Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) June 13, 2022

Crystal structure of methyl 2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)acetate, C15H11NO4

  • Wei Peng , Jicai Yang , Yu Yue , Xin Deng and Wujiu Jiang ORCID logo EMAIL logo

Abstract

C15H11NO4, monoclinic, P21/n (no. 14), a = 8.0909(6) Å, b = 24.4463(18) Å, c = 12.6980(10) Å, β = 96.6020(10)°, V = 2494.9(3) Å3, Z = 8, R gt (F) = 0.0470, wR ref (F 2) = 0.1273, T = 296 (2) K.

CCDC no.: 2171193

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow, block
Size: 0.30 × 0.26 × 0.22 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.11 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θ max, completeness: 25.1°, >99%
N(hkl)measured, N(hkl)unique, R int: 12813, 4421, 0.022
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 3376
N(param)refined: 363
Programs: Bruker [1], SHELX [2, 3], WinGX/ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.8531 (2) 0.60315 (7) 0.61961 (13) 0.0503 (4)
C2 0.8951 (2) 0.57022 (8) 0.53833 (16) 0.0631 (5)
H2 0.873718 0.532863 0.539798 0.076*
C3 0.9690 (2) 0.59241 (10) 0.45427 (16) 0.0692 (6)
H3 0.997032 0.569746 0.400244 0.083*
C4 1.0002 (2) 0.64662 (10) 0.45061 (15) 0.0655 (5)
H4 1.051402 0.660774 0.394608 0.079*
C5 0.9563 (2) 0.68201 (8) 0.53036 (14) 0.0538 (4)
C6 0.9885 (3) 0.73896 (9) 0.5293 (2) 0.0764 (6)
H6 1.039799 0.754092 0.474209 0.092*
C7 0.9450 (3) 0.77153 (9) 0.6079 (3) 0.0902 (8)
H7 0.966144 0.808883 0.605705 0.108*
C8 0.8695 (3) 0.75024 (9) 0.6916 (2) 0.0802 (7)
H8 0.840092 0.773396 0.744510 0.096*
C9 0.8378 (2) 0.69498 (8) 0.69696 (14) 0.0565 (5)
C10 0.88116 (18) 0.66010 (7) 0.61579 (13) 0.0462 (4)
C11 0.7853 (2) 0.57892 (10) 0.71085 (16) 0.0687 (5)
C12 0.7627 (2) 0.67177 (11) 0.78701 (16) 0.0710 (5)
C13 0.6691 (3) 0.59165 (14) 0.87719 (18) 0.0962 (7)
H13A 0.608728 0.558518 0.855231 0.115*
H13B 0.590652 0.617316 0.901937 0.115*
C14 0.8011 (2) 0.57840 (9) 0.96690 (15) 0.0672 (5)
C15 0.8401 (3) 0.54357 (12) 1.14185 (18) 0.0929 (8)
H15A 0.907640 0.513425 1.123952 0.139*
H15B 0.775282 0.532681 1.197016 0.139*
H15C 0.910442 0.573746 1.166019 0.139*
C16 0.5526 (2) 0.29866 (7) 0.44875 (14) 0.0519 (4)
C17 0.5228 (3) 0.24316 (9) 0.44849 (19) 0.0745 (6)
H17 0.474549 0.227207 0.504023 0.089*
C18 0.5649 (3) 0.21084 (10) 0.3647 (3) 0.0935 (8)
H18 0.542590 0.173520 0.364574 0.112*
C19 0.6373 (3) 0.23283 (10) 0.2843 (2) 0.0870 (8)
H19 0.666207 0.210337 0.230306 0.104*
C20 0.6701 (2) 0.28953 (9) 0.28067 (15) 0.0626 (5)
C21 0.7449 (3) 0.31459 (13) 0.19863 (16) 0.0785 (7)
H21 0.774036 0.293333 0.142887 0.094*
C22 0.7757 (2) 0.36922 (12) 0.19895 (16) 0.0771 (7)
H22 0.824638 0.385004 0.143509 0.092*
C23 0.7339 (2) 0.40188 (9) 0.28288 (15) 0.0620 (5)
H23 0.755736 0.439231 0.282932 0.074*
C24 0.66094 (19) 0.37913 (7) 0.36478 (12) 0.0462 (4)
C25 0.62662 (19) 0.32267 (7) 0.36514 (13) 0.0473 (4)
C26 0.5078 (2) 0.33250 (8) 0.53666 (14) 0.0548 (4)
C27 0.6236 (2) 0.41371 (7) 0.45420 (14) 0.0497 (4)
C28 0.5091 (3) 0.42102 (9) 0.62406 (14) 0.0671 (5)
H28A 0.396816 0.412703 0.638857 0.081*
H28B 0.512754 0.459416 0.605206 0.081*
C29 0.6273 (2) 0.41103 (7) 0.72199 (14) 0.0511 (4)
C30 0.6736 (3) 0.42981 (10) 0.90465 (16) 0.0773 (6)
H30A 0.702705 0.392464 0.921173 0.116*
H30B 0.617233 0.445047 0.960372 0.116*
H30C 0.772767 0.450477 0.898003 0.116*
N1 0.73822 (19) 0.61502 (9) 0.78664 (13) 0.0721 (5)
N2 0.54838 (17) 0.38796 (6) 0.53442 (11) 0.0518 (4)
O1 0.7708 (3) 0.52976 (8) 0.72326 (15) 0.1114 (6)
O2 0.7218 (2) 0.69940 (9) 0.85941 (13) 0.1139 (7)
O3 0.94607 (17) 0.58249 (7) 0.96467 (11) 0.0827 (5)
O4 0.72982 (17) 0.56002 (7) 1.04889 (11) 0.0826 (5)
O5 0.43871 (17) 0.31496 (7) 0.60989 (11) 0.0797 (4)
O6 0.65678 (18) 0.46228 (5) 0.45978 (12) 0.0735 (4)
O7 0.75816 (16) 0.38841 (6) 0.72558 (10) 0.0698 (4)
O8 0.56556 (15) 0.43198 (6) 0.80606 (10) 0.0622 (4)

