Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) April 13, 2023

The crystal structure of (Z)-3-(1-(2-((E)-4-isopropylbenzylidene)hydrazinyl)ethylidene) chroman-2,4-dione, C21H20N2O3

  • Vidoslav S. Dekić ORCID logo , Biljana R. Dekić ORCID logo , Dragana M. Sejmanović ORCID logo , Suzana Janićević ORCID logo , Biljana Krüger ORCID logo , Volker Kahlenberg ORCID logo and Marko V. Rodić ORCID logo EMAIL logo

Abstract

C21H20N2O3, monoclinic, P21/c (no. 14), a = 6.8892(3) Å, b = 21.8269(13) Å, c = 35.1144(19) Å, β = 90.344(5)°, V = 5280.1(5) Å3, Z = 12, R gt(F) = 0.0672, wR ref(F 2) = 0.1460, T = 170(2) K.

CCDC no.: 2246347

The molecular structure is shown in Figure (only molecule A, for the sake of clarity). Table 1 contains crystallographic data, and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow needle
Size: 0.65 × 0.15 × 0.07 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.09 mm−1
Diffractometer, scan mode: Gemini R ultra, ω
θ max, completeness: 26.4°, >99%
N(hkl) measured , N(hkl) unique, R int: 72,651, 10,810, 0.106
Criterion for I obs, N(hkl) gt: I obs > 2σ(I obs), 6256
N(param) refined: 713
Programs: CrysAlisPRO [1], SHELX [2, 3], PLATON [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
O1B 0.7604 (2) 0.83292 (8) 0.48987 (5) 0.0355 (5)
O2B 0.8508 (3) 0.89020 (9) 0.44210 (5) 0.0429 (5)
O3B 0.6501 (2) 0.98007 (8) 0.55870 (5) 0.0340 (4)
N1B 0.7455 (2) 1.05054 (10) 0.50521 (6) 0.0281 (5)
H1B 0.708429 1.043267 0.528722 0.034*
N2B 0.7698 (3) 1.11053 (10) 0.49373 (6) 0.0297 (5)
C2B 0.7909 (3) 0.89093 (12) 0.47467 (8) 0.0298 (6)
C3B 0.7499 (3) 0.94375 (12) 0.49802 (7) 0.0254 (6)
C4B 0.6868 (3) 0.93594 (12) 0.53669 (7) 0.0268 (6)
C5B 0.6021 (3) 0.86121 (13) 0.58802 (7) 0.0339 (7)
H5B 0.574727 0.894179 0.604812 0.041*
C6B 0.5808 (3) 0.80166 (14) 0.60024 (8) 0.0388 (7)
H6B 0.539948 0.793635 0.625552 0.047*
C7B 0.6187 (3) 0.75327 (14) 0.57566 (8) 0.0399 (7)
H7B 0.603406 0.712296 0.584257 0.048*
C8B 0.6784 (3) 0.76427 (13) 0.53897 (8) 0.0371 (7)
H8B 0.704267 0.731270 0.522102 0.045*
C9B 0.7757 (3) 1.00367 (12) 0.48222 (7) 0.0264 (6)
C10B 0.8325 (3) 1.01630 (12) 0.44214 (7) 0.0320 (6)
H10A 0.740637 0.996205 0.424764 0.048*
H10B 0.963421 1.000401 0.437670 0.048*
H10C 0.830798 1.060596 0.437604 0.048*
C11B 0.7267 (3) 1.15016 (12) 0.51923 (7) 0.0288 (6)
H11B 0.681768 1.136493 0.543310 0.035*
C12B 0.7448 (3) 1.21546 (12) 0.51221 (7) 0.0283 (6)
C13B 0.8227 (4) 1.23819 (13) 0.47845 (8) 0.0360 (7)
H13B 0.866905 1.210757 0.459369 0.043*
C14B 0.8354 (4) 1.30068 (13) 0.47285 (8) 0.0405 (7)
