Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 29, 2023

Effects of nano-silica on the crystallization, structure, and mechanical properties of crosslinked ethylene-octene copolymer/nano-silica composites

  • Nan Bai , Ying Shi , Yuan-Xia Wang EMAIL logo , Li-Zhi Liu , Li-Xin Song , Chen-Chen Wang and Li-Fu Song

Abstract

Nano-silica (SiO2) has been widely used to fill rubbers (crosslinked) and usual polyolefin elastomers (POEs). SiO2 filled POE with crystalline structure can also be crosslinked. Crystallization, structure, and mechanical properties of crosslinked POE/SiO2 composites can be affected by SiO2. In this paper, crosslinked POE/SiO2 composites were obtained through two different methods: dynamic crosslinking in molten state and static crosslinking. For the non-crosslinked and static crosslinked composites, SiO2 had a more significant effect on the nucleation in non-crosslinked POE than in static crosslinked POE. For the dynamic crosslinked composite, SiO2 and crosslinking points hindered the mobility of POE chains and suppressed the POE crystallization, resulting in smaller and fewer crystals. Dynamic mechanical analysis showed that the SiO2 and POE were compatible, as evidenced by the lower tan(δ) value in SiO2-filled samples. The latter was more consistent with the higher tensile strength and elongation at break for the non-crosslinked and static crosslinked composites than for the non-filled samples. However, the dynamic crosslinked composite exhibited the worst elongation at break, resulting from the lowest number of crystals and shortened molecular chains due to the shearing that occurred during crosslinking process. The SiO2 had no observable effect on the permanent deformation of samples.


Corresponding author: Yuan-Xia Wang, Advanced Manufacturing Institute of Polymer Industry, Shenyang University of Chemical Technology, 110142 Shenyang, China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by Scientific Research Funds from Liaoning Education Department (serial number: LQ2019018).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Liu, J., Cao, D., Zhang, L., Wang, W. Time-temperature and time-concentration superposition of nanofilled elastomers: a molecular dynamics study. Macromolecules 2009, 42, 2831–2842; https://doi.org/10.1021/ma802744e.Search in Google Scholar

2. Pradhan, S., Costa, F. R., Wagenknecht, U., Jehnichen, D., Bhowmick, A. K., Heinrich, G. Elastomer/LDH nanocomposites: synthesis and studies on nanoparticle dispersion, mechanical properties and interfacial adhesion. Eur. Polym. 2008, 41, 3122–3132; https://doi.org/10.1016/j.eurpolymj.2008.07.025.Search in Google Scholar

3. Massaro, A., Spano, F., Missori, M., Malvindi, M. A., Cazzato, P., Cingolani, R., Athanassiou, A. Flexible nanocomposites with all-optical tactile sensing capability. RSC Adv. 2014, 4, 2820–2825; https://doi.org/10.1039/c3ra45678a.Search in Google Scholar

4. Zhang, Q., Yang, H., Fu, Q. Kinetics-controlled compatibilization of immiscible polypropylene/polystyrene blends using nano-SiO2 particles. Polymer 2004, 45, 1913–1922; https://doi.org/10.1016/j.polymer.2004.01.037.Search in Google Scholar

5. Rzayev, Z. M. O., Göçmen, B. A., Demircan, D., Kibarer, G. EPDM elastomer and biothermoplastic polyester-based silicate-layered multifunctional nanocomposites incorporated with poly(MA-alt-α-olefin)-gAPTS-SiO2 NPs and PP-g-MA by reactive extrusion nanotechnology. Polym. Plast. Technol. Eng. 2017, 56, 1839–1856; https://doi.org/10.1080/03602559.2017.1295309.Search in Google Scholar

6. Asai, F., Seki, T., Hoshino, T., Liang, X., Nakajima, K., Takeoka, Y. Silica nanoparticle reinforced composites as transparent elastomeric damping materials. ACS Appl. Nano Mater. 2021, 4, 4140–4152; https://doi.org/10.1021/acsanm.1c00472.Search in Google Scholar

