC, Tien CF. High performance polymers for membrane separation. Polymer (Guildf) 1994; 35: 4970–4978.10.1016/0032-3861(94)90651-3Search in Google Scholar

Rosyadah Ahmad NN, Mukhtar H, Mohshim DF, Nasir R, Man Z. Surface modification in inorganic filler of mixed matrix membrane for enhancing the gas separation performance. Rev Chem Eng 2016; 32: 181–200.Search in Google Scholar

Sadeghi M, Semsarzadeh MA, Moadel H. Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles. J Memb Sci 2009; 331: 21–30.10.1016/j.memsci.2008.12.073Search in Google Scholar

Sampranpiboon P, Jiraratananon R, Uttapap D, Feng X, Huang RYM. Pervaporation separation of ethyl butyrate and isopropanol with polyether block amide (PEBA) membranes. J Memb Sci 2000; 173: 53–59.10.1016/S0376-7388(00)00351-3Search in Google Scholar

Sardarabadi H, Mousavi SM, Saljoughi E. Removal of 2-propanol from water by pervaporation using poly(vinylidene fluoride) membrane filled with carbon black. Appl Surf Sci 2016; 368: 277–287.10.1016/j.apsusc.2016.01.227Search in Google Scholar

Sarkis RG, Halverson EL, Tapsak MA. Medical devices with echogenic coatings. Google Patents. 1999.Search in Google Scholar

Scholes CA, Kentish SE, Geoff W. Effects of minor components in carbon dioxide capture using polymeric gas separation membranes. Sep Purif Rev 2009; 38: 1–44.10.1080/15422110802411442Search in Google Scholar

Scofield JMP, Gurr PA, Kim J, Fu Q, Kentish SE, Qiao GG. Blends of fluorinated additives with highly selective thin-film composite membranes to increase CO2 permeability for CO2/N2 gas separation applications. Ind Eng Chem Res 2016; 55: 8364–8372.10.1021/acs.iecr.6b02167Search in Google Scholar

Sengupta R, Chakraborty S, Bandyopadhyay S, Dasgupta S, Mukhopadhyay R, Auddy K, Deuri AS. A short review on rubber/clay nanocomposites with emphasis on mechanical properties. Engineering 2007; 47: 21–25.10.1002/pen.20921Search in Google Scholar

Shamsabadi AA, Seidi F, Salehi E, Nozari M, Rahimpour A, Soroush M, Salimi H, He G, Albenze E, Rezaei F. Efficient CO2-removal using novel mixed-matrix membranes with modified TiO2 nanoparticles. J Mater Chem A 2017; 5: 4011–4025.10.1039/C6TA09990DSearch in Google Scholar

Shantarovich VP, Kevdina IB, Yampolskii YP, Alentiev AY. Positron annihilation lifetime study of high and low free volume glassy polymers: effects of free volume sizes on the permeability and permselectivity. Macromolecules 2000; 33: 7453–7466.10.1021/ma000551+Search in Google Scholar

Shea KJ, Loy DA. Bridged polysilsesquioxanes. Molecular-engineered hybrid organic-inorganic materials. Chem Mater 2001; 13: 3306–3319.10.1021/cm011074sSearch in Google Scholar

Shekhawat D, Luebke DR, Pennline HW. A review of carbon dioxide selective membranes: a topical report. Pittsburgh, PA and Morgantown, WV: US Department of Energy (US), 2003. doi: 10.2172/819990.10.2172/819990Search in Google Scholar

Shen Y, Lua AC. Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation. Chem Eng J 2012; 192: 201–210.10.1016/j.cej.2012.03.066Search in Google Scholar

Shen J, Liu G. UiO-66-polyether block amide mixed matrix membranes for CO2 separation. J Memb Sci 2016; 513: 155–165.10.1016/j.memsci.2016.04.045Search in Google Scholar

Shen Y, Wang H, Zhang X, Zhang Y. MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method. ACS Appl Mater Interfaces 2016a; 8: 23371–23378.10.1021/acsami.6b07153Search in Google Scholar PubMed

