Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 26, 2023

Promoting antibacterial activity of polyurethane blend films by regulating surface-enrichment of SiO2 bactericidal agent

  • Guanglong Li , Shenwei Shi , Lexing Zhang , Ting Li , Yang Wang and Weifu Dong EMAIL logo

Abstract

Polyurethane (PU) blended with nano-bactericidal agents was one of the most ways to obtain PU with antimicrobial properties. However, the bactericidal agent nanoparticles cannot effectively enrich the PU surface to reduce their antimicrobial properties. In this study, nano-silica particles with a large number of polar quaternary ammonium salt (N,N-dimethyl-3-aminopropyl-12-alkyl-ammonium bromide trimethylsilyl, denoted as QAC) can easily enrich the PU surface to endow PU with excellent antibacterial properties after they were blended with PU film. The QAC on the surface of silica with different diameters (denoted as SiO2-Q-X) can endow silica with antimicrobial properties and improve the repulsion between silica and PU to enhance the enrichment on PU surface of silica. A series of SiO2-Q-X/PU blend films were prepared and applied to inhibit the growth of the bacterial colony. The SiO2-Q-X/PU films can inhibit the growth of Gram-negative Escherichia coli and Gram-positive Staphylococcus epidermidis. The SiO2-Q-X with more polar QAC was easily enriched on the surface of PU and had a better bactericidal effect than those of SiO2-Q-X with a minor polar QAC. Moreover, the aging of the SiO2-Q-X/PU films did not affect their antibacterial effect.


Corresponding author: Weifu Dong, The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 21975108

Award Identifier / Grant number: 52273089

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflicts of interest.

  4. Research funding: This work was supported by the National Natural Science Foundation of China (21975108, 52273089).

  5. Data availability: All data is available in the main text. The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

1. Aguirresarobe, R. H., Nevejans, S., Reck, B., Irusta, L., Sardon, H., Asua, J. M., Ballard, N. Healable and self-healing polyurethanes using dynamic chemistry. Prog. Polym. Sci. 2021, 114, 101362, https://doi.org/10.1016/j.progpolymsci.2021.101362.Search in Google Scholar

2. Jiang, H., Ye, L., Wang, Y., Ma, L., Cui, D., Tang, T. Synthesis and characterization of polypropylene-based polyurethanes. Macromolecules 2020, 53, 3349–3357, https://doi.org/10.1021/acs.macromol.0c00159.Search in Google Scholar

3. Khan, A., Naveed, M., Rabnawaz, M. Melt-reprocessing of mixed polyurethane thermosets. Green Chem. 2021, 23, 4771–4779, https://doi.org/10.1039/d1gc01232k.Search in Google Scholar

4. Ma, Z., Zhang, J., Liu, L., Zheng, H., Dai, J., Tang, L.-C., Song, P. A highly fire-retardant rigid polyurethane foam capable of fire-warning. Compos. Commun. 2022, 29, 101046, https://doi.org/10.1016/j.coco.2021.101046.Search in Google Scholar

5. Schneiderman, D. K., Vanderlaan, M. E., Mannion, A. M., Panthani, T. R., Batiste, D. C., Wang, J. Z., Bates, F. S., Macosko, C. W., Hillmyer, M. A. Chemically recyclable biobased polyurethanes. ACS Macro Lett. 2016, 5, 515–518, https://doi.org/10.1021/acsmacrolett.6b00193.Search in Google Scholar PubMed

6. Sessini, V., Thai, C. N., Amorin, H., Jimenez, R., Samuel, C., Caillol, S., Cornil, J., Hoyas, S., Barrau, S., Dubois, P., Leclere, P., Raquez, J. M. Solvent-free design of biobased non-isocyanate polyurethanes with ferroelectric properties. ACS Sustainable Chem. Eng. 2021, 9, 14946–14958, https://doi.org/10.1021/acssuschemeng.1c05380.Search in Google Scholar PubMed PubMed Central

7. Xie, F., Zhang, T., Bryant, P., Kurusingal, V., Colwell, J. M., Laycock, B. Degradation and stabilization of polyurethane elastomers. Prog. Polym. Sci. 2019, 90, 211–268, https://doi.org/10.1016/j.progpolymsci.2018.12.003.Search in Google Scholar

8. Wu, D. D., Tan, Y., Cao, Z. W., Han, L. J., Zhang, H. L., Dong, L. S. Preparation and characterization of maltodextrin-based polyurethane. Carbohydr. Polym. 2018, 194, 236–244, https://doi.org/10.1016/j.carbpol.2018.04.034.Search in Google Scholar PubMed

9. Sai, F., Zhang, H., Qu, J., Wang, J., Zhu, X., Bai, Y., Ye, P. Multifunctional waterborne polyurethane films: amine-response, thermal-driven self-healing, and recyclability. Appl. Surf. Sci. 2022, 573, 151526, https://doi.org/10.1016/j.apsusc.2021.151526.Search in Google Scholar