H14B 0.890314 1.315376 0.449841 0.049*
C15B 0.7712 (4) 1.34281 (13) 0.49950 (8) 0.0329 (6)
C16B 0.6921 (3) 1.31949 (13) 0.53283 (8) 0.0355 (7)
H16B 0.645426 1.347018 0.551621 0.043*
C17B 0.6798 (3) 1.25705 (13) 0.53923 (8) 0.0336 (6)
H17B 0.626363 1.242446 0.562389 0.040*
C18B 0.7793 (4) 1.41103 (14) 0.49190 (9) 0.0474 (8)
H18B 0.777501 1.432361 0.517099 0.057*
C19B 0.9630 (5) 1.43091 (16) 0.47136 (10) 0.0747 (11)
H19A 0.962933 1.413774 0.445563 0.112*
H19B 1.077000 1.416010 0.485375 0.112*
H19C 0.967150 1.475728 0.469926 0.112*
C20B 0.6001 (6) 1.43109 (17) 0.46993 (14) 0.1047 (17)
H20A 0.591799 1.408271 0.445942 0.157*
H20B 0.608372 1.475049 0.464495 0.157*
H20C 0.484175 1.422918 0.485164 0.157*
C4′B 0.6642 (3) 0.87325 (12) 0.55084 (7) 0.0251 (6)
C8′B 0.7001 (3) 0.82462 (12) 0.52706 (7) 0.0291 (6)
O1A 0.7185 (2) 0.66621 (8) 0.65816 (5) 0.0357 (5)
O2A 0.6670 (3) 0.60829 (9) 0.60852 (6) 0.0636 (7)
O3A 0.8480 (2) 0.52046 (8) 0.72678 (5) 0.0346 (5)
N1A 0.7797 (3) 0.44930 (9) 0.67178 (6) 0.0287 (5)
H1A 0.807467 0.456484 0.695866 0.034*
N2A 0.7724 (3) 0.38914 (10) 0.65924 (6) 0.0298 (5)
C2A 0.7114 (4) 0.60819 (12) 0.64176 (8) 0.0355 (7)
C3A 0.7564 (3) 0.55602 (11) 0.66533 (7) 0.0253 (6)
C4A 0.8065 (3) 0.56420 (12) 0.70488 (7) 0.0282 (6)
C5A 0.8557 (3) 0.63948 (13) 0.75760 (8) 0.0370 (7)
H5A 0.886239 0.606857 0.774514 0.044*
C6A 0.8577 (4) 0.69890 (14) 0.77065 (8) 0.0419 (7)
H6A 0.889291 0.707137 0.796518 0.050*
C7A 0.8136 (4) 0.74694 (14) 0.74608 (9) 0.0433 (8)
H7A 0.814818 0.787883 0.755258 0.052*
C8A 0.7684 (3) 0.73546 (13) 0.70857 (8) 0.0379 (7)
H8A 0.740004 0.768230 0.691619 0.045*
C9A 0.7464 (3) 0.49621 (12) 0.64896 (7) 0.0271 (6)
C10A 0.7007 (4) 0.48318 (12) 0.60807 (7) 0.0350 (7)
H10D 0.795222 0.504017 0.591838 0.052*
H10E 0.569900 0.498065 0.602023 0.052*
H10F 0.706995 0.438918 0.603568 0.052*
C11A 0.7604 (3) 0.34946 (12) 0.68602 (8) 0.0303 (6)
H11A 0.758399 0.363133 0.711702 0.036*
C12A 0.7499 (3) 0.28427 (12) 0.67825 (7) 0.0264 (6)
C13A 0.8072 (3) 0.25952 (12) 0.64342 (7) 0.0298 (6)
H13A 0.856849 0.285460 0.624060 0.036*
C14A 0.7915 (3) 0.19735 (12) 0.63717 (7) 0.0314 (6)
H14A 0.834721 0.181004 0.613622 0.038*
C15A 0.7143 (3) 0.15766 (12) 0.66429 (7) 0.0306 (6)
C16A 0.6562 (3) 0.18285 (13) 0.69880 (8) 0.0333 (6)
H16A 0.602842 0.157027 0.717831 0.040*
C17A 0.6749 (3) 0.24507 (12) 0.70580 (7) 0.0329 (6)
H17A 0.636141 0.261193 0.729701 0.039*
C18A 0.6848 (4) 0.09026 (13) 0.65621 (8) 0.0379 (7)
H18A 0.662517 0.069231 0.681108 0.045*
C19A 0.5023 (4) 0.08131 (14) 0.63164 (9) 0.0543 (9)
