Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) August 9, 2022

Study of activation cross sections of proton induced reactions on natBa and natCe near their threshold energy regions

  • Mohamed Sobhi Abdelshafy , Bahaa Mohamed Ali , Karima Elsayed Abd Elmageed , Hassan Omar Nafie , H. Ebrahim Hassan and Mogahed Al-Abyad EMAIL logo
From the journal Radiochimica Acta

Abstract

Activation cross-sections of the nuclear reactions natBa(p,x)135,132gLa, 135mBa and natCe(p,x)142,139,138mPr, 141,139,137mCe have been measured experimentally at the MGC-20 cyclotron, Cairo, Egypt, from their respective threshold energies up to about 14.7 MeV. Stacked foil irradiation technique and high-resolution gamma-ray spectroscopy were used. A comparison between the experimental and theoretical data derived from the nuclear model codes EMPIRE and TALYS (in the form of the TENDL library) was performed. The agreement in the low-energy region is fairly good. Integral yields of the produced radioisotopes were estimated from the present cross-section data and the results are discussed in terms of their production possibilities.


Corresponding author: Mogahed Al-Abyad, Experimental Nuclear Physics Department, Cyclotron Facility, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo 13759, Egypt, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Qaim, S. M., Hussain, M., Spahn, I., Neumaier, B. Continuing nuclear data research for production of accelerator-based novel radionuclides for medical use: a mini-review. Front. Phys. 2021, 9, 16; https://doi.org/10.3389/fphy.2021.639290.Search in Google Scholar

2. Qaim, S. M. Medical Radionuclide Production-Science and Technology; De Gruyter: Berlin Boston, 2019.10.1515/9783110604375Search in Google Scholar

3. Qaim, S. M., Scholten, B., Spahn, I., Neumaier, B. Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use. Radiochim. Acta 2019, 107, 1011; https://doi.org/10.1515/ract-2019-3154.Search in Google Scholar

4. Hilaire, S., Bauge, E., Huu-Tai, P. C., Dupuis, M., Péru, S., Roig, O., Romain, P., Goriely, S. Potential sources of uncertainties in nuclear reaction modeling. EPJ. Nucl. Sci. Technol. 2018, 4, 1; https://doi.org/10.1051/epjn/2018014.Search in Google Scholar

5. Al-Abyad, M., Hassan, H. E., Mohamed, G. Y., Saleh, Z. A., Comsan, M. N. H., Azzam, A. Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group. Radiochim. Acta 2022, 110, 675; https://doi.org/10.1515/ract-2021-1118.Search in Google Scholar

6. Qaim, S. M. Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 2017, 44, 31; https://doi.org/10.1016/j.nucmedbio.2016.08.016.Search in Google Scholar PubMed

7. Stöcklin, G., Qaim, S. M., Rösch, F. The impact of radioactivity on medicine. Radiochim. Acta 1995, 70, 249; https://doi.org/10.1524/ract.1995.7071.s1.249.Search in Google Scholar

8. Herzog, H., Rösch, F., Stöcklin, G., Lueders, C., Qaim, S. M., Feinendegen, L. E. Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J. Nucl. Med. 1993, 34, 2222.Search in Google Scholar

9. Rösch, F., Herzog, H., Qaim, S. M. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 2017, 10, 56; https://doi.org/10.3390/ph10020056.Search in Google Scholar PubMed PubMed Central

10. Qaim, S. M. Theranostic radionuclides: recent advances in production methodologies. J. Radioanal. Nucl. Chem. 2019, 322, 1257; https://doi.org/10.1007/s10967-019-06797-y.Search in Google Scholar

11. Qaim, S. M., Scholten, B., Neumaier, B. New developments in the production of theranostic pairs. J. Radioanal. Nucl. Chem. 2018, 318, 1493; https://doi.org/10.1007/s10967-018-6238-x.Search in Google Scholar