Shen J, Zhang M, Liu G, Guan K, Jin W. Size effects of graphene oxide on mixed matrix membranes for CO2 separation. AIChE J 2016b; 62: 2843–2852.10.1002/aic.15260Search in Google Scholar

Sheng J. Separation of dichloroethane-trkhloroethylene mixtures by means of a membrane pervaporation process. Desalination 1991; 80: 85–95.10.1016/0011-9164(91)80007-ISearch in Google Scholar

Singh NB, Rai S, Agarwal S. Polymer nanocomposites and Cr(VI) removal from water. Nanosci Technol 2014; 1: 1–10.10.15226/2374-8141/1/1/00104Search in Google Scholar

Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials: past, present and future. Prog Mater Sci 2011; 56: 1178–1271.10.1016/j.pmatsci.2011.03.003Search in Google Scholar

Soloukipour S, Saljoughi E, Mousavi SM, Pourafshari Chenar M. PEBA/PVDF blend pervaporation membranes: preparation and performance. Polym Adv Technol 2016. doi: 10.1002/pat.3865.10.1002/pat.3865Search in Google Scholar

Song Y, Yamamoto H, Nemoto N. Segmental orientations and deformation mechanism of poly(ether-block-amide) films. Macromolecules 2004; 37: 6219–6226.10.1021/ma0400620Search in Google Scholar

Sridhar S, Smitha B, Aminabhavi TM. Separation of carbon dioxide from natural gas mixtures through polymeric membranes – a review. Sep Purif Rev 2007a; 36: 113–174.10.1080/15422110601165967Search in Google Scholar

Sridhar S, Aminabhavi TM, Mayor SJ, Ramakrishna M. Permeation of carbon dioxide and methane gases through novel silver-incorporated thin film composite pebax membranes. Ind Eng Chem Res 2007b; 46: 8144–8151.10.1021/ie070114kSearch in Google Scholar

Sridhar S, Suryamurali R, Smitha B, Aminabhavi TM. Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation. Colloids Surf A Physicochem Eng Asp 2007c; 297: 267–274.10.1016/j.colsurfa.2006.10.054Search in Google Scholar

Sridhar S, Smitha B, Suryamurali R, Aminabhavi TM. Synthesis, characterization and gas permeability of an activated carbon-loaded PEBAX 2533 membrane. Des Monomers Polym 2008; 11: 17–27.10.1163/156855508X292392Search in Google Scholar

Sunitha K, Rani KY, Moulik S, Satyanarayana SV, Sridhar S. Separation of NMP/water mixtures by nanocomposite PEBA membrane: Part I. Membrane synthesis, characterization and pervaporation performance. Desalination 2013; 330: 1–8.10.1016/j.desal.2013.09.016Search in Google Scholar

Sutrisna PD, Hou J, Li H, Zhang Y, Chen V. Improved operational stability of Pebax-based gas separation membranes with ZIF-8: a comparative study of flat sheet and composite hollow fibre membranes. J Memb Sci 2017; 524: 266–279.10.1016/j.memsci.2016.11.048Search in Google Scholar

Tan H, Wu Y, Li T. Pervaporation of n-butanol aqueous solution through ZSM-5-PEBA composite membranes. Appl Polym Sci 2012; 129: 105–112.10.1002/app.38704Search in Google Scholar

Tan H, Wu Y, Zhou Y, Liu Z, Li T. Pervaporative recovery of n-butanol from aqueous solutions with MCM-41 filled PEBA mixed matrix membrane. J Memb Sci 2014; 453: 302–311.10.1016/j.memsci.2013.11.010Search in Google Scholar

Thiyagarajan R, Ravi S, Bhattacharya PK. Pervaporation of methyl-ethyl ketone and water mixture: determination of concentration profile. Desalination 2011; 277: 178–186.10.1016/j.desal.2011.04.020Search in Google Scholar

