Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) March 27, 2023

Crystal structure of (diaqua-bis(phenanthroline-K 2 N,N′)-tetrakis(m 2-3,4,5,6-tetrafluorophthalato-K 4 O,O:O′:O″;K 2 O:O′)dierbium (III) phenanthroline (1/2), C80H38Er2F16N8O18

  • Jun-Ya Song , Xiao-Yu Zhang ORCID logo EMAIL logo , Chun-Li Zhang , Bei-Bei Zhao , Shi-Jie Huang and Xinfang Liu EMAIL logo

Abstract

C80H38Er2F16N8O18, triclinic, P 1 (no. 2), a = 11.4228(4) Å, b = 12.6712(3) Å, c = 13.2663(4) Å, α = 102.660(2)°, β = 98.047(3)°, γ = 105.509(3)°, V = 1764.54(10) Å3, Z = 1, R gt(F) = 0.0311, wR ref (F 2) = 0.0668, T = 293(2) K.

CCDC no.: 2235105

The asymmetric unit of the title crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Figure: 
The molecular structure of the title compound, showing the atom numbering scheme. Displacement ellipsoids are shown at the 30% probability level.
Figure:

The molecular structure of the title compound, showing the atom numbering scheme. Displacement ellipsoids are shown at the 30% probability level.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.20 × 0.19 × 0.18 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 2.49 mm−1
Diffractometer, scan mode: SuperNova, ω
θ max, completeness: 29.1°, >99%
N(hkl)measured, N(hkl)unique, R int: 15,821, 8127, 0.034
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 7495
N(param)refined: 561
Programs: CrysAlis Pro [1], Olex2 [2], Shelx [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Er1 0.58494 (2) 0.16248 (2) 0.55111 (2) 0.01820 (5)
F1 0.5363 (2) 0.19806 (18) 0.00720 (16) 0.0467 (6)
F2 0.2935 (2) 0.12846 (17) −0.08053 (16) 0.0440 (5)
F3 0.1286 (2) −0.0091 (2) 0.00034 (18) 0.0541 (6)
F4 0.20538 (19) −0.07264 (16) 0.17039 (16) 0.0411 (5)
F5 1.0644 (2) 0.24678 (17) 0.56698 (19) 0.0500 (6)
F6 1.1730 (2) 0.18881 (19) 0.73143 (19) 0.0528 (6)
F7 1.0458 (2) 0.00672 (18) 0.79144 (16) 0.0429 (5)
F8 0.8218 (2) −0.12321 (16) 0.68203 (17) 0.0419 (5)
O1 0.6936 (2) 0.2511 (2) 0.2149 (2) 0.0474 (7)
O2 0.6749 (2) 0.0697 (2) 0.2140 (2) 0.0397 (6)
H2 0.7401 0.0965 0.2585 0.060*
O3 0.5078 (2) 0.11221 (16) 0.36582 (16) 0.0247 (5)
O4 0.4227 (2) −0.07749 (16) 0.30500 (17) 0.0278 (5)
O5 0.6461 (2) −0.17597 (16) 0.49578 (19) 0.0323 (6)
O6 0.61447 (19) −0.01466 (16) 0.48870 (17) 0.0217 (5)
O7 0.8569 (2) 0.1082 (2) 0.36340 (19) 0.0392 (6)
O8 0.7554 (2) 0.19275 (16) 0.46982 (17) 0.0251 (5)
O9 0.7677 (2) 0.24310 (18) 0.68284 (18) 0.0297 (5)
H9A 0.7512 0.2435 0.7452 0.044*
H9B 0.7995 0.3151 0.6872 0.044*
N1 0.6284 (2) 0.35821 (19) 0.5296 (2) 0.0231 (6)
N2 0.5334 (3) 0.3014 (2) 0.6946 (2) 0.0253 (6)
C1 0.4992 (3) 0.1074 (2) 0.1432 (2) 0.0235 (7)
C2 0.4139 (3) 0.0375 (2) 0.1865 (2) 0.0221 (7)
C3 0.2922 (3) −0.0037 (3) 0.1341 (3) 0.0291 (7)
C4 0.2498 (3) 0.0265 (3) 0.0447 (3) 0.0325 (8)
C5 0.3326 (3) 0.0963 (3) 0.0043 (3) 0.0301 (8)