12. Velikyan, I. Molecular imaging and radiotherapy: theranostics for personalized patient management. Theranostics 2012, 2, 424; https://doi.org/10.7150/thno.4428.Search in Google Scholar PubMed PubMed Central

13. Aluicio-Sarduy, E., Thiele, N. A., Martin, K. E., Vaughn, B. A., Devaraj, J., Olson, A. P., Barnhart, T. E., Wilson, J. J., Boros, E., Engle, J. W. Establishing radiolanthanum chemistry for targeted nuclear medicine applications. Chem. Eur. J. 2020, 26, 1238; https://doi.org/10.1002/chem.202080663.Search in Google Scholar

14. Fonslet, J., Lee, B. Q., Tran, T. A., Siragusa, M., Jensen, M., Kibédi, T., Stuchbery, A. E., Severin, G. W. 135La as an Auger-electron emitter for targeted internal radiotherapy. Phys. Med. Biol. 2018, 63, 015026; https://doi.org/10.1088/1361-6560/aa9b44.Search in Google Scholar PubMed

15. Aluicio-Sarduy, E., Hernandez, R., Olson, A. P., Barnhart, T. E., Cai, W., Ellison, P. A., Engle, J. W. Production and in vivo PET/CT imaging of the theranostic pair 132/135La. Sci. Rep. 2019, 9, 10658; https://doi.org/10.1038/s41598-019-47137-0.Search in Google Scholar PubMed PubMed Central

16. Bakht, M. K., Sadeghi, M. Internal radiotherapy techniques using radiolanthanide praseodymium-142: a review of production routes, brachytherapy, unsealed source therapy. Ann. Nucl. Med. 2011, 25, 529; https://doi.org/10.1007/s12149-011-0505-z.Search in Google Scholar PubMed

17. Neves, M., Kling, A., Oliveira, A. Radionuclides used for therapy and suggestion for new candidates. J. Radioanal. Nucl. Chem. 2005, 266, 377; https://doi.org/10.1007/s10967-005-0920-5.Search in Google Scholar

18. Steyn, G. F., Vermeulen, C., Nortier, F. M., Szelecsényi, F., Kovács, Z., Qaim, S. M. Production of no-carrier-added 139Pr via precursor decay in the proton bombardment of natPr. Nucl. Instrum. Methods B 2006, 252, 149; https://doi.org/10.1016/j.nimb.2006.08.012.Search in Google Scholar

19. Nelson, B. J. B., Ferguson, S., Wuest, M., Wilson, J., Duke, M. J. M., Richter, S., Jans, H. S., Andersson, J. D., Juengling, F., Wuest, F. First in vivo and phantom imaging of cyclotron produced 133La as a theranostic radionuclide for 225Ac and 135La. J. Nucl. Med. 2022, 63, 584; https://doi.org/10.2967/jnumed.121.262459.Search in Google Scholar PubMed PubMed Central

20. Nelson, B. J. B., Wilson, J., Andersson, J. D., Wuest, F. High yield cyclotron production of a novel 133/135La theranostic pair for nuclear medicine. Sci. Rep. 2020, 10, 22203; https://doi.org/10.1038/s41598-020-79198-x.Search in Google Scholar PubMed PubMed Central

21. Bakht, M. K., Sadeghi, M., Tenreiro, C. A novel technique for simultaneous diagnosis and radioprotection by radioactive cerium oxide nanoparticles: study of cyclotron production of Ce-137m. J. Radioanal. Nucl. Chem. 2012, 292, 53; https://doi.org/10.1007/s10967-011-1483-2.Search in Google Scholar

22. Zielhuis, S. W., Seppenwoolde, J. H., Mateus, V. A., Bakker, C. J., Krijger, G. C., Storm, G., Zonnenberg, B. A., van het Schip, A. D., Koning, G. A., Nijsen, J. F. Lanthanide-loaded liposomes for multimodality imaging and therapy. Cancer Biother. Radiopharm. 2006, 21, 520; https://doi.org/10.1089/cbr.2006.21.520.Search in Google Scholar