Touchaleaume F, Soulestin J, Sclavons M, Devaux J, Cordenier F, Van Velthem P. Efficient one-step melt-compounding of copolyetheramide/pristine clay nanocomposites using water-injection as intercalating/exfoliating aid. Express Polym Lett 2011; 5: 1085–1101.10.3144/expresspolymlett.2011.106Search in Google Scholar

Urkiaga A, Bolaño N, De Las Fuentes L. Removal of micropollutants in aqueous streams by organophilic pervaporation. Desalination 2002; 149: 55–60.10.1016/S0011-9164(02)00691-4Search in Google Scholar

Valtchev V, Mintova S, Tsapatsis M. Ordered porous solids: recent advances and prospects, USA: Elsevier, 2011.Search in Google Scholar

Wahab MSA, Sunarti AR. Development of PEBAX based membrane for gas separation: a review. Membr Sci Technol 2015; 2: 79.Search in Google Scholar

Wang Y. Polyether-block-amide copolymer/clay films prepared via a freeze-drying method. Compos B Eng 2012; 45: 625–630.10.1016/j.compositesb.2012.05.017Search in Google Scholar

Wang L. Preparation of composite poly(ether block amide) membrane for CO2 capture. J Energy Chem 2014; 23: 717–725.10.1016/S2095-4956(14)60204-7Search in Google Scholar

Wang Y, Yang I. Polyether-block-amide copolymer/clay films prepared via a freeze-drying method. Compos B Eng 2013; 45: 625–630.10.1016/j.compositesb.2012.05.017Search in Google Scholar

Wang H, Holmberg BA, Yan Y. Homogeneous polymer/zeolite nanocomposite membranes by incorporating dispersible template-removed zeolite nanocrystals. J Mater Chem 2002; 12: 3640–3643.10.1039/B207394CSearch in Google Scholar

Wang X, Chen X, Chu B. High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating. Environ Sci Technol 2005; 39: 7684–7691.10.1021/es050512jSearch in Google Scholar PubMed

Wang Y, Chung TS, Neo BW, Gruender M. Processing and engineering of pervaporation dehydration of ethylene glycol via dual-layer polybenzimidazole (PBI)/polyetherimide (PEI) membranes. J Memb Sci 2011; 378: 339–350.10.1016/j.memsci.2011.05.020Search in Google Scholar

Wang S, Liu Y, Huang S, Wu H, Li Y, Tian Z. Pebax-PEG-MWCNT hybrid membranes with enhanced CO2 capture properties. J Memb Sci 2014; 460: 62–70.10.1016/j.memsci.2014.02.036Search in Google Scholar

Wilks B, Rezac ME. Properties of rubbery polymers for the recovery of hydrogen sulfide from gasification gases. J Appl Polym Sci 2002; 85: 2436–2444.10.1002/app.10881Search in Google Scholar

Wu H, Li X, Li Y, Wang S, Guo R, Jiang Z, Wu C, Xin Q, Lu X. Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties. J Memb Sci 2014; 465: 78–90.10.1016/j.memsci.2014.04.023Search in Google Scholar

Wun-Gwi K, Nair S. Membranes from nanoporous 1D and 2D materials: a review of opportunities, developments, and challenges. Chem Eng Sci 2013; 104: 908–924.10.1016/j.ces.2013.09.047Search in Google Scholar

Xiang L, Pan Y, Zeng G, Chen J, Wang C. Preparation of poly ether block amide/attapulgite mixed matrix membranes for CO2/N2 separation. J Memb Sci 2015; 500: 66–75.10.1016/j.memsci.2015.11.017Search in Google Scholar

Xiang L, Pan Y, Jiang J, Chen Y. Thin poly(ether-block-amide)/attapulgite composite membranes with improved CO2 permeance and selectivity for CO2/N2 and CO2/CH4. Chem Eng Sci 2016. doi: 10.1016/j.ces.2016.11.037.10.1016/j.ces.2016.11.037Search in Google Scholar

Xie XL, Mai YW, Zhou XP. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R Rep 2005; 49: 89–8112.10.1016/j.mser.2005.04.002Search in Google Scholar