10. Godinho, B., Gama, N., Barros-Timmons, A., Ferreira, A. Recycling of different types of polyurethane foam wastes via acidolysis to produce polyurethane coatings. Sustainable Mater. Technol. 2021, 29, e00330, https://doi.org/10.1016/j.susmat.2021.e00330.Search in Google Scholar

11. Mršić, I., Lorenz, A., Lehnert, R. J., Lorenz, G., Chassé, T. Irganox separation in spin-coated polyurethane thin films. Appl. Surf. Sci. 2022, 578, 151957, https://doi.org/10.1016/j.apsusc.2021.151957.Search in Google Scholar

12. Zhong, Q., Chen, X., Yang, Y., Cui, C., Ma, L., Li, Z., Zhang, Q., Chen, X., Cheng, Y., Zhang, Y. Hydrogen bond reinforced, transparent polycaprolactone-based degradable polyurethane. Mater. Chem. Front. 2021, 5, 5371–5381, https://doi.org/10.1039/d1qm00476j.Search in Google Scholar

13. Kang, S. Y., Ji, Z., Tseng, L. F., Turner, S. A., Villanueva, D. A., Johnson, R., Albano, A., Langer, R. Design and synthesis of waterborne polyurethanes. Adv. Mater. 2018, 30, e1706237, https://doi.org/10.1002/adma.201706237.Search in Google Scholar PubMed

14. Magnin, A., Entzmann, L., Bazin, A., Pollet, E., Averous, L. Green recycling process for polyurethane foams by a chem-biotech approach. ChemSusChem 2021, 14, 4234–4241, https://doi.org/10.1002/cssc.202100243.Search in Google Scholar PubMed

15. Xu, C., Hong, Y. Rational design of biodegradable thermoplastic polyurethanes for tissue repair. Bioact. Mater. 2022, 15, 250–271, https://doi.org/10.1016/j.bioactmat.2021.11.029.Search in Google Scholar PubMed PubMed Central

16. Wendels, S., Averous, L. Biobased polyurethanes for biomedical applications. Bioact. Mater. 2021, 6, 1083–1106, https://doi.org/10.1016/j.bioactmat.2020.10.002.Search in Google Scholar PubMed PubMed Central

17. Marzec, M., Kucinska-Lipka, J., Kalaszczynska, I., Janik, H. Development of polyurethanes for bone repair. Bioact. Mater. 2017, 80, 736–747, https://doi.org/10.1016/j.msec.2017.07.047.Search in Google Scholar PubMed

18. Wang, Y., Wang, H., Li, Z., Yang, D., Qiu, X., Liu, Y., Yan, M., Li, Q. Fabrication of litchi-like lignin/zinc oxide composites with enhanced antibacterial activity and their application in polyurethane films. J. Colloid Interface Sci. 2021, 594, 316–325, https://doi.org/10.1016/j.jcis.2021.03.033.Search in Google Scholar PubMed

19. Lin, D., Yang, Y., Wang, J., Yan, W., Wu, Z., Chen, H., Zhang, Q., Wu, D., Qin, W., Tu, Z. Preparation and characterization of TiO(2)-Ag loaded fish gelatin-chitosan antibacterial composite film for food packaging. Int. J. Biol. Macromol. 2020, 154, 123–133, https://doi.org/10.1016/j.ijbiomac.2020.03.070.Search in Google Scholar PubMed

20. Wang, H., Yan, R., Zou, Y., Xing, D., Zhong, K. Light-driven self-healing polyurethane based on PDA@Ag nanoparticles with improved mechanical and antibacterial properties. J. Mater. Chem. B 2022, 10, 1085–1093, https://doi.org/10.1039/d1tb02710g.Search in Google Scholar PubMed

21. Li, S., Zhang, Y., Ma, X., Qiu, S., Chen, J., Lu, G., Jia, Z., Zhu, J., Yang, Q., Chen, J., Wei, Y. Antimicrobial lignin-based polyurethane/Ag composite foams for improving wound healing. Biomacromolecules 2022, 23, 1622–1632, https://doi.org/10.1021/acs.biomac.1c01465.Search in Google Scholar PubMed

22. Park, S.-H., Ko, Y.-S., Park, S.-J., Lee, J. S., Cho, J., Baek, K.-Y., Kim, I. T., Woo, K., Lee, J.-H. Immobilization of silver nanoparticle-decorated silica particles on polyamide thin film composite membranes for antibacterial properties. J. Membr. Sci. 2016, 499, 80–91, https://doi.org/10.1016/j.memsci.2015.09.060.Search in Google Scholar

23. Jatoi, A. W. Polyurethane nanofibers incorporated with ZnAg composite nanoparticles for antibacterial wound dressing applications. Compos. Commun. 2020, 19, 103–107, https://doi.org/10.1016/j.coco.2020.03.004.Search in Google Scholar

