Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 28, 2022

Brain-based interventions for chronic pain

  • Herta Flor

    Herta Flor is Full Professor of Clinical and Cognitive Psychology, Medical Faculty Mannheim, Heidelberg University and Scientific Director of the Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Mannheim. She studied psychology in Würzburg, Tübingen and Yale University and acts as the deputy Spokesperson of the Heidelberg Pain Consortium funded by the German Research Foundation. Her interests focus on learning and brain plasticity mechanisms and the development of novel behavioral interventions in mental disorders and specifically pain. She received numerous awards for her work, among them the Lifetime Achievement Award of the International Association for the Study of Pain. She holds honorary doctoral degrees from Aalborg University and the Free University Amsterdam.

    EMAIL logo
    and Rohini Kuner

    Rohini Kuner is a Full Professor of Pharmacology at Heidelberg University. She is the Spokesperson of the Heidelberg Pain Consortium funded by the German Research Foundation. She was trained in pharmacology and neuroscience at the University of Iowa City, USA, the Max Planck Institute for Medical Research and Heidelberg University.

    EMAIL logo
From the journal Neuroforum

Abstract

Brain circuits involved in pain chronicity shift from areas involved in nociceptive processing to those associated with emotional and motivational processes. They overlap with circuits relevant for anxiety, fear and depression and are characterized by deficient prefrontal control mechanisms. Noninvasive brain stimulation techniques such as repetitive transcranial magnetic stimulation, transcranial direct and alternating current stimulation directly impact on these circuits and pain. Neurofeedback and brain-computer interfaces as well as various types of cognitive and behavioral interventions also alter these circuits. The analysis of brain changes related to pain chronicity helps to mechanistically tailor interventions to patient characteristics, can increase treatment efficacy and efficiency and can identify new treatment approaches.

Zusammenfassung

Chronische Schmerzen entstehen in Schaltkreisen des Gehirns, die weniger mit nozizeptiver Verarbeitung zu tun haben, sondern in emotionale und motivationale Verarbeitungsprozesse involviert sind. Diese überlappen mit Schaltkreisen, die für Angst, Furcht und Depression relevant sind und sind auch durch eine defiziente präfrontale Hemmung charakterisiert. Verfahren der nichtinvasiven Hirnstimulation wie die repetitive Hirnstimulation, transkranielle Gleichstromstimulation oder die transkranielle Wechselstromstimulation können diese Schaltkreise und damit Schmerz direkt beeinflussen. Neurofeedback und Gehirn-Computer Schnittstellen ebenso wie verschiedene kognitive und verhaltensbezogene Trainingsverfahren können diese Hirnregionen ebenfalls verändern. Die Analyse von Hirnveränderungen, die mit chronischem Schmerz in Zusammenhang stehen, kann Interventionen mechanistisch auf Patientencharakteristika zuschneiden, die Effektivität und Effizienz von Behandlungen verbessern und trägt dazu bei, neue Behandlungsansätze zu entwickeln.


Corresponding author: Herta Flor, Institute of Clinical and Cognitive Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany, E-mail: ; and Rohini Kuner, Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany, E-mail:

About the authors

Herta Flor

Herta Flor is Full Professor of Clinical and Cognitive Psychology, Medical Faculty Mannheim, Heidelberg University and Scientific Director of the Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Mannheim. She studied psychology in Würzburg, Tübingen and Yale University and acts as the deputy Spokesperson of the Heidelberg Pain Consortium funded by the German Research Foundation. Her interests focus on learning and brain plasticity mechanisms and the development of novel behavioral interventions in mental disorders and specifically pain. She received numerous awards for her work, among them the Lifetime Achievement Award of the International Association for the Study of Pain. She holds honorary doctoral degrees from Aalborg University and the Free University Amsterdam.