H19D 0.518009 0.102885 0.607374 0.081*
H19E 0.389378 0.097819 0.645041 0.081*
H19F 0.482699 0.037525 0.626787 0.081*
C20A 0.8595 (4) 0.06027 (14) 0.63762 (10) 0.0575 (9)
H20D 0.883605 0.079604 0.612912 0.086*
H20E 0.833721 0.016511 0.633906 0.086*
H20F 0.973804 0.065353 0.654072 0.086*
C4′A 0.8090 (3) 0.62678 (12) 0.71962 (7) 0.0278 (6)
C8′A 0.7648 (3) 0.67528 (13) 0.69585 (8) 0.0314 (6)
O1C 0.3170 (2) 0.33860 (8) 0.68020 (5) 0.0314 (4)
O2C 0.3648 (3) 0.39853 (9) 0.72891 (5) 0.0432 (5)
O3C 0.1730 (2) 0.47976 (8) 0.60917 (5) 0.0337 (4)
N1C 0.2424 (3) 0.55417 (10) 0.66221 (6) 0.0277 (5)
H1C 0.207394 0.545328 0.638706 0.033*
N2C 0.2527 (3) 0.61518 (10) 0.67301 (6) 0.0305 (5)
C2C 0.3197 (3) 0.39695 (12) 0.69559 (8) 0.0303 (6)
C3C 0.2732 (3) 0.44817 (12) 0.67110 (7) 0.0251 (6)
C4C 0.2199 (3) 0.43773 (12) 0.63185 (7) 0.0268 (6)
C5C 0.1736 (3) 0.35913 (13) 0.58059 (8) 0.0356 (7)
H5C 0.135217 0.390418 0.563313 0.043*
C6C 0.1805 (4) 0.29928 (13) 0.56856 (8) 0.0384 (7)
H6C 0.143977 0.289275 0.543186 0.046*
C7C 0.2408 (3) 0.25331 (13) 0.59334 (8) 0.0373 (7)
H7C 0.247794 0.212149 0.584661 0.045*
C8C 0.2905 (3) 0.26716 (12) 0.63043 (8) 0.0338 (7)
H8C 0.333087 0.235998 0.647417 0.041*
C9C 0.2833 (3) 0.50864 (12) 0.68591 (7) 0.0257 (6)
C10C 0.3343 (3) 0.52404 (12) 0.72614 (7) 0.0343 (6)
H10G 0.459433 0.505401 0.732773 0.051*
H10H 0.233695 0.508211 0.743121 0.051*
H10I 0.343300 0.568623 0.728947 0.051*
C11C 0.1902 (3) 0.65294 (12) 0.64803 (8) 0.0313 (6)
H11C 0.142601 0.637482 0.624474 0.038*
C12C 0.1893 (3) 0.71849 (12) 0.65434 (7) 0.0283 (6)
C13C 0.2803 (3) 0.74474 (12) 0.68581 (7) 0.0320 (6)
H13C 0.346968 0.719386 0.703566 0.038*
C14C 0.2746 (3) 0.80706 (13) 0.69147 (7) 0.0334 (6)
H14C 0.339455 0.823951 0.712986 0.040*
C15C 0.1768 (3) 0.84604 (12) 0.66666 (7) 0.0306 (6)
C16C 0.0857 (3) 0.81969 (13) 0.63528 (8) 0.0337 (6)
H16C 0.017731 0.845106 0.617745 0.040*
C17C 0.0920 (3) 0.75712 (12) 0.62911 (7) 0.0323 (6)
H17C 0.029189 0.740286 0.607343 0.039*
C18C 0.1580 (4) 0.91412 (13) 0.67409 (8) 0.0374 (7)
H18C 0.127176 0.934459 0.649259 0.045*
C20C 0.3418 (4) 0.94350 (14) 0.68993 (10) 0.0564 (9)
H20G 0.449133 0.936685 0.672229 0.085*
H20H 0.373803 0.925118 0.714649 0.085*
H20I 0.320965 0.987609 0.693121 0.085*
C19C −0.0125 (4) 0.92562 (15) 0.70088 (10) 0.0605 (9)
H19G −0.132012 0.909556 0.689354 0.091*
H19H −0.026440 0.969746 0.705235 0.091*
H19I 0.011674 0.904922 0.725218 0.091*
C4′C 0.2228 (3) 0.37429 (12) 0.61818 (7) 0.0263 (6)
C8′C 0.2770 (3) 0.32746 (12) 0.64242 (7) 0.0276 (6)