23. Du Raan, H., Du Toit, P. D., van Aswegen, A., Lötter, M. G., Herbst, C. P., van der Walt, T. N., Otto, A. C. Implementation of a Tc-99m and Ce-139 scanning line source for attenuation correction in SPECT using a dual opposing detector scintillation camera. Med. Phys. 2000, 27, 1523; https://doi.org/10.1118/1.599018.Search in Google Scholar

24. Prescher, K., Peiffer, F., Stueck, R., Michel, R., Bodemann, R., Rao, M. N., Mathew, K. J. Thin-target cross sections of proton-induced reactions on barium and solar cosmic ray production rates of xenon-isotopes in lunar surface materials. Nucl. Instrum. Meth .B 1991, 53, 105 https://doi.org/10.1016/0168-583x(91)95645-t.Search in Google Scholar

25. Michel, R., Bodemann, R., Busemann, H., Daunke, R., Gloris, M., Lange, H. J., Klug, B., Krins, A., Leya, I., Lüpke, M., Neumann, S., Reinhardt, H., Schnatz-Büttgen, M., Herpers, U., Schiekel, Th., Sudbrock, F., Holmqvist, B., Condé, H., Malmborg, P., Suter, M., Dittrich-Hannen, B., Kubik, P. W., Synal, H. A., Filges, D. Cross sections for the production of residual nuclides by low- and medium-energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au. Nucl. Instrum. Methods B 1997, 129, 153; https://doi.org/10.1016/s0168-583x(97)00213-9.Search in Google Scholar

26. Tárkányi, F., Ditrói, F., Kiraly, B., Takács, S., Hermanne, A., Yamazaki, H., Baba, M., Mohammadi, A., Ignatyuk, A. V. Study of activation cross sections of proton induced reactions on barium: production of 131Ba→131Cs. Appl. Radiat. Isot. 2010, 68, 1869; https://doi.org/10.1016/j.apradiso.2010.03.010.Search in Google Scholar

27. Tárkányi, F., Hermanne, A., Ditrói, F., Takács, S., Spahn, I., Spellerberg, S. Activation cross-section measurement of proton induced reactions on cerium. Nucl. Instrum. Methods B 2017, 412, 46; https://doi.org/10.1016/j.nimb.2017.09.008.Search in Google Scholar

28. Verdieck, E. V., Miller, J. M. Radiative capture and neutron emission in La139+α and Ce142+p. Phys. Rev. 1967, 153, 1253; https://doi.org/10.1103/physrev.153.1253.Search in Google Scholar

29. Furukawa, M. Excitation functions for proton-induced reactions of 140Ce and 142Ce up to Ep = 15 MeV. Nucl. Phys. A 1967, 90, 253; https://doi.org/10.1016/0375-9474(67)90232-1.Search in Google Scholar

30. Blosser, H. G., Handley, T. H. Survey of (p,n) reactions at 12 MeV. Phys. Rev. 1955, 100, 1340; https://doi.org/10.1103/physrev.100.1340.Search in Google Scholar

31. Zeisler, S. K., Becker, D. W. A pellet method for the measurement of excitation functions: cross-sections for 140Ce(p,2n)139Pr and 140Ce(p,3n)138mPr. Nucl. Instrum. Methods B 2000, 160, 216; https://doi.org/10.1016/s0168-583x(99)00588-1.Search in Google Scholar

32. Rösch, F., Qaim, S. M., Stocklin, G. Nuclear data relevant to the production of the positron emitting radioisotope 86Y via the 86Sr(p, n) and natRb(3He, xn)-processes. Radiochim. Acta 1993, 61, 1; https://doi.org/10.1524/ract.1993.61.1.1.Search in Google Scholar