Rohini Kuner

Rohini Kuner is a Full Professor of Pharmacology at Heidelberg University. She is the Spokesperson of the Heidelberg Pain Consortium funded by the German Research Foundation. She was trained in pharmacology and neuroscience at the University of Iowa City, USA, the Max Planck Institute for Medical Research and Heidelberg University.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The submitted article does not contain information about medical device(s)/drug(s). This work was supported by German Research Foundation (DFG) within the Collaborative Research Center (SFB) 1158 (projects B01, B03, B06 and B07), by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung; PerPAIN consortium, FKZ:01 EC1904A) and the Baden-Württemberg Stiftung Internationales Spitzenförderungprogramm. No benefits in any form have been or will be received from a commercial party directly or indirectly related to the subject of this article.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Ahn, S., Prim, J.H., Alexander, M.L., McCulloch, K.L., and Frohlich, F. (2019). Identifying and engaging neuronal oscillations by transcranial alternating current stimulation in patients with chronic low back pain: A randomized, crossover, double-blind, sham-controlled pilot study. J. Pain 20, 277 e271–277 e211, https://doi.org/10.1016/j.jpain.2018.09.004.Search in Google Scholar PubMed PubMed Central

Alshelh, Z., Marciszewski, K.K., Akhter, R., Di Pietro, F., Mills, E.P., Vickers, E.R., Peck, C.C., Murray, G.M., and Henderson, L.A. (2018). Disruption of default mode network dynamics in acute and chronic pain states. Neuroimage Clin 17, 222–231, https://doi.org/10.1016/j.nicl.2017.10.019.Search in Google Scholar PubMed PubMed Central

Andre-Obadia, N., Magnin, M., and Garcia-Larrea, L. (2021). Theta-burst versus 20 Hz repetitive transcranial magnetic stimulation in neuropathic pain: A head-to-head comparison. Clin. Neurophysiol. 132, 2702–2710, https://doi.org/10.1016/j.clinph.2021.05.022.Search in Google Scholar PubMed

Apkarian, A.V., Bushnell, M.C., Treede, R.D., and Zubieta, J.K. (2005). Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 9, 463–484, https://doi.org/10.1016/j.ejpain.2004.11.001.Search in Google Scholar PubMed

Baliki, M.N., Baria, A.T., and Apkarian, A.V. (2011). The cortical rhythms of chronic back pain. J. Neurosci. 31, 13981–13990, https://doi.org/10.1523/JNEUROSCI.1984-11.2011.Search in Google Scholar PubMed PubMed Central

Baliki, M.N., Petre, B., Torbey, S., Herrmann, K.M., Huang, L., Schnitzer, T.J., Fields, H.L., and Apkarian, A.V. (2012). Corticostriatal functional connectivity predicts transition to chronic back pain. Nat. Neurosci. 15, 1117–1119, https://doi.org/10.1038/nn.3153.Search in Google Scholar PubMed PubMed Central

Barbosa-Torres, C. and Cubo-Delgado, S. (2021). Clinical findings in SMR neurofeedback protocol training in women with fibromyalgia syndrome. Brain Sci. 11, 1069, https://doi.org/10.3390/brainsci11081069.Search in Google Scholar PubMed PubMed Central

Caro, X.J. and Winter, E.F. (2011). EEG biofeedback treatment improves certain attention and somatic symptoms in fibromyalgia: A pilot study. Appl. Psychophysiol. Biofeedback 36, 193–200, https://doi.org/10.1007/s10484-011-9159-9.Search in Google Scholar PubMed

Chan, B.L., Witt, R., Charrow, A., Howard, R., Magee, A., Pasquina, P.F., Heilman, K.M., and Tsao, J.W. (2007). A randomized trial of mirror therapy for lower limb phantom pain. Ann. Neurol. 62, S32–S33, https://doi.org/10.1056/NEJMc071927.Search in Google Scholar PubMed

Chen, T., Taniguchi, W., Chen, Q.Y., Tozaki-Saitoh, H., Song, Q., Liu, R.H., Koga, K., Matsuda, T., Kaito-Sugimura, Y., Wang, J., et al.. (2018). Top-down descending facilitation of spinal sensory excitatory transmission from the anterior cingulate cortex. Nat. Commun. 9, 1886, https://doi.org/10.1038/s41467-018-04309-2.Search in Google Scholar PubMed PubMed Central

