Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 12, 2022

Effect of filler additions on pilot-scale extrusion coating of paperboard with PLA-based blends

  • Karoliina Helanto ORCID logo EMAIL logo , Riku Talja , Sai Li and Orlando J. Rojas

Abstract

We study the incorporation of minerals (talc, kaolin and surface-treated calcium carbonate) in paperboard coatings based on PLA to improve their performance, often limited by the low crystallinity and moderate gas barrier of the polymer. Masterbatches of PLA-based blends mixed with the mineral fillers were melt-blended in a twin-screw extruder and applied as a coating on paperboard in a pilot-scale unit operating at velocities up to 140 m/min. Thermal imaging was used during the extrusion coating and the effect of the fillers was investigated as far as processability and their effect on the mechanical performance. A reduction of neck-in and improved adhesion between the coating and the substrate were achieved at intermediate mineral loadings. Excess filler and low coating weight generated pinholes, leading to a reduction of the integrity and mechanical properties of the coatings. Overall, we define the performance window for continuous, pilot-scale coating of paperboard with a biopolyester filled with mineral particles, opening the opportunity to realize operations in industrial settings.

Funding statement: The authors state no funding involved.

Acknowledgments

The authors are grateful to Arctic Biomaterials Oy for the masterbatch compounding, Päivi Kauppinen for the assistance with the SEM images, Joni Myyryläinen for the assistance with the mechanical analysis, and Laura Koskinen for the assistance with the images. Research group of Paper Converting and Packaging Technology at Tampere University is acknowledged with appreciation for the extrusion coating trial, and the neck-in and the adhesion measurements.

  1. Conflict of interest: The authors declare no conflicts of interest.

References

Aliotta, L., Cinelli, P., Coltelli, M.B., Lazzeri, A. (2019) Rigid filler toughening in PLA-Calcium Carbonate composites: Effect of particle surface treatment and matrix plasticization. Eur. Polym. J. 113:78–88.10.1016/j.eurpolymj.2018.12.042Search in Google Scholar

Aliotta, L., Vannozzi, A., Panariello, L., Gigante, V., Coltelli, M.B., Lazzeri, A. (2020) Sustainable micro and nano additives for controlling the migration of a biobased plasticizer from PLA-based flexible films. Polymers 12(6):1366.10.3390/polym12061366Search in Google Scholar PubMed PubMed Central

Amirabadi, S., Rodrigue, D., Duchesne, C. (2018) Characterization of PLA-talc films using NIR chemical imaging and Multivariate Image Analysis techniques. Polym. Test. 68:61–69.10.1016/j.polymertesting.2018.03.047Search in Google Scholar

Andersson, C. (2008) New ways to enhance the functionality of paperboard by surface treatment – a review. Packag. Technol. Sci. 21(6):339–373.10.1002/pts.823Search in Google Scholar

Auvinen, S., Lahtinen, K. (2008) Chapter 9: Converted paper and paperboard as packaging materials. In: Paper and paperboard converting (2nd edition). Ed. Kuusipalo, J. Finnish Paper Engineers’ Accociation, Vol. 12. pp. 286–332.Search in Google Scholar

Buzarovska, A., Bogoeva-Gaceva, G., Fajgar, R. (2016) Effect of the talc filler on structural, water vapor barrier and mechanical properties of poly (lactic acid) composites. J. Polym. Eng. 36(2):181–188.10.1515/polyeng-2015-0014Search in Google Scholar

Cameron, G. (2020) Future of Packaging: Long-term Strategic Forecasts to 2030. Smithers. https://www.smithers.com/services/market-reports/packaging/future-packaging-long-term-strategic-forecast-2030 (accessed Aug 26, 2021).Search in Google Scholar

Castillo, L., López, O., López, C., Zaritzky, N., García, M., Barbosa, S., Villar, M. (2013) Thermoplastic starch films reinforced with talc nanoparticles. Carbohydr. Polym. 95(2):664–674.10.1016/j.carbpol.2013.03.026Search in Google Scholar PubMed

Cheng, H., Yang, Y., Li, S., Hong, J., Jang, G. (2015) Modification and extrusion coating of polylactic acid films. J. Appl. Polym. Sci. 132(35):42472.10.1002/app.42472Search in Google Scholar