7. Hölzer, S., Menzel, M., Zia, Q., Schubert, U. S., Beiner, M., Weidisch, R. Blends of ethylene-octene copolymers with different chain architectures: morphology, thermal and mechanical behavior. Polymer 2013, 54, 5207–5213; https://doi.org/10.1016/j.polymer.2013.07.041.Search in Google Scholar

8. Li, S., Lv, Y., Sheng, J., Tian, H., Ning, N., Zhang, L., Wu, H., Tian, M. Morphology development of POE/PP thermoplastic vulcanizates (TPVs) during dynamic vulcanization. Eur. Polym. 2017, 93, 590–601; https://doi.org/10.1016/j.eurpolymj.2017.06.019.Search in Google Scholar

9. Taraghi, I., Paszkiewicz, S., Irska, I., Pypeć, K., Piesowicz, E. The role of interfacial interactions on the functional properties of ethylene–propylene copolymer containing SiO2 nanoparticles. Polymers 2020, 12, 2308; https://doi.org/10.3390/polym12102308.Search in Google Scholar PubMed PubMed Central

10. Su, J., Chen, S., Zhang, J. Reinforcement of EPDM/SmBO3 and EPDM/ATO composites by three types of POE: assessment of longer chain content on crystallinity, cure, mechanical and electric properties. Polym. Test. 2011, 30, 195–203; https://doi.org/10.1016/j.polymertesting.2010.11.013.Search in Google Scholar

11. Wu, Z., Qu, J., Zhao, Y., Tang, H., Wen, J. Flammable and mechanical effects of silica on intumescent flame retardant/ethylene–octene copolymer/polypropylene composites. J. Thermoplast. Compos. Mater. 2015, 28, 981–994; https://doi.org/10.1177/0892705713495432.Search in Google Scholar

12. Bondan, F., Ernzen, J. R., Amalvy, J., Machado, A. V., Martins, J. D. N., Bianchi, O. Influence of dynamic crosslinking on the morphology, crystallization, and dynamic mechanical properties of PA6, 12/EVA blends. J. Appl. Polym. Sci. 2016, 133, 44206; https://doi.org/10.1002/app.44206.Search in Google Scholar

13. Wang, Z., Wang, L., Wang, X., Hao, C. Deformation reversibility enhancement of thermoplastic vulcanizates based on high density polyethylene and ethylene-propylene-diene terpolymer. Mater. Chem. Phys. 2012, 134, 1185–1189; https://doi.org/10.1016/j.matchemphys.2012.04.019.Search in Google Scholar

14. Wang, Y. X., Shi, Y., Wang, C. C., Cheng, J. H., Wang, Y., Shao, W. J., Liu, L. Z. Crystallization, structure, and enhanced mechanical property of ethylene-octene elastomer crosslinked with dicumyl peroxide. J. Appl. Polym. Sci. 2021, 138, 50651; https://doi.org/10.1002/app.50651.Search in Google Scholar

15. Privalko, V. P., Karaman, V. M., Privalko, E. G., Walter, R., Friedrich, K., Zhang, M., Rong, M. Structure and thermoelasticity of irradiation grafted nano-inorganic particle filled polypropylene composites in the solid state. J. Macromol. Sci. B. 2002, 41, 487–505; https://doi.org/10.1081/mb-120004349.Search in Google Scholar

16. Moscoso, F. J., Martínez, L., Canche, G., Rodrigue, D., González-Núñez, R. Morphology and properties of polystyrene/agave fiber composites and foams. J. Appl. Polym. Sci. 2013, 127, 599–606; https://doi.org/10.1002/app.37843.Search in Google Scholar

17. Zuo, F., Burger, C., Chen, X., Mao, Y., Hsiao, B. S., Chen, H., Marchand, G. R., Lai, S. Y., Chiu, D. An in situ X-ray structural study of olefin block and random copolymers under uniaxial deformation. Macromolecules 2010, 43, 1922–1929; https://doi.org/10.1021/ma902105v.Search in Google Scholar