Cruccu, G., Garcia-Larrea, L., Hansson, P., Keindl, M., Lefaucheur, J.P., Paulus, W., Taylor, R., Tronnier, V., Truini, A., and Attal, N. (2016). EAN guidelines on central neurostimulation therapy in chronic pain conditions. Eur. J. Neurol. 23, 1489–1499, https://doi.org/10.1111/ene.13103.Search in Google Scholar

Day, M.A., Matthews, N., Mattingley, J.B., Ehde, D.M., Turner, A.P., Williams, R.M., and Jensen, M.P. (2021). Change in brain oscillations as a mechanism of mindfulness-meditation, cognitive therapy, and mindfulness-based cognitive therapy for chronic low back pain. Pain Med. 22, 1804–1813, https://doi.org/10.1093/pm/pnab049.Search in Google Scholar

de Andrade, E.M., Martinez, R.C.R., Pagano, R.L., Lopes, P.S.S., Auada, A.V.V., Gouveia, F.V., Antunes, G.F., Assis, D.V., Lebrun, I., and Fonoff, E.T. (2019). Neurochemical effects of motor cortex stimulation in the periaqueductal gray during neuropathic pain. J. Neurosurg. 132, 239–251, https://doi.org/10.3171/2018.7.jns173239.Search in Google Scholar

deCharms, R.C., Maeda, F., Glover, G.H., Ludlow, D., Pauly, J.M., Soneji, D., Gabrieli, J.D.E., and Mackey, S.C. (2005). Control over brain activation and pain learned by using real-time functional MRI. Proc. Natl. Acad. Sci. U. S. A. 102, 18626–18631, https://doi.org/10.1073/pnas.0505210102.Search in Google Scholar

De Martino, E., Seminowicz, D.A., Schabrun, S.M., Petrini, L., and Graven-Nielsen, T. (2019). High frequency repetitive transcranial magnetic stimulation to the left dorsolateral prefrontal cortex modulates sensorimotor cortex function in the transition to sustained muscle pain. Neuroimage 186, 93–102, https://doi.org/10.1016/j.neuroimage.2018.10.076.Search in Google Scholar

Diers, M., Yilmaz, P., Rance, M., Thieme, K., Gracely, R.H., Rolko, C., Schley, M.T., Kiessling, U., and Flor, H. (2012). Treatment-related changes in brain activation in patients with fibromyalgia syndrome. Exp. Brain Res. 218, 619–628. https://doi.org/10.1007/s00221-012-3055-2.Search in Google Scholar

Ferreira, N.R., Junqueira, Y.N., Corrêa, N.B., Fonseca, E.O., Brito, N.B.M., Menezes, T.A., Magini, M., Fidalgo, T.K.S., Ferreira, D.M.T.P., de Lima, R.L., et al.. (2019). The efficacy of transcranial direct current stimulation and transcranial magnetic stimulation for chronic orofacial pain: A systematic review. PLoS One 14, e0221110, https://doi.org/10.1371/journal.pone.0221110.Search in Google Scholar

Flor, H., Denke, C., Schaefer, M., and Grüsser, S. (2001). Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. Lancet 357, 1763–1764, https://doi.org/10.1016/S0140-6736(00)04890-X.Search in Google Scholar

Foell, J., Bekrater-Bodmann, R., Diers, M., and Flor, H. (2014). Mirror therapy for phantom limb pain: Brain changes and the role of body representation. Eur. J. Pain 18, 729–739, https://doi.org/10.1002/j.1532-2149.2013.00433.x.Search in Google Scholar PubMed