Chow, W., Ishak, Z., Ishiaku, U., Karger-Kocsis, J., Apostolov, A. (2004) The effect of organoclay on the mechanical properties and morphology of injection-molded polyamide 6/polypropylene nanocomposites. J. Appl. Polym. Sci. 91(1):175–189.10.1002/app.13244Search in Google Scholar

Courgneau, C., Domenek, S., Lebossé, R., Guinault, A., Avérous, L., Ducruet, V. (2012) Effect of crystallization on barrier properties of formulated polylactide. Polym. Int. 61(2):180–189.10.1002/pi.3167Search in Google Scholar

Dhar, P., Gaur, S.S., Soundararajan, N., Gupta, A., Bhasney, S.M., Milli, M., Kumar, A., Katiyar, V. (2017) Reactive extrusion of polylactic acid/cellulose nanocrystal films for food packaging applications: influence of filler type on thermomechanical, rheological, and barrier properties. Ind. Eng. Chem. Res. 56(16):4718–4735.10.1021/acs.iecr.6b04699Search in Google Scholar

Durling, W. Extrusion Coating Manual (5th edition). TAPPI Press, 2017.Search in Google Scholar

Emblem, A., Emblem, H. Packaging Technology (1st edition). Woodhead Publishing, 2012.10.1533/9780857095701Search in Google Scholar

Ghassemi, A., Moghaddamzadeh, S., Duchesne, C., Rodrigue, D. (2017) Effect of annealing on gas permeability and mechanical properties of polylactic acid/talc composite films. J. Plast. Film Sheeting 33(4):361–383.10.1177/8756087917694618Search in Google Scholar

Helanto, K., Matikainen, L., Talja, R., Rojas, O. (2019) Bio-based Polymers for Sustainable Packaging and Biobarriers: A Critical Review. BioResources 14(2):4902–4951.Search in Google Scholar

Helanto, K., Talja, R., Rojas, O. (2021a) Talc reinforcement of PLA and biodegradable polyester blends via injection-molding and pilot-scale film extrusion. J. Appl. Polym. Sci. 138(41):e51225.10.1002/app.51225Search in Google Scholar

Helanto, K., Talja, R., Rojas, O. (2021b) Effects of talc, kaolin and calcium carbonate as fillers in biopolymer packaging materials. J. Polym. Eng. 41(9):746–758.10.1515/polyeng-2021-0076Search in Google Scholar

Helanto, K., Talja, R., Rojas, O. (2021c) Mineral-filled Biopolyester Coatings for Paperboard Packaging Materials: Barrier, Sealability, Convertability and Biodegradability Properties. Nord. Pulp Pap. Res. J. submitted for publication, Nov 24 2021.10.1515/npprj-2021-0076Search in Google Scholar

Jain, S., Misra, M., Mohanty, A.K., Ghosh, A.K. (2012) Thermal, mechanical and rheological behavior of poly (lactic acid)/talc composites. J. Polym. Environ. 20(4):1027–1037.10.1007/s10924-012-0500-zSearch in Google Scholar

Kaggwa, G.B., Huynh, L., Ralston, J., Bremmell, K. (2006) The influence of polymer structure and morphology on talc wettability. Langmuir 22(7):3221.10.1021/la052303iSearch in Google Scholar PubMed

Kang, G., Kim, M., Son, Y., Park, O. (2009) Extrusion coating performances of iPP/LDPE blends. J. Appl. Polym. Sci. 111(6):3121–3127.10.1002/app.29328Search in Google Scholar

Khajeheian, M.B., Kotkamo, S., Kuusipalo, J., Rosling, A. (2016) Synthesis and Characterization of Linear and Tri-Block PLLA–PEG–PLLA Blends. Polym.-Plast. Technol. Eng. 55(4):379–390.10.1080/03602559.2015.1055502Search in Google Scholar

Khajeheian, M.B., Kuusipalo, J., Rosling, A. (2018) Blends of linear and peroxide-modified branched polylactide for extrusion coating. Packag. Technol. Sci. 31(1):41–51.10.1002/pts.2353Search in Google Scholar

Khuenkeao, T., Petchwattana, N., Covavisaruch, S. (2016) Thermal and mechanical properties of bioplastic poly(lactic acid) compounded with silicone rubber and talc. AIP Conf. Proc. 1713(1):080005.10.1063/1.4942294Search in Google Scholar