33. Hassan, H. E., Qaim, S. M., Shubin, Yu., Azzam, A., Morsy, M., Coenen, H. H. Experimental studies and nuclear model calculations on proton-induced reactions on natSe, 76Se and 77Se with particular reference to the production of the medically interesting radionuclides 76Br and 77Br. Appl. Radiat. Isot. 2004, 60, 899; https://doi.org/10.1016/j.apradiso.2004.02.001.Search in Google Scholar PubMed

34. Hamed, A. S., Ali, I. A., El Ghazaly, M., Hassan, H. E., Al-Abyad, M. Multifunctional radioactive ZnO/NiFe2O4 nanocomposite for theranostic applications. Eur. Phys. J. Plus 2021, 136, 1118; https://doi.org/10.1140/epjp/s13360-021-02066-8.Search in Google Scholar

35. Tárkányi, F., Takács, S., Gul, K., Hermanne, A., Mustafa, M. G., Nortier, M., Oblozinsky, P., Qaim, S. M., Scholten, B., Shubin, Yu. N., Youxiang, Z. Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions. IAEA-TECDOC 2001, 1211, 49.Search in Google Scholar

36. Andersen, H. H., Ziegler, J. F. Hydrogen Stopping Powers and Ranges in All Elements. The Stopping and Ranges of Ions in Matter; Pergamon Press, 1977.Search in Google Scholar

37. Ziegler, J. F., Ziegler, M. D., Biersack, J. P. SRIM 2013 code. http://www.srim.org/.Search in Google Scholar

38. Canberra, Genie 2000 Spectroscopy Software Operations User’s Manual, V3.4; Canberra Industries. Inc.: Meriden, CT, 2015.Search in Google Scholar

39. NuDat 3.0 database. Data source: NNDC, Brookhaven National Laboratory, based on ENSDF and the nuclear Wallet Cards. https://www.nndc.bnl.gov/nudat3/.Search in Google Scholar

40. Livechart of Nuclides. IAEA decay data retrieval code. https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html.Search in Google Scholar

41. Duchemin, C., Guertin, A., Haddad, F., Michel, N., Métivier, V. 232Th(d,4n)230Pa cross-section measurements at ARRONAX facility for the production of 230U. Nucl. Med. Biol. 2014, 41, 19; https://doi.org/10.1016/j.nucmedbio.2013.12.011.Search in Google Scholar PubMed

42. Pritychenko, B., Sonzogni, A. Q-Calc, Q-Value Calculator; NNDC, Brookhaven National Laboratory: Upton, NY, USA, 2022. http://www.nndc.bnl.gov/qcalc/.Search in Google Scholar

43. Herman, M., Capote, R., Carlson, B. V., Oblozinsky, P., Sin, M., Trkov, A., Wienke, H., Zerkin, V. EMPIRE: nuclear reaction model code system for data evaluation. Nucl. Data Sheets 2007, 108, 2655; https://doi.org/10.1016/j.nds.2007.11.003.Search in Google Scholar

44. Capote, R., Herman, M., Obložinský, P., Young, P. G., Goriely, S., Belgya, T., Ignatyuk, A. V., Koning, A. J., Hilaire, S., Plujko, V. A., Avrigeanu, M., Bersillon, O., Chadwick, M. B., Fukahori, T., Ge, Z., Han, Y., Kailas, S., Kopecky, J., Maslov, V. M., Reffo, G., Sin, M., Soukhovitskii, E. Sh., Talou, P. RIPL – reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nucl. Data Sheets 2009, 110, 3107; https://doi.org/10.1016/j.nds.2009.10.004.Search in Google Scholar

45. Koning, A. J., Rochman, D., Sublet, J., Dzysiuk, N., Fleming, M., van der Marck, S. TENDL: complete nuclear data library for innovative nuclear science and technology. Nucl. Data Sheets 2019, 155, 1; https://doi.org/10.1016/j.nds.2019.01.002.Search in Google Scholar

Received: 2022-05-13
Accepted: 2022-07-13
Published Online: 2022-08-09
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2022-0048/html
Scroll to top button