Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) October 10, 2019

Synthesis of radioiodinated carnosine for hepatotoxicity imaging induced by carbon tetrachloride and its biological assessment in rats

  • Safaa B. Challan , Fawzy A. Marzook and Ayman Massoud ORCID logo EMAIL logo
From the journal Radiochimica Acta

Abstract

The imaging of organs is very important in the field of diagnosis especially in case of liver diseases. In the present work, carnosine was successfully labeled with iodine-131 at room temperature in acidic medium using chloramine-T (Ch-T) as moderate oxidizing agent. The parameters affecting labeling of carnosine such as amount of oxidizing agent, amount of substrate, pH value of the reaction mixture, reaction temperature and reaction time, were investigated. The best conditions for formation of 131I-carnosine (131I-CAR) complex were 40 μg of chloramine-T (Ch-T), 75 μg of carnosine, pH 4 and 45 min reaction time at room temperature. The radiochemical yield for 131I-CAR complex was (91 ± 0.11) % at optimum conditions and the labeled complex was stable for 2 h after labeling process. Biodistribution study was achieved using three groups of rats (normal, treated by inactive carnosine and hepatotoxicity rats induced by CCl4). Hepatotoxicity of liver was evaluated using different biochemical markers such as ALT, AST and ALK.P. The 131I-CAR complex showed selective bio-localization in stomach and liver and its selectivity increases in acquired hepatotoxicity. The biological distribution indicates that the suitability of 131I-CAR as a potential hepatotoxicity imaging to detect hepatitis and medical prognosis.

References

1. Friedman, S. L.: Hepatic fibrosis – overview. Toxicology 254(3), 120 (2008).10.1016/j.tox.2008.06.013Search in Google Scholar PubMed

2. Gaskill, C. L., Miller, L. M., Mattoon, J. S., Hoffmann, W. E., Burton, S. A., Gelens, H. C., Ihle, S. L., Miller, J. B., Shaw, D. H., Cribb, A. E.: Liver histopathology and liver and serum alanine aminotransferase and alkaline phosphatase activities in epilepticdogs receiving phenobarbital. Vet. Pathol. 42, 147 (2005).10.1354/vp.42-2-147Search in Google Scholar PubMed

3. Lee, U. E., Friedman, S. L.: Mechanisms of hepatic fibrogenesis. Best Pract. Res. Clin. Gastroenterol. 25(2), 195 (2011).10.1016/j.bpg.2011.02.005Search in Google Scholar PubMed PubMed Central

4. Ellis, E. L., Mann, D. A.: Clinical evidence for the regression of liver fibrosis. J. Hepatol. 56(5), 1171 (2012).10.1016/j.jhep.2011.09.024Search in Google Scholar PubMed

5. Boldyrev, A. A., Stvolinsky, S. L., Fedorova, T. N., Suslina, Z. A.: Carnosine as a natural antioxidant and geroprotector: From molecular mechanisms to clinical trials. Rejuv. Res. 13(2–3), 156 (2010).10.1089/rej.2009.0923Search in Google Scholar PubMed

6. Guiotto, A., Calderan, A., Ruzza, P., Borin, G.: Carnosine and carnosine-related antioxidants: a review. Curr. Med. Chem. 12(20), 2293 (2005).10.2174/0929867054864796Search in Google Scholar PubMed

7. Shahidi, F., Zhong, Y.: Lipid oxidation and improving the oxidative stability. Chem. Soc. Rev. 39(11), 4067 (2010).10.1039/b922183mSearch in Google Scholar PubMed

8. Aldini, G., Facino, R. M., Beretta, G., Carini, M.: Carnosin and related dipeptides as quenchers of reactive carbonyl species from structural studies to therapeutic perspectives. BioFactors 24(1–4), 77 (2005).10.1002/biof.5520240109Search in Google Scholar PubMed