C6 0.4564 (3) 0.1335 (3) 0.0517 (3) 0.0269 (7)
C7 0.6341 (3) 0.1526 (3) 0.1950 (3) 0.0306 (8)
C8 0.4535 (3) 0.0226 (2) 0.2951 (2) 0.0215 (6)
C9 0.8190 (3) −0.0048 (2) 0.5654 (2) 0.0210 (6)
C10 0.8824 (3) 0.0925 (2) 0.5377 (2) 0.0228 (7)
C11 1.0020 (3) 0.1529 (3) 0.5930 (3) 0.0288 (7)
C12 1.0584 (3) 0.1255 (3) 0.6776 (3) 0.0325 (8)
C13 0.9959 (3) 0.0321 (3) 0.7062 (3) 0.0287 (7)
C14 0.8785 (3) −0.0331 (3) 0.6489 (3) 0.0263 (7)
C15 0.6865 (3) −0.0721 (2) 0.5130 (2) 0.0199 (6)
C16 0.8259 (3) 0.1341 (2) 0.4496 (3) 0.0235 (7)
C17 0.4821 (3) 0.2743 (3) 0.7726 (3) 0.0332 (8)
H17 0.4619 0.1990 0.7754 0.040*
C18 0.4567 (4) 0.3530 (3) 0.8508 (3) 0.0421 (10)
H18 0.4203 0.3300 0.9040 0.051*
C19 0.4853 (4) 0.4634 (3) 0.8487 (3) 0.0414 (9)
H19 0.4684 0.5165 0.9004 0.050*
C20 0.5697 (4) 0.6106 (3) 0.7587 (3) 0.0446 (10)
H20 0.5548 0.6663 0.8092 0.054*
C21 0.6181 (4) 0.6391 (3) 0.6791 (3) 0.0404 (9)
H21 0.6374 0.7141 0.6756 0.049*
C22 0.6894 (3) 0.5814 (3) 0.5127 (3) 0.0372 (9)
H22 0.7103 0.6556 0.5068 0.045*
C23 0.7055 (3) 0.4974 (3) 0.4383 (3) 0.0368 (9)
H23 0.7375 0.5134 0.3807 0.044*
C24 0.6737 (3) 0.3865 (3) 0.4489 (3) 0.0297 (8)
H24 0.6847 0.3297 0.3969 0.036*
C25 0.6124 (3) 0.4420 (2) 0.6046 (3) 0.0227 (7)
C26 0.6408 (3) 0.5552 (2) 0.5987 (3) 0.0306 (8)
C27 0.5400 (3) 0.4964 (3) 0.7688 (3) 0.0318 (8)
C28 0.5616 (3) 0.4121 (2) 0.6914 (2) 0.0227 (7)
N3 0.9074 (3) 0.4650 (2) 0.7305 (2) 0.0395 (7)
N4 0.8259 (3) 0.3905 (2) 0.8968 (3) 0.0411 (8)
C29 0.7941 (4) 0.3579 (4) 0.9799 (3) 0.0509 (11)
H29 0.7723 0.2807 0.9755 0.061*
C30 0.7914 (4) 0.4322 (4) 1.0737 (4) 0.0599 (12)
H30 0.7689 0.4050 1.1302 0.072*
C31 0.8224 (4) 0.5450 (4) 1.0805 (4) 0.0581 (12)
H31 0.8207 0.5962 1.1419 0.070*
C32 0.8908 (4) 0.7022 (4) 0.9971 (4) 0.0609 (13)
H32 0.8864 0.7551 1.0561 0.073*
C33 0.9282 (4) 0.7372 (3) 0.9159 (4) 0.0584 (12)
H33 0.9484 0.8142 0.9191 0.070*
C34 0.9848 (4) 0.6949 (4) 0.7406 (4) 0.0543 (12)
H34 1.0086 0.7716 0.7425 0.065*
C35 0.9951 (4) 0.6181 (4) 0.6583 (4) 0.0592 (12)
H35 1.0295 0.6412 0.6042 0.071*
C36 0.9537 (4) 0.5027 (4) 0.6543 (3) 0.0523 (11)
H36 0.9588 0.4500 0.5954 0.063*
C37 0.9010 (3) 0.5426 (3) 0.8171 (3) 0.0323 (8)
C38 0.9380 (4) 0.6597 (3) 0.8245 (3) 0.0425 (9)
C39 0.8572 (4) 0.5842 (3) 0.9947 (3) 0.0443 (10)
C40 0.8593 (3) 0.5036 (3) 0.9042 (3) 0.0342 (8)

1 Source of materials

A mixture of Er(NO3)3⋅6H2O (0.0923 g, 0.2 mmol), 3,4,5,6- tetrafluorophthalic acid (0.054 g, 0.2 mmol) and phenanthroline (35.7 mg, 0.15 mmol) were dissolved in 8 mL of deionized water. The mixture was sealed in a 25 mL Teflon-lined steel autoclave after ultrasound treatment for 15 min and heated at 120 °C for 72 h. The mixture was cooled to room temperature at a rate of 2 °C/h, and colorless block crystals were isolated by filtration, washed with distilled water and dried in air (CCDC number 2235105).