1 Source of material

The synthesis was performed according to the previously reported procedure [5]. In suspension of 3-acetyl-4-hydroxycoumarin (4.1 g, 20 mmol) in methanol (20 mL), hydrazine hydrate (1 g, 20 mmol) was added and the resulting mixture was refluxed on a water bath. The formed product was filtered and recrystallized from ethanol. A solution of the obtained 3-(1-hydrazonoethyl)-4-hydroxycoumarin (1.1 g, 5 mmol) and 4-isopropylbenzaldehyde (0.74 g, 5 mmol) in absolute ethanol was refluxed for 3 h. After the completion of the reaction, the mixture was allowed to cool to room temperature and the formed precipitate was collected by filtration. A crude solid of 3-(1-(2-(4-isopropylbenzylidene)hydrazinyl)ethylidene)chroman-2,4-dione was purified by flash SiO2 column chromatography (ethyl acetate–hexane, φ(hexane) = 0.5), and dissolved in acetone to form the crystals by slow evaporation of the solvent.

2 Experimental details

Coordinates of hydrogen atoms were introduced in idealized positions and refined using a riding model. Their U iso values were approximated as U iso = kU eq of the carrier atom (k = 1.5 for hydrogen atoms of methyl groups and 1.2 for other hydrogen atoms).

3 Comment

3.1 Chemical context

Azines have attracted a lot of attention from chemists due to their interesting chemical and biological properties, arising from the structure with two of the same or different groups joined by an N–N bond. They show significant in vivo and in vitro biological and pharmacological activities, such as antimicrobial [6], antidepressant [7], anti-inflammatory [8], antioxidant [9], and antitumor [10]. Azines are good synthons in a number of synthetic transformations, especially in the synthesis of heterocyclic systems [11, 12]. In addition, due to the presence of lone electron pairs on nitrogen atoms, they are suitable for the synthesis of various complexes [13], [14], [15]. Here we report the crystal structure of one unsymmetrical azine containing a coumarin core and one more aromatic moiety.

3.2 Structural comment

Asymmetric unit contains three chemically equivalent but crystallographically independent molecules of (Z)-3-(1-(2-((E)-4-isopropylbenzylidene)hydrazinyl)ethylidene) chroman-2,4-dione, designated A, B and C. Pairwise comparison gave no significant differences in bond lengths between A and B ( Δ max  = 2.6σ), A and C ( Δ max  = 1.9σ), and B and C ( Δ max  = 2.4σ) molecules. Bond lengths, valence and torsion angles were found to match those found in compounds with similar fragments, by application of the Mogul knowledge base [16]. The structure of the chromene moiety closely resembles that found in related structure [17]. Intramolecular hydrogen bonds N1A–H1A⋯O3A, N1B–H1B⋯O3B, and N1C–H1C⋯O3C are present in molecules A, B, and C, respectively, which parallels cases found in closely related coumarin-containing azines [1819].

Although chemically identical, molecules A, B, and C show some conformational differences, mostly manifested through different torsions around N1–N2, and C11–C12 bonds. With torsion angles τ(C9B–N1B–N2B–C11B) = 177.34(19) ° , and τ(N2B–C11B–C12B–C13B) = – 4.6 ( 3 ) ° molecule B is quite planar (excluding isopropyl group), while molecules A and C are more twisted with torsion angles τ(C9C–N1C–N2C–C11C) = –173.3(2)°, and τ(N2C–C11C–C12C–C13C) =  8.8 ( 4 ) ° for C, and τ(C9A–N1A–N2A–C11A) = –163.7(2)°, and τ(N2A–C11A–C12A–C13A) =  18.9 ( 3 ) ° for A.