Franca, N.R., Toniolo, E.F., Franciosi, A.C., Alves, A.S., de Andrade, D.C., Fonoff, E.T., Britto, L.R., and Dale, C.S. (2013). Antinociception induced by motor cortex stimulation: Somatotopy of behavioral response and profile of neuronal activation. Behav. Brain Res. 250, 211–221, https://doi.org/10.1016/j.bbr.2013.05.019.Search in Google Scholar PubMed

Gan, Z., Li, H., Naser, P.V., Han, Y., Tan, L.L., Oswald, M.J., and Kuner, R. (2021a). Repetitive non-invasive prefrontal stimulation reverses neuropathic pain via neural remodelling in mice. Prog. Neurobiol. 201, 102009, https://doi.org/10.1016/j.pneurobio.2021.102009.Search in Google Scholar PubMed

Gan, Z., Li, H., Naser, P.V., Oswald, M.J., and Kuner, R. (2021b). Suppression of neuropathic pain and comorbidities by recurrent cycles of repetitive transcranial direct current motor cortex stimulation in mice. Sci. Rep. 111, 9735, https://doi.org/10.1038/s41598-021-89122-6.Search in Google Scholar PubMed PubMed Central

Garcia-Larrea, L. and Peyron, R. (2007). Motor cortex stimulation for neuropathic pain: From phenomenology to mechanisms. Neuroimage 37, S71–S79, https://doi.org/10.1016/j.neuroimage.2007.05.062.Search in Google Scholar PubMed

Goldway, N., Ablin, J., Lubin, O., Zamir, Y., Keynan, J.N., Or-Borichev, A., Cavazza, M., Charles, F., Intrator, N., Brill, S., et al.. (2019). Volitional limbic neuromodulation exerts a beneficial clinical effect on fibromyalgia. Neuroimage 186, 758–770, https://doi.org/10.1016/j.neuroimage.2018.11.001.Search in Google Scholar PubMed

Hallett, M. (2007). Transcranial magnetic stimulation: A primer. Neuron 55, 187–199, https://doi.org/10.1016/j.neuron.2007.06.026.Search in Google Scholar PubMed

Hashmi, J.A., Baliki, M.N., Huang, L., Baria, A.T., Torbey, S., Hermann, K.M., Schnitzer, T.J., and Apkarian, A.V. (2013). Shape shifting pain: Chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain 136, 2751–2768, https://doi.org/10.1093/brain/awt211.Search in Google Scholar PubMed PubMed Central

Hohn, V.D., May, E.S., and Ploner, M. (2019). From correlation towards causality: Modulating brain rhythms of pain using transcranial alternating current stimulation. Pain Rep 4, e723, https://doi.org/10.1097/PR9.0000000000000723.Search in Google Scholar PubMed PubMed Central

Jensen, K.B., Kosek, E., Wicksell, R., Kemani, M., Olsson, G., Merle, J.V., Kadetoff, D., and Ingvar, M. (2012). Cognitive behavioral therapy increases pain-evoked activation of the prefrontal cortex in patients with fibromyalgia. Pain 153, 1495–1503, https://doi.org/10.1016/j.pain.2012.04.010.Search in Google Scholar PubMed

Kikkert, S., Mezue, M., O’Shea, J., Slater, D.H., Johansen-Berg, H., Tracey, I., and Makin, T.R. (2019). Neural basis of induced phantom limb pain relief. Ann. Neurol. 85, 59–73, https://doi.org/10.1002/ana.25371.Search in Google Scholar PubMed PubMed Central

Krummenacher, P., Candia, V., Folkers, G., Schedlowski, M., and Schonbachler, G. (2010). Prefrontal cortex modulates placebo analgesia. Pain 148, 368–374, https://doi.org/10.1016/j.pain.2009.09.033.Search in Google Scholar PubMed

Kundakci, B., Kaur, J., Goh, S.L., Hall, M., Doherty, M., Zhang, W., and Abhishek, A. (2021). Efficacy of nonpharmacological interventions for individual features of fibromyalgia: A systematic review and meta-analysis of randomised controlled trials. Pain, https://doi.org/10.1097/j.pain.0000000000002500.Search in Google Scholar PubMed