Xin Q, Zhang Y, Huo T, Ye H, Ding X, Lin L, Zhang Y, Wu H, Jiang Z. Mixed matrix membranes fabricated by a facile in situ biomimetic mineralization approach for efficient CO2 separation. J Memb Sci 2016; 508: 84–93.10.1016/j.memsci.2016.02.022Search in Google Scholar

Xu Z, Yu L, Han L. Polymer-nanoinorganic particles composite membranes: a brief overview. Chem Eng 2009; 3: 318–329.10.1007/s11705-009-0199-0Search in Google Scholar

Yampolskii Y. Membrane gas separation, USA: John Wiley and Sons, 2010.10.1002/9780470665626Search in Google Scholar

Yang H, Ye H, Zhai S, Wang G. Leak detection of gas transport pipelines based on Wigner distribution. In: 2011 International Symposium on Advanced Control of Industrial Processes (ADCONIP) 2011; 258–261. doi: 10.1002/apj.10.1002/apjSearch in Google Scholar

Yang I, Tsai P. Intercalation and viscoelasticity of poly(ether-block-amide) copolymer/montmorillonite nanocomposites: effect of surfactant. Polymer (Guildf) 2006; 47: 5131–5140.10.1016/j.polymer.2006.04.065Search in Google Scholar

Yang I, Tsai P. Preparation and characterization of polyether-block-amide copolymer/clay nanocomposites. Polym Eng Sci 2007; 47: 235–243.10.1002/pen.20670Search in Google Scholar

Yen HW, Chen ZH, Yang IK. Use of the composite membrane of poly(ether-block-amide) and carbon nanotubes (CNTs) in a pervaporation system incorporated with fermentation for butanol production by Clostridium acetobutylicum. Bioresour Technol 2012; 109: 105–109.10.1016/j.biortech.2012.01.017Search in Google Scholar PubMed

Yen HW, Lin SF, Yang IK. Use of poly(ether-block-amide) in pervaporation coupling with a fermentor to enhance butanol production in the cultivation of Clostridium acetobutylicum. J Biosci Bioeng 2012; 113: 372–377.10.1016/j.jbiosc.2011.10.025Search in Google Scholar PubMed

Yildirim AE, Hilmioglu ND, Tulbentci S. Separation of benzene/cyclohexane mixtures by pervaporation using PEBA membranes. Desalination 2008; 219: 14–25.10.1016/j.desal.2007.02.031Search in Google Scholar

Yu B, Cong H, Li Z, Tang J, Zhao XS. Pebax-1657 nanocomposite membranes incorporated with nanoparticles/colloids/carbon nanotubes for CO2/N2 and CO2/H2 separation. Appl Polym Sci 2013; 130: 2867–2876.10.1002/app.39500Search in Google Scholar

Yu S, Jiang Z, Yang S, Ding H, Zhou B, and Gu K. Highly swelling resistant membranes for model gasoline desulfurization. J Memb Sci 2016; 514: 440–449.10.1016/j.memsci.2016.05.015Search in Google Scholar

Zarshenas K, Raisi A, Aroujalian A. Mixed matrix membrane of nano-zeolite Na×poly(ether-block-amide) for gas separation applications. J Memb Sci 2016; 510: 270–283.10.1016/j.memsci.2016.02.059Search in Google Scholar

Zhang Y, Balkus KJ, Musselman IH, Ferraris JP. Mixed-matrix membranes composed of Matrimid® and mesoporous ZSM-5 nanoparticles, J Memb Sci 2008; 325: 28–39.10.1016/j.memsci.2008.04.063Search in Google Scholar

Zhang Y, Sunarso J, Liu S, Wang R. Current status and development of membranes for CO2/CH4 separation: a review. Int J Greenhouse Gas Control 2013; 12: 84–8107.10.1016/j.ijggc.2012.10.009Search in Google Scholar