Estimation of intermolecular energies by CE–B3LYP method [20] revealed that basic structural motifs are columns of stacked molecules, propagating along crystallographic a axis. There are two crystallographically independent columns – one with ⋯B⋯B⋯ sequence, and other with ⋯C⋯A⋯ ordering. In the BB column, inversion-related molecules B are stacked, with interaction energies E B⋯B(i) = –78 kJ mol−1 and E B⋯B(ii) = –70 kJ mol−1 (symmetry codes (i) –x + 1, –y + 2, –z + 1; (ii) –x + 2, –y + 2, –z + 1). Molecules A and C comprising the AC column appear to be approximately related by noncrystallographic inversion, with interaction energies E A⋯C = –75 kJ mol−1 and E A⋯C(iii) = – 76 kJ mol−1 (symmetry code (iii) –x + 1, –y + 2, –z + 1). In all these interactions, the dispersion component is dominant by a large margin. The redistribution of electron density within the O3–C4–C3–C9 fragment (the O3–C4, C4–C3 and C3–C9 bond lengths) allows us to describe the structure of the studied molecules as superposition of neutral and zwitterionic structures.


Corresponding author: Marko V. Rodić, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge the financial support of the Ministry of Education, Science, and Technological Development of the Republic of Serbia, & Austria Federal Ministry of Education, Science and Research (project No. 451-03-02141/2017-09/14; WTZ project No. SRB 14/2018); The Ministry of Science, Technological Development and Innovation of the Republic of Serbia (Grant No. 451-03-47/2023–01/200125); Faculty of Sciences and Mathematics, University of Priština in Kosovska Mitrovica (project No. IJ-0205).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Oxford Diffraction. CrysAlisPRO Software System; Rigaku Corporation: Wroclaw, Poland, 2022.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal structure determination. Acta Crystallogr. 2015, A71, 3–8. https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148–155. https://doi.org/10.1107/S090744490804362X.Search in Google Scholar PubMed PubMed Central

5. Ristić, M., Radulović, N., Dekić, B., Dekić, V., Ristić, N., Stojanović–Radić, Z. Synthesis and spectral characterization of asymmetric azines containing a coumarin moiety: the discovery of new antimicrobial and antioxidant agents. Chem. Biodivers. 2019, 16, e1800486. https://doi.org/10.1002/cbdv.201800486.Search in Google Scholar PubMed

6. Chiter, C., Bouchama, A., Nardjes Mouas, T., Allal, H., Yahiaoui, M., Warad, I., Zarrouk, A., Djedouani, A. Synthesis, crystal structure, spectroscopic and Hirshfeld surface analysis, NCI–RDG, DFT computations and antibacterial activity of new asymmetrical azines. J. Mol. Struct. 2020, 1217, 128376. https://doi.org/10.1016/j.molstruc.2020.128376.Search in Google Scholar

7. Ergenç, N., Günay, N. S., Demirdamar, R. Synthesis and antidepressant evaluation of new 3-phenyl-5-sulfonamidoindole derivatives. Eur. J. Med. Chem. 1998, 33, 143–148. https://doi.org/10.1016/S0223–5234(98)80039–1.10.1016/S0223-5234(98)80039-1Search in Google Scholar

8. Gul, H. I., Suleyman, H., Gul, M. Evaluation of the anti-inflammatory activity of N, N′-bis(3-dimethylamino-1-phenyl-propylidene)hydrazine dihydrochloride. Pharm. Biol. 2009, 47, 968–972. https://doi.org/10.1080/13880200902967961.Search in Google Scholar

9. Abdel–Galil, E., Arab, A. M., Afsah, E. M. Synthesis and biological activity evaluation of some new mixed azines appended tetrahydro-1,2,4-triazines. Synth. Commun. 2021, 51, 1373–1383. https://doi.org/10.1080/00397911.2021.1882497.Search in Google Scholar