Kuner, R. and Flor, H. (2016). Structural plasticity and reorganisation in chronic pain. Nat. Rev. Neurosci. 18, 20–30, https://doi.org/10.1038/nrn.2016.162.Search in Google Scholar PubMed

Kuner, R. and Kuner, T. (2021). Cellular circuits in the brain and their modulation in acute and chronic pain. Physiol. Rev. 101, 213–258, https://doi.org/10.1152/physrev.00040.2019.Search in Google Scholar PubMed

Lackner, J.M., Lou Coad, M., Mertz, H.R., Wack, D.S., Katz, L.A., Krasner, S.S., Firth, R., Mahl, T.C., and Lockwood, A.H. (2006). Cognitive therapy for irritable bowel syndrome is associated with reduced limbic activity, GI symptoms, and anxiety. Behav. Res. Ther. 44, 621–638, https://doi.org/10.1016/j.brat.2005.05.002.Search in Google Scholar PubMed PubMed Central

Lee, J.J., Kim, H.J., Ceko, M., Park, B.Y., Lee, S.A., Park, H., Roy, M., Kim, S.G., Wager, T.D., and Woo, C.W. (2021). A neuroimaging biomarker for sustained experimental and clinical pain. Nat. Med. 27, 174–182, https://doi.org/10.1038/s41591-020-1142-7.Search in Google Scholar PubMed PubMed Central

Lefaucheur, J.P., Aleman, A., Baeken, C., Benninger, D.H., Brunelin, J., Di Lazzaro, V., Filipović, S.R., Grefkes, C., Hasan, A., Hummel, F.C., et al.. (2020). Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin Neurophysiol 131, 474–528, https://doi.org/10.1016/j.clinph.2019.11.002.Search in Google Scholar PubMed

Lopes, P.S.S., Campos, A.C.P., Fonoff, E.T., Britto, L.R.G., and Pagano, R.L. (2019). Motor cortex and pain control: Exploring the descending relay analgesic pathways and spinal nociceptive neurons in healthy conscious rats. Behav. Brain Funct. 15, 5, https://doi.org/10.1186/s12993-019-0156-0.Search in Google Scholar PubMed PubMed Central

Lutz, A., McFarlin, D.R., Perlman, D.M., Salomons, T.V., and Davidson, R.J. (2013). Altered anterior insula activation during anticipation and experience of painful stimuli in expert meditators. Neuroimage 64, 538–546, https://doi.org/10.1016/j.neuroimage.2012.09.030.Search in Google Scholar PubMed PubMed Central

MacIver, K., Lloyd, D.M., Kelly, S., Roberts, N., and Nurmikko, T. (2008). Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery. Brain 131, 2181–2191, https://doi.org/10.1093/brain/awn124.Search in Google Scholar PubMed PubMed Central

May, A. (2011). Structural brain imaging: A window into chronic pain. Neuroscientist 17, 209–220, https://doi.org/10.1177/1073858410396220.Search in Google Scholar PubMed

May, E.S., Nickel, M.M., Ta Dinh, S., Tiemann, L., Heitmann, H., Voth, I., Tolle, T.R., Gross, J., and Ploner, M. (2019). Prefrontal gamma oscillations reflect ongoing pain intensity in chronic back pain patients. Hum. Brain Mapp. 40, 293–305, https://doi.org/10.1002/hbm.24373.Search in Google Scholar PubMed PubMed Central

McPhee, M.E. and Graven-Nielsen, T. (2021). Medial prefrontal transcranial direct current stimulation aimed to improve affective and attentional modulation of pain in chronic low back pain patients. J. Clin. Med. 10, 889, https://doi.org/10.3390/jcm10040889.Search in Google Scholar PubMed PubMed Central

Mercer Lindsay, N., Chen, C., Gilam, G., Mackey, S., and Scherrer, G. (2021). Brain circuits for pain and its treatment. Sci. Transl. Med. 13, eabj7360.10.1126/scitranslmed.abj7360Search in Google Scholar PubMed PubMed Central

