Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 19, 2023

The nitro to amine reduction: from millions of tons to single molecule studies

  • Juan C. Scaiano ORCID logo EMAIL logo , Bowen Wang , Connor R. Bourgonje and Mahzad Yaghmaei

Abstract

Palladium nanostructures are interesting heterogeneous catalysts because of their high catalytic activity in a vast range of highly relevant reactions such as cross couplings, dehalogenations, and nitro-to-amine reductions. In the latter case, the catalyst Pd@GW (palladium on glass wool) shows exceptional performance and durability in reducing nitrobenzene to aniline under ambient conditions in aqueous solutions. To enhance our understanding, we use a combination of optical and electron microscopy, in-flow single molecule fluorescence, and bench chemistry combined with a fluorogenic system to develop an intimate understanding of Pd@GW in nitro-to-amine reductions. We fully characterize our catalyst in situ using advanced microscopy techniques, providing deep insights into its catalytic performance. We also explore Pd cluster migration on the surface of the support under flow conditions, providing insights into the mechanism of catalysis. We show that even under flow, Pd migration from anchoring sites seems to be minimal over 4 h, with the catalyst stability assisted by APTES anchoring.


Article note:

A collection of invited papers based on presentations at the 28th IUPAC Symposium on Photochemistry (PhotoIUPAC 2022) held in Amsterdam, 17–22 July 2022.

Based in part on JCS presentation at the 28th IUPAC Symposium on Photochemistry (PhotoIUPAC 2022).



Corresponding author: Juan C. Scaiano, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada, e-mail:

Funding source: Canada Research Chairs

Award Identifier / Grant number: CRC1

Award Identifier / Grant number: EF

Award Identifier / Grant number: Discovery

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council, the Canada Foundation for Innovation and the Canada Research Chairs program.

  1. Research funding: This work was supported by Canada Research Chairs (CRC1) and Canada Foundation for Innovation (EF).

References

[1] M. Yaghmaei, A. E. Lanterna, J. C. Scaiano. iScience 24, 103472 (2021), https://doi.org/10.1016/j.isci.2021.103472.Search in Google Scholar PubMed PubMed Central

[2] B. Amini, S. Lowenkron. in Kirk‐Othmer Encyclopedia of Chemical Technology, Wiley, Hoboken, NJ, USA (2003).Search in Google Scholar

[3] L. F. Fieser. Experiments in Organic Chemistry, Heath and Co., Boston, 2nd ed. (1941).Search in Google Scholar

[4] R. I. Teixeira, N. C. de Lucas, S. J. Garden, A. E. Lanterna, J. C. Scaiano. Catal. Sci. Technol. 10, 1273 (2020), https://doi.org/10.1039/c9cy02479d.Search in Google Scholar

[5] A. Elhage, B. Wang, N. Marina, M. L. Marin, M. Cruz, A. E. Lanterna, J. C. Scaiano. Chem. Sci. 9, 6844 (2018), https://doi.org/10.1039/c8sc02115e.Search in Google Scholar PubMed PubMed Central

[6] B. Wang, C. R. Bourgonje, J. C. Scaiano. Catal. Sci. Technol. 13, 1021 (2023), https://doi.org/10.1039/D2CY01857H.Search in Google Scholar

[7] B. Wang, A. E. Lanterna, J. C. Scaiano. ACS Catal. 7, 8487 (2017), https://doi.org/10.1021/acscatal.7b03150.Search in Google Scholar

[8] B. Wang, J. Durantini, M. R. Decan, J. Nie, A. E. Lanterna, J. C. Scaiano. Chem. Commun. 53, 328 (2017), https://doi.org/10.1039/c6cc08905d.Search in Google Scholar PubMed

[9] P. Costa, D. Sandrin, J. C. Scaiano. Nat. Catal. 3, 427 (2020), https://doi.org/10.1038/s41929-020-0442-0.Search in Google Scholar

[10] A. Elhage. Palladium-based Catalyst for Heterogeneous Photocatalysis. PhD thesis, University of Ottawa (2019).Search in Google Scholar

[11] A. I. Carrillo, K. G. Stamplecoskie, M. L. Marin, J. C. Scaiano. Catal. Sci. Technol. 4, 1989 (2014), https://doi.org/10.1039/c4cy00018h.Search in Google Scholar

[12] R. Greco, W. Goessler, D. Cantillo, C. O. Kappe. ACS Catal. 5, 1303 (2015), https://doi.org/10.1021/cs5020089.Search in Google Scholar

[13] Y. Wang, J. Tao, Y. Wang, L. Huang, X. Ding. Appl. Surf. Sci. 574, 151702 (2022), https://doi.org/10.1016/j.apsusc.2021.151702.Search in Google Scholar

[14] S. Xu, J. Du, Q. Zhou, H. Li, C. Wang, J. Tang. J. Colloid Interface Sci. 604, 876 (2021), https://doi.org/10.1016/j.jcis.2021.07.067.Search in Google Scholar PubMed

[15] C. Gnad, A. Abram, A. Urstöger, F. Weigl, M. Schuster, K. Köhler. ACS Catal. 10, 6030 (2020), https://doi.org/10.1021/acscatal.0c01166.Search in Google Scholar

[16] The Oxford Dictionary of Phrase and Fable, Oxford University Press, Oxford, U.K., 2nd ed. (2006).Search in Google Scholar

[17] P. Anger, P. Bharadwaj, L. Novotny. Phys. Rev. Lett. 96, 113002 (2006), https://doi.org/10.1103/physrevlett.96.113002.Search in Google Scholar PubMed

[18] C. G. A. Morisse, A. M. McCullagh, J. W. Campbell, C. How, D. A. MacLaren, R. H. Carr, C. J. Mitchell, D. Lennon. Ind. Eng. Chem. Res. 60, 17917 (2021), https://doi.org/10.1021/acs.iecr.1c03695.Search in Google Scholar PubMed PubMed Central

[19] J. C. Scaiano, A. E. Lanterna. J. Org. Chem. 82, 5011 (2017), https://doi.org/10.1021/acs.joc.6b03010.Search in Google Scholar PubMed

[20] O. Eivgi, S. A. Blum. Trends Chem. 4, 5 (2022), https://doi.org/10.1016/j.trechm.2021.10.006.Search in Google Scholar

Published Online: 2023-04-19
Published in Print: 2023-08-28

© 2023 IUPAC & De Gruyter

Downloaded on 1.6.2024 from https://www.degruyter.com/document/doi/10.1515/pac-2023-0111/html
Scroll to top button