9. Heidari, R., Niknahad, H., Jamshidzadeh, A., Azarpira, N., Bazyari, M., Najibi, A.: Carbonyl traps as potential protective agents against methimazole-induced liver injury. J. Biochem. Mol. Taxicol. 29(4), 173 (2015).10.1002/jbt.21682Search in Google Scholar PubMed

10. Hipkiss, A. R., Preston, J. E., Himsworth, D. T., Worthington, V. C., Keown, M., Michaelis, J., Lawrence, J., Mateen, A., Allende, L., Eagles, P. A., Abbott, N. J.: Pluripotent protective effects of carnosine, a naturally occurring dipeptide. Ann. N Y Acad. Sci. 854, 37 (1998).10.1111/j.1749-6632.1998.tb09890.xSearch in Google Scholar PubMed

11. Guiotto, A., Calderan, A., Ruzza, P., Osler, A., Rubini, C., Jo, D. G., Mattson, M. P., Borin, G.: Synthesis and evaluation of neuroprotective alpha, beta-unsaturated aldehyde scavenger histidyl-containing analogues of carnosine. J. Med. Chem. 48(19), 6156 (2015).10.1021/jm050507qSearch in Google Scholar

12. Fouad, A. A., El-Rehany, M. A. A., Maghraby, H. K.: The hepatoprotective effect of carnosine against ischemia/reperfusion liver injury in rats. Eur. J. Pharmacol. 572(1), 61 (2007).10.1016/j.ejphar.2007.06.010Search in Google Scholar

13. Fujii, T., Takaoka, M., Muraoka, T., Kurata, H., Tsuruoka, N., Ono, H.: Dietary supplementation of L-carnosine prevents ischemia/reperfusion-induced renal injury in rats. Biol. Pharm. Bull. 28(2), 361 (2005).10.1248/bpb.28.361Search in Google Scholar

14. Kaplowitz, N.: Mechanisms of liver injury. J. Hepatol. 32, 39 (2000).10.1016/S0168-8278(00)80414-6Search in Google Scholar

15. Tsung, A., Sahai, R., Tanaka, H., Nakao, A., Fink, M. P., Lotze, M. T., Yang, H., Li, J., Tracey, K. J., Geller, D. A., Billiar, T. R.: The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J. Exp. Med. 201, 1135 (2005).10.1084/jem.20042614Search in Google Scholar PubMed PubMed Central

16. Su, G. L., Klein, R. D., Aminlari, A., Zhang, H. Y., Steinstraesser, L., Alarcon, W. H., Remick, D. G., Wang, S. C.: Kupffer cell activation by lipopolysaccharide in rats: role for lipopolysaccharide binding protein and Toll like receptor 4. Hepatology 31, 932 (2000).10.1053/he.2000.5634Search in Google Scholar PubMed

17. Mozdzan, M., Szemraj, J., Rysz, J., Nowak, D.: Antioxidant properties of carnosine reevaluated with oxidizing systems ınvolving ıron and copper ıons. Basic Clin. Pharmacol. Toxicol. 96, 352 (2005).10.1111/j.1742-7843.2005.pto_03.xSearch in Google Scholar PubMed

18. Dalhoff, K.: Toxicant-induced hepatic injury. In: Brent, J., Burkhart, K., Dargan, P., Hatten, B., Mégarbane, B., Palmer, R., White, J. (Eds.), Critical Care Toxicology (2017), Springer, Cham. https://doi.org/10.1007/978-3-319-17900-1_75.10.1007/978-3-319-17900-1_75Search in Google Scholar

19. Weber, L. W., Boll, M., Stampfl, A.: Hepatotoxicity and mechanism of action of halokanes: carbone tetrachloride as a toxicological model. Crit. Rev. Toxicol. 33, 105 (2003).10.1080/713611034Search in Google Scholar PubMed

20. Odin, M. K. M., Eastmond, D. A.: Postulated carbon tetrachloride mode of action: a review. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 25, 185 (2007).10.1080/10590500701569398Search in Google Scholar PubMed