10. Almutairi, F. M., Ali, A. G., Abdelhamid, A. O., Alalawy, A. I., Bishr, M. K., Mohamed, M. S. The identification of a novel unsymmetrical azine as an apoptosis inducer in colorectal cancer. Anti Cancer Agents Med. Chem. 2021, 21, 406–413. https://doi.org/10.2174/1871520620666200824095314.Search in Google Scholar PubMed

11. Reddy, M. D., Fronczek, F. R., Watkins, E. B. Rh-catalyzed, regioselective, C–H bond functionalization: access to quinoline-branched amines and dimers. Org. Lett. 2016, 18, 5620–5623. https://doi.org/10.1021/acs.orglett.6b02848.Search in Google Scholar PubMed

12. Motati, D. R., Uredi, D., Watkins, E. B. A general method for the metal-free, regioselective, remote C–H halogenation of 8-substituted quinolines. Chem. Sci. 2018, 9, 1782–1788. https://doi.org/10.1039/C7SC04107A.Search in Google Scholar PubMed PubMed Central

13. Sutradhar, M., Pombeiro, A. J. L. Coordination chemistry of non-oxido, oxido and dioxidovanadium(IV/V) complexes with azine fragment ligands. Coord. Chem. Rev. 2014, 265, 89–124. https://doi.org/10.1016/j.ccr.2014.01.007.Search in Google Scholar

14. Hayibor, K. M., Sunatsuki, Y., Suzuki, T. Selective formation of unsymmetric multidentate azine-based ligands in nickel(II) complexes. Molecules 2022, 27, 6788. https://doi.org/10.3390/molecules27206788.Search in Google Scholar PubMed PubMed Central

15. Dragancea, D., Arion, V. B., Shova, S., Rentschler, E., Gerbeleu, N. V. Azine-bridged octanuclear copper(II) complexes assembled with a one-stranded ditopic thiocarbohydrazone ligand. Angew. Chem. Int. Ed. 2005, 44, 7938–7942. https://doi.org/10.1002/anie.200501807.Search in Google Scholar PubMed

16. Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., Orpen, A. G. Retrieval of crystallographically-derived molecular geometry information. J. Chem. Inf. Comput. Sci. 2004, 44, 2133–2144. https://doi.org/10.1021/ci049780b.Search in Google Scholar PubMed

17. Milanović, Ž. B., Marković, Z. S., Dimić, D. S., Klisurić, O. R., Radojević, I. D., Šeklić, D. S., Živanović, M. N., Dimitrić Marković, J., Radulović, M., Avdović, E. H. Synthesis, structural characterization, biological activity and molecular docking study of 4,7-dihydroxycoumarin modified by aminophenol derivatives. C. R. Chim. 2021, 24, 215–232. https://doi.org/10.5802/crchim.68.Search in Google Scholar

18. Radulović, N. S., Sejmanović, D. M., Ristić, M. N., Dekić, V. S., Krüger, B., Kahlenberg, V., Rodić, M. V. The crystal structure of 3-(1-(2-((5-methylthiophen-2-yl)methylene)hydrazinyl)ethylidene)chroman-2,4- dione, C17 H14 N2 O3 S. Z. Kristallogr. N. Cryst. Struct. 2022, 237, 775–777. https://doi.org/10.1515/ncrs-2022–0225.10.1515/ncrs-2022-0225Search in Google Scholar

19. Radnović, N. D., Dekić, B. R., Ristić, M. N., Sejmanović, D. M., Aksić, M. S., Krüger, B., Rodić, M. V. The crystal structure of 3-(1-(2-(4-hydroxy-3,5-dimethoxybenzylidene)hydrazinyl)ethylidene)chroman-2, 4-dione dihydrate, C20H22N2O8. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 171–173; https://doi.org/10.1515/ncrs-2022-0594.Search in Google Scholar

20. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D., Spackman, M. A. CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575–587. https://doi.org/10.1107/S205225251700848X.Search in Google Scholar PubMed PubMed Central

Received: 2023-02-09
Accepted: 2023-03-05
Published Online: 2023-04-13
Published in Print: 2023-06-27

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 16.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2023-0062/html
Scroll to top button