Koppolu, R., Lahti, J., Abitbol, T., Swerin, A., Kuusipalo, J., Toivakka, M. (2019) Continuous processing of nanocellulose and polylactic acid into multilayer barrier coatings. ACS Appl. Mater. Interfaces 11(12):11920–11927.10.1021/acsami.9b00922Search in Google Scholar PubMed PubMed Central

Krook, M., Gällstedt, M., Hedenqvist, M.S. (2005) A study on montmorillonite/polyethylene nanocomposite extrusion-coated paperboard. Packag. Technol. Sci. 18(1):11–20.10.1002/pts.670Search in Google Scholar

Kuusipalo, J. (2001) Starch-based polymers in extrusion coating. J. Polym. Environ. 9(3):125–135.10.1023/A:1020402911494Search in Google Scholar

Lahtinen, K., Johansson, P., Kääriäinen, T., Cameron, D.C. (2012) Adhesion of extrusion-coated polymer sealing layers to a fiber-based packaging material with an atomic layer deposited aluminum oxide surface coating. Polym. Eng. Sci. 52(9):1985–1990.10.1002/pen.23148Search in Google Scholar

Lahtinen, K., Maydannik, P., Johansson, P., Kääriäinen, T., Cameron, D.C., Kuusipalo, J. (2011) Utilisation of continuous atomic layer deposition process for barrier enhancement of extrusion-coated paper. Surf. Coat. Technol. 205(15):3916–3922.10.1016/j.surfcoat.2011.02.009Search in Google Scholar

Lee, C., Pang, M.M., Koay, S.C., Choo, H.L., Tshai, K.Y. (2020) Talc filled polylactic-acid biobased polymer composites: Tensile, thermal and morphological properties. SN Appl. Sci. 2(3):1–6.10.1007/s42452-020-2172-ySearch in Google Scholar

Leong, Y.W., Abu Bakar, M.B., Ishak, Z.A.M., Ariffin, A., Pukanszky, B. (2004) Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. J. Appl. Polym. Sci. 91(5):3315–3326.10.1002/app.13542Search in Google Scholar

Liu, X., Wang, T., Chow, L.C., Yang, M., Mitchell, J.W. (2014) Effects of inorganic fillers on the thermal and mechanical properties of poly (lactic acid). Int. J. Polym. Sci. 2014:827028.10.1155/2014/827028Search in Google Scholar PubMed PubMed Central

Matusik, J., Stodolak, E., Bahranowski, K. (2011) Synthesis of polylactide/clay composites using structurally different kaolinites and kaolinite nanotubes. Appl. Clay Sci. 51(1-2):102–109.10.1016/j.clay.2010.11.010Search in Google Scholar

Morris, B.A. (2008) Understanding why adhesion in extrusion coating decreases with diminishing coating thickness. J. Plast. Film Sheeting 24(1):53–88.10.1177/8756087908089486Search in Google Scholar

Osman, M., Atallah, A., Suter, U. (2004) Influence of excessive filler coating on the tensile properties of LDPE-calcium carbonate composites. Polymer 45(4):1177–1183.10.1016/j.polymer.2003.12.020Search in Google Scholar

Ouchiar, S., Stoclet, G., Cabaret, C., Georges, E., Smith, A., Martias, C., Addad, A., Gloaguen, V. (2015) Comparison of the influence of talc and kaolinite as inorganic fillers on morphology, structure and thermomechanical properties of polylactide based composites. Appl. Clay Sci. 116:231–240.10.1016/j.clay.2015.03.020Search in Google Scholar

Ouchiar, S., Stoclet, G., Cabaret, C., Gloaguen, V. (2016) Influence of the filler nature on the crystalline structure of polylactide-based nanocomposites: new insights into the nucleating effect. Macromolecules 49(7):2782–2790.10.1021/acs.macromol.5b02746Search in Google Scholar

Phetwarotai, W., Aht-Ong, D. (2016) Isothermal crystallization behaviors and kinetics of nucleated polylactide/poly(butylene adipate-co-terephthalate) blend films with talc. J. Therm. Anal. Calorim. 126(3):1797–1808.10.1007/s10973-016-5669-2Search in Google Scholar

Piekarska, K., Piorkowska, E., Bojda, J. (2017) The influence of matrix crystallinity, filler grain size and modification on properties of PLA/calcium carbonate composites. Polym. Test. 62:203–209.10.1016/j.polymertesting.2017.06.025Search in Google Scholar