18. Liu, L. Z., Hsiao, B. S., Ran, S., Fu, B. X., Toki, S., Zuo, F., Tsou, A. H., Chu, B. In situ WAXD study of structure changes during uniaxial deformation of ethylene-based semicrystalline ethylene–propylene copolymer. Polymer 2006, 47, 2884–2893; https://doi.org/10.1016/j.polymer.2006.01.090.Search in Google Scholar

19. Liao, H. T., Wu, C. S. Study on crosslinking of polyethylene–octene elastomer with dicumyl peroxide. Polym. Plast. Technol. Eng. 2003, 42, 1–16; https://doi.org/10.1081/ppt-120016332.Search in Google Scholar

20. Boyd, R. H. Relaxation processes in crystalline polymers: molecular interpretation – a review. Polymer 1985, 26, 1123–1133; https://doi.org/10.1016/0032-3861(85)90240-x.Search in Google Scholar

21. Simanke, A. G., Galland, G. B., Freitas, L., da Jornada, J. A. H., Quijada, R., Mauler, R. S. Influence of the comonomer content on the thermal and dynamic mechanical properties of metallocene ethylene/1-octene copolymers. Polymer 1999, 40, 5489–5495; https://doi.org/10.1016/s0032-3861(98)00771-x.Search in Google Scholar

22. Kilburn, D., Bamford, D., Lüpke, T., Dlubek, G., Menke, T. J., Alam, M. A. Free volume and glass transition in ethylene/1-octene copolymers: positron lifetime studies and dynamic mechanical analysis. Polymer 2002, 43, 6973–6983; https://doi.org/10.1016/s0032-3861(02)00663-8.Search in Google Scholar

23. Bensason, S., Minick, J., Moet, A., Chum, S., Hiltner, A., Baer, E. Classification of homogeneous ethylene-octene copolymers based on comonomer content. J. Polym. Sci. B Polym. Phys. 1996, 34, 1301–1315; https://doi.org/10.1002/(sici)1099-0488(199605)34:7<1301::aid-polb12>3.0.co;2-e.10.1002/(SICI)1099-0488(199605)34:7<1301::AID-POLB12>3.0.CO;2-ESearch in Google Scholar

24. Popli, R., Glotin, M., Mandelkern, L., Benson, R. S. Dynamic mechanical studies of α and β relaxations of polyethylenes. J. Polym. Sci. Polym. Phys. Ed. 1984, 22, 407–448; https://doi.org/10.1002/pol.1984.180220306.Search in Google Scholar

25. Sung, Y. T., Kum, C. K., Lee, H. S., Kim, J. S., Yoon, H. G., Kim, W. N. Effects of crystallinity and crosslinking on the thermal and rheological properties of ethylene vinyl acetate copolymer. Polymer 2005, 46, 11844–118448; https://doi.org/10.1016/j.polymer.2005.09.080.Search in Google Scholar

26. Mishra, J. K., Chang, Y. W., Lee, B. C., Ryu, S. H. Mechanical properties and heat shrinkability of electron beam crosslinked polyethylene–octene copolymer. Radiat. Phys. Chem. 2008, 77, 675–679; https://doi.org/10.1016/j.radphyschem.2007.12.004.Search in Google Scholar

27. Latta, G., Lineberry, Q., Ozao, R., Zhao, H. Y., Pan, W. P. Thermal properties of ethylene octene copolymer (Engage)/dimethyldioctadecyl quaternary ammonium chloride-modified montmorillonite clay nanocomposites. J. Mater. Sci. 2008, 43, 2555–2561; https://doi.org/10.1007/s10853-008-2468-6.Search in Google Scholar

28. Ding, J., Ye, L. Structure and property of polyurethane/SiO2 composite elastomer prepared via in situ polymerization. J. Appl. Polym. Sci. 2013, 127, 2732–2738; https://doi.org/10.1002/app.37590.Search in Google Scholar

Received: 2022-08-12
Accepted: 2023-03-03
Published Online: 2023-03-29
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.5.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2022-0199/html
Scroll to top button