21. Recknagel, R. O., Glendee, E. A., Dolak, J. A., Waller, R. L.: Mechanisms of carbone tetrachloride toxicity. Pharmacol. Ther. 43, 139 (1989).10.1016/0163-7258(89)90050-8Search in Google Scholar

22. Knockaert, L., Berson, A., Ribault, C., Prost, P. E., Fautrel, A., Pajaud, J., Lepage, S., Lucas-Clerc, C., Bégué, J. M., Fromenty, B., Robin, M. A.: Carbone tetrachloride-mediated lipid peroxidation induces early mitochondrial alterations in mouse liver. Lab. Invest. 92, 396 (2012).10.1038/labinvest.2011.193Search in Google Scholar

23. Tabor, E.: Hepatocellular carcinoma: global epidemiology. Dig. Liver Dis. 33(2), 1415 (2001).10.1016/S1590-8658(01)80062-1Search in Google Scholar

24. Motaleb, M. A., El-Tawoosy, M., Mohamed, S. B., Borei, I. H., Ghanem, H. M., Massoud, A.: 99mTc-labeled teicoplanin and its biological evaluation in experimental animals for detection of bacterial infection. Radiochemistry 56(5), 544 (2014).10.1134/S1066362214050154Search in Google Scholar

25. Challan, S. B., Massoud, A.: Radiolabeling of graphene oxide by Technetium-99m for infection imaging in rats. J. Radioanal. Nucl. Chem. 314(3), 2189 (2017).10.1007/s10967-017-5561-ySearch in Google Scholar

26. White, L. R., White, M. C., Turgut, H., Massoud, A., Ryan Tian, Z.: Comparative studies on copper adsorption by graphene oxide and functionalized graphene oxide nanoparticles. J. Taiwan Inst. Chem. Eng. 85, 18 (2018).10.1016/j.jtice.2018.01.036Search in Google Scholar

27. Bekheet, S., El Tawoosy, M., Massoud, A., Borei, I. H., Ghanem, H. M.: 99mTc-labeled ceftazidime and biological evaluation in experimental animals for detection of bacterial infection. Am. J. Biochem. 4(2), 15 (2014).Search in Google Scholar

28. Safaa, B., Challan, A., Massoud, M., El Tawoosy, M., Motaleb, A., Borei, I. H.: 99mTc-labeled erythrocin and biological evaluation in mice for detection of bacterial infection. Asian J. Phys. Chem. Sci. 5(2), 1 (2018).10.9734/AJOPACS/2018/40170Search in Google Scholar

29. Reitman, S., Frankel, S.: A, colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 28(1), 56 (1957).10.1093/ajcp/28.1.56Search in Google Scholar

30. Belfield, A., Goldberg, D. M.: Normal ranges and diagnostic value of serum 5′ nucleotidase and alkaline phosphatase activities in infancy. Arch. Dis. Child. 46(250), 842 (1971).10.1136/adc.46.250.842Search in Google Scholar

31. Doumas, B. T., Watson, W. A., Biggs, H. G.: Albumin standards and the measurement of serum albumin with bromcresol green. Clin. Chim. Acta. 31(1), 87 (1970).10.1016/0009-8981(71)90365-2Search in Google Scholar

32. Watson, D., Rogers, J. A.: A study of six representative methods of plasma bilirubin analysis. J. Clin. Pathol. 14, 271 (1961).10.1136/jcp.14.3.271Search in Google Scholar

33. Fenech, G., Tommasini, A.: Method of colorimetric determination of urea. Boll. Chim. Farm. 91(10), 391 (1952).Search in Google Scholar

34. Lustgarten, J. A., Wenk, R. E.: Simple, rapid, kinetic method for serum creatinine measurement. Clin. Chem. 18(11), 419 (1972).10.1093/clinchem/18.11.1419Search in Google Scholar