24. Lai, H., Liu, Y., Huang, G., Chen, Y., Song, Y., Ma, Y., Yue, P. Fabrication and antibacterial evaluation of peppermint oil-loaded composite microcapsules by chitosan-decorated silica nanoparticles stabilized Pickering emulsion templating. Int. J. Biol. Macromol. 2021, 183, 2314–2325, https://doi.org/10.1016/j.ijbiomac.2021.05.198.Search in Google Scholar PubMed

25. Mozaffari, Z., Nikje, M.-M. A., Peymani, A. Synthesis and characterization of antibacterial polyurethane rigid foam nanocomposites by incorporation of tea tree oil as a natural biocide. Mater. Today Commun. 2022, 32, 104171, https://doi.org/10.1016/j.mtcomm.2022.104171.Search in Google Scholar

26. Xu, Q., Sardon, H., Chan, J. M. W., Hedrick, J. L., Yang, Y. Y. Polyurethane-coated silica particles with broad-spectrum antibacterial properties. Polym. Chem. 2015, 6, 2011–2022, https://doi.org/10.1039/c4py01455c.Search in Google Scholar

27. Kang, Y., Sun, W., Li, S., Li, M., Fan, J., Du, J., Liang, X. J., Peng, X. Oligo hyaluronan-coated silica/hydroxyapatite degradable nanoparticles for targeted cancer treatment. Adv. Sci. 2019, 6, 1900716, https://doi.org/10.1002/advs.201900716.Search in Google Scholar PubMed PubMed Central

28. Teruel, A. H., Perez-Esteve, E., Gonzalez-Alvarez, I., Gonzalez-Alvarez, M., Costero, A. M., Ferri, D., Parra, M., Gavina, P., Merino, V., Martinez-Manez, R., Sancenon, F. Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: new approaches for inflammatory bowel diseases treatment. J. Controlled Release 2018, 281, 58–69, https://doi.org/10.1016/j.jconrel.2018.05.007.Search in Google Scholar PubMed

29. Shenwei Shi, T. L., Yang, W., Dong, W. Preparation of antibacterial hybrid silica nanoparticle and its application in polyurethane. Acta Polym. Sin. 2019, 50, 721–729.Search in Google Scholar

30. Kuang, Z., Dai, G., Wan, R., Zhang, D., Zhao, C., Chen, C., Li, J., Gu, H., Huang, W. Osteogenic and antibacterial dual functions of a novel levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold. Genes Dis. 2021, 8, 193–202, https://doi.org/10.1016/j.gendis.2019.09.014.Search in Google Scholar PubMed PubMed Central

31. Guillaume, O., Geven, M. A., Sprecher, C. M., Stadelmann, V. A., Grijpma, D. W., Tang, T. T., Qin, L., Lai, Y., Alini, M., de Bruijn, J. D., Yuan, H., Richards, R. G., Eglin, D. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomater. 2017, 54, 386–398, https://doi.org/10.1016/j.actbio.2017.03.006.Search in Google Scholar PubMed

32. Michailidis, M., Sorzabal-Bellido, I., Adamidou, E. A., Diaz-Fernandez, Y. A., Aveyard, J., Wengier, R., Grigoriev, D., Raval, R., Benayahu, Y., D’Sa, R. A., Shchukin, D. Modified mesoporous silica nanoparticles with a dual synergetic antibacterial effect. ACS Appl. Mater. Interfaces 2017, 9, 38364–38372, https://doi.org/10.1021/acsami.7b14642.Search in Google Scholar PubMed

33. Maguire, S. M., Demaree, J. D., Boyle, M. J., Keller, A. W., Bilchak, C. R., Kagan, C. R., Murray, C. B., Ohno, K., Composto, R. J. Surface enrichment of polymer-grafted nanoparticles in a miscible polymer nanocomposite. Macromolecules 2022, 55, 7724–7731, https://doi.org/10.1021/acs.macromol.2c00839.Search in Google Scholar

34. Bandyopadhyay, D., Douglas, J. F., Karim, A. Influence of C60 nanoparticles on the stability and morphology of miscible polymer blend films. Macromolecules 2011, 44, 8136–8142, https://doi.org/10.1021/ma201201v.Search in Google Scholar

35. Huq, A. F., Zvonkina, I., Al-Enizi, A. M., Karim, A. Controlling nanoparticle crystallinity and surface enrichment in polymer (P3HT)/nanoparticle (PCBM) blend films with tunable soft confinement. Polymer 2018, 136, 37–46, https://doi.org/10.1016/j.polymer.2017.12.037.Search in Google Scholar

36. Yu, F., Gao, J., Liu, C., Chen, Y., Zhong, G., Hodges, C., Chen, M., Zhang, H. Preparation and UV aging of nano-SiO2/fluorinated polyacrylate polyurethane hydrophobic composite coating. Prog. Org. Coat. 2020, 141, 105556, https://doi.org/10.1016/j.porgcoat.2020.105556.Search in Google Scholar

Received: 2023-05-14
Accepted: 2023-09-07
Published Online: 2023-10-26
Published in Print: 2023-11-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.6.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2023-0122/html
Scroll to top button