Moseley, G.L. and Flor, H. (2012). Targeting cortical representations in the treatment of chronic pain: A review. Neurorehabilitation Neural Repair 26, 646–652, https://doi.org/10.1177/1545968311433209.Search in Google Scholar PubMed

Nguyen, J.P., Nizard, J., Keravel, Y., and Lefaucheur, J.P. (2011). Invasive brain stimulation for the treatment of neuropathic pain. Nat. Rev. Neurol. 7, 699–709, https://doi.org/10.1038/nrneurol.2011.138.Search in Google Scholar PubMed

O’Connell, N.E., Marston, L., Spencer, S., DeSouza, L.H., and Wand, B.M. (2018). Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst. Rev. 16, CD008208. connelUpdate in: Cochrane Database Syst Rev. 2018 Apr 13;4:CD008208, https://doi.org/10.1002/14651858.CD008208.pub4.Search in Google Scholar PubMed PubMed Central

Pagano, R.L., Fonoff, E.T., Dale, C.S., Ballester, G., Teixeira, M.J., and Britto, L.R.G.D. (2012). Motor cortex stimulation inhibits thalamic sensory neurons and enhances activity of PAG neurons: Possible pathways for antinociception. Pain 153, 2359–2369, https://doi.org/10.1016/j.pain.2012.08.002.Search in Google Scholar PubMed

Paulus, W. (2011). Transcranial electrical stimulation (tES – tDCS; tRNS, tACS) methods. Neuropsychol. Rehabil. 21, 602–617, https://doi.org/10.3389/fnins.2016.00018.Search in Google Scholar PubMed PubMed Central

Pfannmöller, J. and Lotze, M. (2019). Review on biomarkers in the resting-state networks of chronic pain patients. Brain Cognit. 131, 4–9, https://doi.org/10.1016/j.bandc.2018.06.005.Search in Google Scholar PubMed

Pinheiro, E.S., de Queiros, F.C., Montoya, P., Santos, C.L., do Nascimento, M.A., Ito, C.H., Silva, M., Nunes Santos, D.B., Benevides, S., Miranda, J.G., et al.. (2016). Electroencephalographic patterns in chronic pain: A systematic review of the literature. PLoS One 11, e0149085, https://doi.org/10.1371/journal.pone.0149085.Search in Google Scholar PubMed PubMed Central

Rainville, P., Duncan, G.H., Price, D.D., Carrier, B., and Bushnell, M.C. (1997). Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 968–971, https://doi.org/10.1126/science.277.5328.968.Search in Google Scholar PubMed

Roy, R., de la Vega, R., Jensen, M.P., and Miro, J. (2020). Neurofeedback for pain management: A systematic review. Front. Neurosci. 14, 671, https://doi.org/10.3389/fnins.2020.00671.Search in Google Scholar PubMed PubMed Central

Segerdahl, A.R., Mezue, M., Okell, T.W., Farrar, J.T., and Tracey, I. (2015). The dorsal posterior insula subserves a fundamental role in human pain. Nat. Neurosci. 18, 499–500, https://doi.org/10.1038/nn.3969.Search in Google Scholar PubMed PubMed Central

Seminowicz, D.A., de Martino, E., Schabrun, S.M., and Graven-Nielsen, T. (2018). Left dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation reduces the development of long-term muscle pain. Pain 159, 2486–2492, https://doi.org/10.1097/j.pain.0000000000001350.Search in Google Scholar PubMed

Seminowicz, D.A. and Moayedi, M. (2017). The dorsolateral prefrontal cortex in acute and chronic pain. J. Pain 18, 1027–1035, https://doi.org/10.1016/j.jpain.2017.03.008.Search in Google Scholar PubMed PubMed Central