Raquez, J., Nabar, Y., Narayan, R., Dubois, P. (2008) Novel High-Performance Talc/Poly[(butylene adipate)-co-terephthalate] Hybrid Materials. Macromol. Mater. Eng. 293(4):310–320.10.1002/mame.200700352Search in Google Scholar

Rastogi, V.K., Samyn, P. (2015) Bio-based coatings for paper applications. Coatings 5(4):887–930.10.3390/coatings5040887Search in Google Scholar

Rocha, D., Souza de Carvalho, J., de Oliveira, S., dos Santos Rosa, D. (2018) A new approach for flexible PBAT/PLA/CaCO 3 films into agriculture. J. Appl. Polym. Sci. 135(35):46660.Search in Google Scholar

Sabzi, M., Jiang, L., Atai, M., Ghasemi, I. (2012) PLA/sepiolite and PLA/calcium carbonate nanocomposites: A comparison study. J. Appl. Polym. Sci. 129(4):1734–1744.10.1002/app.38866Search in Google Scholar

Schuman, T., Karlsson, A., Larsson, J., Wikström, M., Rigdahl, M. (2005) Characteristics of pigment-filled polymer coatings on paperboard. Prog. Org. Coat. 54(4):360–371.10.1016/j.porgcoat.2005.06.017Search in Google Scholar

Segura González, E.A., Olmos, D., González-Gaitano, G., Orgaz, B., González-Benito, J. (2015) Effect of kaolin nanofiller and processing conditions on the structure, morphology, and biofilm development of polylactic acid. J. Appl. Polym. Sci. 132(42):42676.10.1002/app.42676Search in Google Scholar

Seoane, I., Luzi, F., Puglia, D., Cyras, V., Manfredi, L. (2018) Enhancement of paperboard performance as packaging material by layering with plasticized polyhydroxybutyrate/nanocellulose coatings. J. Appl. Polym. Sci. 135(48):46872.10.1002/app.46872Search in Google Scholar

Sonjui, T., Jiratumnukul, N. (2014) Poly (lactic acid) organoclay nano composites for paper coating applications. Songklanakarin J. Sci. Technol. 36(5):535–540.Search in Google Scholar

Sundar, N., Kumar, A., Pavithra, A., Ghosh, S. (2020) Studies on semi-crystalline poly lactic acid (PLA) as a hydrophobic coating material on kraft paper for imparting barrier properties in coated abrasive applications. Prog. Org. Coat. 145:105682.Search in Google Scholar

Tampere University (2021) Paper Converting and Packaging Technology. Facilities. https://research.tuni.fi/pcpt/facilities/ (accessed Dec 13, 2021).Search in Google Scholar

Triantafyllou, V.I., Akrida-Demertzi, K., Demertzis, P.G. (2007) A study on the migration of organic pollutants from recycled paperboard packaging materials to solid food matrices. Food Chem. 101(4):1759–1768.10.1016/j.foodchem.2006.02.023Search in Google Scholar

Wang, H., Dong, Y., Zhu, M., Li, X., Keller, A.A., Wang, T., Li, F. (2015) Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments. Water Res. 80:130–138.10.1016/j.watres.2015.05.023Search in Google Scholar PubMed

Wang, K., Xu, M., Choi, Y., Chung, I. (2001) Effect of aspect ratio of clay on melt extensional process of maleated polyethylene/clay nanocomposites. Polym. Bull. 46(6):499–505.10.1007/s002890170038Search in Google Scholar

Welker, M., Knerr, M., Schulz, K. (2021) Omya Smartfill® opens new opportunities for the use of Polylactic Acid. http://businessdocbox.com/Green_Solutions/125394640-Omya-smartfill-opens-new-opportunities-for-the-use-of-polylactic-acid.html (accessed Aug 26, 2021).Search in Google Scholar

Yu, F., Liu, T., Zhao, X., Yu, X., Lu, A., Wang, J. (2012) Effects of talc on the mechanical and thermal properties of polylactide. J. Appl. Polym. Sci. 125(S2):E99–E109.10.1002/app.36260Search in Google Scholar

Zou, G., Jiao, Q., Zhang, X., Zhao, C., Li, J. (2015) Crystallization behavior and morphology of poly(lactic acid) with a novel nucleating agent. J. Appl. Polym. Sci. 132:41367.10.1002/app.41367Search in Google Scholar

Received: 2021-11-19
Accepted: 2021-12-29
Published Online: 2022-01-12
Published in Print: 2022-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/npprj-2021-0070/html
Scroll to top button