Zhang R, Wu H, Jiang Z. Janus composite nanoparticle-incorporated mixed matrix membranes for CO2 separation. J Memb Sci 2015; 489: 1–10.10.1016/j.memsci.2015.03.070Search in Google Scholar

Zhang H, Guo R, Hou J, Wei Z, Li X. Mixed-matrix membranes containing carbon nanotubes composite with hydrogel for efficient CO2 separation. ACS Appl Mater Interfaces 2016a; 8: 29044–29051.10.1021/acsami.6b09786Search in Google Scholar

Zhang C, Wu Y, Zhang Y, Bai Y, Gu J, Sun Y. Poly(ether-b-amide)/ethylene glycol monophenyl ether gel membrane with superior CO2/N2 separation performance fabricated by thermally induced phase separation method. J Memb Sci 2016b; 508: 136–145.10.1016/j.memsci.2016.02.030Search in Google Scholar

Zhang Y, Wang N, Zhao C, Wang L, Ji S, Li J-R. Co(HCOO)2-based hybrid membranes for the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures. J Memb Sci 2016c; 520: 646–656.10.1016/j.memsci.2016.08.028Search in Google Scholar

Zhao X, Zhang Q, Chen D, Lu P. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 2010; 43: 2357–2363.10.1021/ma902862uSearch in Google Scholar

Zhao D, Ren J, Li H. Poly(amide-6-b-ethylene oxide)/SAPO-34 mixed matrix membrane for CO2 separation. J Energy Chem 2014a; 23: 227–234.10.1016/S2095-4956(14)60140-6Search in Google Scholar

Zhao D, Ren J, Li H, Li X, Deng M. Gas separation properties of poly-amide-6-b-ethylene oxide/amino modified multi-walled carbon nanotubes mixed matrix membranes. J Memb Sci 2014b; 467: 41–47.10.1016/j.memsci.2014.05.009Search in Google Scholar

Zhao D, Ren J, Qiu Y, Li H, Hua K, Li X, Deng M. Effect of graphene oxide on the behavior of poly(amide-6-b-ethylene oxide)/graphene oxide mixed-matrix membranes in the permeation process. Appl Polym Sci 2015; 42624: 1–10.10.1002/app.42624Search in Google Scholar

Zhao D, Ren J, Wang Y, Qiu Y, Li H, Hua K, Li X, Ji J, Deng M. High CO2 separation performance of Pebax®/CNTs/GTA mixed matrix membranes. J Memb Sci 2016; 521: 104–113.10.1016/j.memsci.2016.08.061Search in Google Scholar

Zhou H, Jin W. PEBA/ceramic hollow fiber composite membrane for high-efficiency recovery of bio-butanol via pervaporation. J Memb Sci 2016; 510: 338–347.10.1016/j.memsci.2016.03.013Search in Google Scholar

Zoppi RA, Castro CR De, Yoshida IVP, Nunes SP. Hybrids of SiO2 and poly(amide 6-b-ethylene oxide). Polymer (Guildf) 1997; 38: 5705–5712.10.1016/S0032-3861(97)00133-XSearch in Google Scholar

Zoppi RA, Neves S, Nunes SP. Hybrid films of poly(ethylene oxide-b-amide-6) containing sol-gel silicon or titanium oxide as inorganic fillers: effect of morphology and mechanical properties on gas permeability. Polymer (Guildf) 2000; 41: 5461–5470.10.1016/S0032-3861(99)00751-XSearch in Google Scholar

Zoppi RA, Soares CGA. Hybrids of poly(ethylene oxide-b-amide-6) and ZrO2 sol-gel: preparation, characterization, and application in processes of membranes separation. Adv Polym Technol 2002; 21: 2–16.10.1002/adv.10011Search in Google Scholar

Zornoza B, Téllez C, Coronas J. Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation. J Memb Sci 2011; 368: 100–109.10.1016/j.memsci.2010.11.027Search in Google Scholar

Received: 2017-01-12
Accepted: 2017-07-13
Published Online: 2018-02-06
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.6.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2017-0001/html
Scroll to top button