Siniatchkin, M., Gerber, W.D., Kropp, P., and Vein, A. (1998). Contingent negative variation in patients with chronic daily headache. Cephalalgia 18, 565–569, https://doi.org/10.1046/j.1468-2982.1998.1808565.Search in Google Scholar

Souza, A., Martins, D.F., Medeiros, L.F., Nucci-Martins, C., Martins, T.C., Siteneski, A., Caumo, W., Dos Santos, A.R.S., and Torres, I.L.S. (2018). Neurobiological mechanisms of antiallodynic effect of transcranial direct current stimulation (tDCS) in a mice model of neuropathic pain. Brain Res. 1682, 14–23, https://doi.org/10.1016/j.brainres.Search in Google Scholar

Tan, L.L. and Kuner, R. (2021). Neocortical circuits in pain and pain relief. Nat. Rev. Neurosci. 22, 458–471, https://doi.org/10.1038/s41583-021-00468-2.Search in Google Scholar PubMed

Tan, L.L., Pelzer, P., Heinl, C., Tang, W., Gangadharan, V., Flor, H., Sprengel, R., Kuner, T., and Kuner, R. (2017). A pathway from midcingulate cortex to posterior insula gates nociceptive hypersensitivity. Nat. Neurosci. 20, 1591–1601, https://doi.org/10.1038/nn.4645.Search in Google Scholar PubMed

Thieme, K., Turk, D.C., and Flor, H. (2007). Responder criteria for operant and cognitive-behavioral treatment of fibromyalgia syndrome. Arthritis Rheum. Arthritis Care Res. 57, 830–836, https://doi.org/10.1002/art.22778.Search in Google Scholar PubMed

Thogersen, M., Andoh, J., Milde, C., Graven-Nielsen, T., Flor, H., and Petrini, L. (2020). Individualized augmented reality training reduces phantom pain and cortical reorganization in amputees: A proof of concept study. J. Pain 21, 1257–1269, https://doi.org/10.1016/j.jpain.2020.06.002.Search in Google Scholar PubMed

Wager, T.D., Atlas, L.Y., Lindquist, M.A., Roy, M., Woo, C.W., and Kross, E. (2013). An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388–1397, https://doi.org/10.1056/NEJMoa1204471.Search in Google Scholar PubMed PubMed Central

Yanagisawa, T., Fukuma, R., Seymour, B., Hosomi, K., Kishima, H., Shimizu, T., Yokoi, H., Hirata, M., Yoshimine, T., Kamitani, Y., et al.. (2016). Induced sensorimotor brain plasticity controls pain in phantom limb patients. Nat. Commun. 7, 13209, https://doi.org/10.1038/ncomms13209.Search in Google Scholar PubMed PubMed Central

Yanagisawa, T., Fukuma, R., Seymour, B., Tanaka, M., Hosomi, K., Yamashita, O., Kishima, H., Kamitani, Y., and Saitoh, Y. (2020). BCI training to move a virtual hand reduces phantom limb pain: A randomized crossover trial. Neurology 95, e417–e426, https://doi.org/10.1212/WNL.0000000000009858.Search in Google Scholar PubMed PubMed Central

Yoshino, A., Okamoto, Y., Okada, G., Takamura, M., Ichikawa, N., Shibasaki, C., Yokoyama, S., Doi, M., Jinnin, R., Yamashita, H., et al.. (2018). Changes in resting-state brain networks after cognitive-behavioral therapy for chronic pain. Psychol. Med. 48, 1148–1156, https://doi.org/10.1017/S0033291717002598.Search in Google Scholar PubMed

Ziemann, U., Paulus, W., Nitsche, M.A., Pascual-Leone, A., Byblow, W.D., Berardelli, A., Siebner, H.R., Classen, J., Cohen, L.G., and Rothwell, J.C. (2008). Consensus: Motor cortex plasticity protocols. Brain Stimul. 1, 164–182.10.1016/j.brs.2008.06.006Search in Google Scholar PubMed

Published Online: 2022-03-28
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/nf-2021-0037/html
Scroll to top button