35. Askari, M. B., Mirzaei, V., Mirhabibi, M.: Introduction to radioactive materials. Int. J. Renew. Sustain. Energy 3(3), 59 (2014).10.11648/j.ijrse.20140303.13Search in Google Scholar

36. Chervu, L. R., Nunn, A. D., Loberg, M. D.: Radiopharmaceuticals for hepatobiliary imaging. Semin. Nucl. Med. 12, 5 (1982).10.1016/S0001-2998(82)80025-1Search in Google Scholar

37. EL-Ghany, E. A., Marzouk, F., Abd El-Azim, S. A., Awwad, M. H., Barakat, M. A.: Preparation of 99mTc-carnosine and 99mTcO-(V)-DMSA complexes, biological distribution, and estimation of their gene anti-polymorphisms induced by irradiation. Egypt. J. Hospital Med. 29, 647 (2007).10.21608/ejhm.2007.17707Search in Google Scholar

38. Sanad, M. H., Dina, S., Marzook, F. A.: Radioiodinated famotidine as a new highly selective radiotracer for peptic ulcer disorder detection, diagnostic nuclear imaging and biodistribution, Radiochem. Acta 105, 389 (2016).Search in Google Scholar

39. Sanad, M. H., Sallam, K. M., Marzook, F. A., Abd-Elhaliem, S. M.: Radioiodination and biological evaluation of candesartan as a tracer for cardiovascular disorder detection. J. Label Compd. Radiopharm. 59, 484 (2016).10.1002/jlcr.3435Search in Google Scholar PubMed

40. Adam, M. J., Wilbur, D. S.: Radiohalogens for imaging and therapy. Chem. Soc. Rev. 34(2), 153 (2005).10.1039/b313872kSearch in Google Scholar PubMed

41. Puttaswamy, A. S., Shubha, J. P.: Kinetics and reactivities of ruthenium(III)- and osmium(VIII)-catalyzed oxidation of ornidazole with chloramine-T in acid and alkaline media: a mechanistic approach. J. Mol. Catal. A Chem. 310(1–2), 24 (2009).10.1016/j.molcata.2009.05.015Search in Google Scholar

42. Hunter, W. M., Greenwood, F. C.: The preparation of 131I-labelled human growth hormone of high specific radioactivity. Biochem. J. 89(1), 114 (1963).10.1042/bj0890114Search in Google Scholar PubMed PubMed Central

43. Swamy, P., Vaz, N.: Ruthenium(III)- and osmium(VIII)-catalyzed oxidation of 2-thiouracil by bromamine-B in acid and alkaline media: a kinetic and mechanistic study. Trans. Met. Chem. 28(4), 409 (2003).10.1023/A:1023624911189Search in Google Scholar

44. Hosseinimehr, S. J., Ahmadi, A., Taghvai, R.: Preparation and biodistribution study of technetium-99m-labeled quercetin as a potential radical scavenging agent. J. Radioanal. Nucl. Chem. 284, 563 (2010).10.1007/s10967-010-0516-6Search in Google Scholar

45. Daniel, G. B., Bahr, A., Dykes, J. A., Denovo, R., Young, K., Smith, G. T.: Hepatic extraction efficiency and excretion rate of technetium-99m mebrofenine in dogs. J. Nucl. Med. 37, 1846 (1996).Search in Google Scholar

46. Reiniers, M. J., van Golen, R. F., van Gulik, T. M., Heger, M.: Reactive oxygen and nitrogen species in steatotic hepatocytes: a molecular perspective on the pathophysiology of ischemia-reperfusion injury in the fatty liver. Antioxid. Redox Signal. 21(7), 1119 (2014).10.1089/ars.2013.5486Search in Google Scholar