2 Experimental details

Using Olex2 [2], the structure was solved with the ShelXT [3] structure solution program and refined with the ShelXL [4] refinement package. The carbon bound hydrogen atoms were placed in calculated positions and refined using a riding model on attached atoms.

3 Comment

In recent decades, a large number of Er(III) complexes have attracted considerable attentions due to their structural diversity and potential applications in many areas [5], [6], [7], [8]. Er(III)–MOFs can be constructed from Er(III) ions and carboxylate and nitrogen-containing ligands. Among rod N-donor ligands, 1,10-phenanthroline (1,10–Phen) has been extensively used in the preparation of Er complexes [5], [6], [7]. However, tetrafluorophthalic acid (H2TFPA), as a common derivative of phthalic acid, is rarely used in the assembly process [8]. In this work, a binuclear Er(III) complex was constructed with TFPA and 1,10–Phen as mixed ligands. The asymmetric unit contains one Er(III), two tetrafluorophthalate (HTFPA), one coordinated water molecule, one coordinated 1,10–Phen, and one free 1,10–Phen molecule (see Figure). Er1 is nine-coordinated by two N atoms (N1, N2) of phen ligand, one O atom (O9) from coordinated water molecule, two O atoms (O3, O4#1, #1: 1 − x, −y, 1 − z) from two HTFPA ligands and four O atoms (O6, O8, O5#1 and O6#1) from two TFPA2− ligands. The Er–N bond lengths are 2.484(2) and 2.543(2) Å and the Er–O bond lengths are in the range of 2.339(2)–2.686(2) Å, respectively. Two HTFPA and two TFPA2− ligands adopt bis-monodentate and bis-bidentate bridging modes, respectively, to link neighboring Er(III) ions into a nuclear {Er2} unit.


Corresponding author: Xiao-Yu Zhang, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471022, P. R. China, E-mail: ; and Xinfang Liu, College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented 6 Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China, E-mail:

Funding source: Training Program for Young Cadre Teachers of Higher Education Institutions in Henan Province

Award Identifier / Grant number: 2018GGJS128

Funding source: Science and Technology Development Project in Henan Province

Award Identifier / Grant number: 172101410037

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Training Program for Young Cadre Teachers of Higher Education Institutions in Henan Province (No. 2018GGJS128) and Science and Technology Development Project in Henan Province (No. 172101410037).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Oxford Diffraction Ltd. CrysAlisPRO, Version 1.171.39.6a; Rigaku Oxford Diffraction: England, 2018.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Ashashi, N. A., Nisa, Z. U., Singhaal, R., Sen, C., Ahmad, M., Frontera, A., Sheikh, H. N. Dual-ligand strategy employing rigid 2, 5-thiophenedicarboxylate and 1, 10-phenanthroline as coligands for solvothermal synthesis of eight lanthanide (III) coordination polymers: structural diversity, DFT study, and exploration of the luminescent Tb (III) coordination polymer as an efficient chemical sensor for nitroaromatic compounds. ACS Omega 2022, 7, 41370–41391; https://doi.org/10.1021/acsomega.2c05179.Search in Google Scholar PubMed PubMed Central

6. Zhang, Y. Y., Ren, N., Xu, S. L., Zhang, J. J., Zhang, D. H. A series of binuclear lanthanide (III) complexes: crystallography, antimicrobial activity and thermochemistry properties studies. J. Mol. Struct. 2015, 1081, 413–425; https://doi.org/10.1016/j.molstruc.2014.10.057.Search in Google Scholar

7. Zong, G. C., Huo, J. X., Ren, N., Zhang, J. J., Qi, X. X., Gao, J., Geng, L. N., Wang, S. P., Shi, S. K. Preparation, characterization and properties of four new trivalent lanthanide complexes constructed using 2-bromine-5-methoxybenzoic acid and 1, 10-phenanthroline. Dalton Trans. 2015, 44, 14877–14886; https://doi.org/10.1039/c5dt01969a.Search in Google Scholar PubMed

8. Feng, X., Shang, Y., Zhang, H., Li, R., Wang, W., Zhang, D., Wang, L., Li, Z. Enhanced luminescence and tunable magnetic properties of lanthanide coordination polymers based on fluorine substitution and phenanthroline ligand. RSC Adv. 2019, 9, 16328–16338; https://doi.org/10.1039/c9ra01574d.Search in Google Scholar PubMed PubMed Central

Received: 2023-01-10
Accepted: 2023-03-14
Published Online: 2023-03-27
Published in Print: 2023-06-27

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2023-0023/html
Scroll to top button