47. Zhang, S., Lu, B., Han, X., Xu, L., Qi, Y., Yin, L., Xu, Y., Zhao, Y., Liu, K., Peng, J.: Protection of the flavonoid fraction from Rosa laevigata Michx fruit against carbon tetrachloride-induced acute liver injury in mice. Food Chem. Toxicol. 55, 60 (2013).10.1016/j.fct.2012.12.041Search in Google Scholar

48. Van Hoeve, K., Mekahli, D., Morava, E., Levtchenko, E., Witters, P.: Liver involvement in kidney disease and vice versa. Pediatr. Nephrol. 33(6), 957 (2018).10.1007/s00467-017-3715-3Search in Google Scholar

49. Kaneko, M., Nagamine, T., Nakazato, K., Mori, M.: The anti-apoptotic effect of fucoxanthin on carbon tetrachloride-induced hepatotoxicity. J. Toxicol. Sci. 38(1), 115 (2013).10.2131/jts.38.115Search in Google Scholar

50. Kumar, S., Wang, J., Shanmukhappa, S. K., Gandhi, C. R.: Toll-like receptor 4–independent carbon tetrachloride–induced fibrosis and lipopolysaccharide-induced acute liver injury in mice: role of hepatic stellate cells. Am. J. Pathol. 187(6), 1356 (2017).10.1016/j.ajpath.2017.01.021Search in Google Scholar

51. Flancbaum, L., Fitzpatrick, J. C., Brotman, D. N., Marcoux, A.-M., Kasziba, E., Fisher, H.: The presence and significance of carnosine in histamine-containing tissues of several mammalian species. Agents Actions 31, 190 (1990).10.1007/BF01997607Search in Google Scholar

52. Bonfanti, L., Peretto, P., De Marchis, S., Fasolo, A.: Carnosine-related dipeptides in the mammalian brain. Prog. Neurobiol. 59, 333 (1999).10.1016/S0301-0082(99)00010-6Search in Google Scholar

53. Matsukura, T., Tanaka, H.: Applicability of zinc complex of L-carnosine for medical use (review). Biochem. (Moscow) 65(7), 817 (2000).Search in Google Scholar

54. Ooi, T. C., Chan, K. M., Sharif, R.: Antioxidant, anti-inflammatory, and genomic stability enhancement effects of zinc l-carnosine: a potential cancer chemopreventive agent? Nutr. Cancer 69(2), 201 (2017).Search in Google Scholar

55. Hipkiss, A. R., Cartwright, S. P., Bromley, C., Gross, S. R., Bill, R. M.: Carnosine: can understanding its actions on energy metabolism and protein homeostasis inform its therapeutic potential? Chem. Cent. J. 7, 38 (2013).10.1186/1752-153X-7-38Search in Google Scholar PubMed PubMed Central

56. de Fouw, M. J.: Environmental Health Criteria 208, Carbon Tetrachloride (1999), World Health Organization (WHO), Geneva.Search in Google Scholar

57. Budzeń, S., Rymaszewska, J.: The biological role of carnosine and its possible applications in medicine. Adv. Clin. Exp. Med. 22(5), 739 (2013).Search in Google Scholar

58. Song, B. C., Joo, N. S., Aldini, G., Yeum, K. J.: Biological functions of histidine-dipeptides and metabolic syndrome. Nutr. Res. Pract. 8(1), 3 (2014).10.4162/nrp.2014.8.1.3Search in Google Scholar PubMed PubMed Central

59. Aldini, G., Carini, M., Yeum, K. J., Vistoli, G.: Novel molecular approaches for improving enzymatic and nonenzymatic detoxification of 4-hydroxynonenal: toward the discovery of a novel class of bioactive compounds. Free Radic. Biol. Med. 69, 145 (2014).10.1016/j.freeradbiomed.2014.01.017Search in Google Scholar PubMed

Received: 2019-04-18
Accepted: 2019-09-13
Published Online: 2019-10-10
Published in Print: 2020-04-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2019-3162/html
Scroll to top button