Source of material

All chemicals were purchased from commercial sources and used as received without further purification. The alrestatine (5 mmol, 1.276 g) was dissolved in MeOH (50 mL), then add 2 drops of 98% H2SO4. The mixture was refluxed for 5 h. When the reaction vessel had cooled to room temperature, the reaction mixture was filtered. The crystals of the title compound were obtained by controlled solvent evaporation.

Experimental details

All H-atoms were placed geometrically and refined using a riding model with common isotropic displacement factors U iso(H) = 1.2 or 1.5 U eq(parent C-atom).

Comment

Alrestatin ((1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)acetic acid) acting as aldose reductase inhibitor has been developed for the treatment of secondary complications in diabetes [5, 6], but has been withdrawn because of adverse effects [7]. Alrestatin methyl ester is an important intermediate in the derivatization of alrestatin, so the synthesis and crystal structure of it is of great significance to study the reduction of side effects.

The asymmetric part of the unit cell contains two crystallographically independent molecules, as shown in the figure. The bond lengths of C14=O3, C29=O7, C11=O1, C12=O2, C26=O5 and C27=O6 in the title molecule are 1.181(2) Å, 1.191(2) Å, 1.219(3) Å, 1.217(3) Å, 1.217(2) Å and 1.218 (2) Å respectively. They are similar to reported in the literature [89]. It illustrated characteristic C=O double bonds. In addition, the bond length of N1–C11, N1–C12, N1–C13, N2–C26, N2–C27, N2–C28 in the title molecule are in the range of 1.391–1.460 Å. The bond lengths within the aromatic rings as well as C13–C14 and C28–C29 ones are close to their normal values.


Corresponding author: Wujiu Jiang, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, Hunan 421008, China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the 22nd College students Extracurricular Academic Science and Technology Works Competition Project of Hengyang Normal University (14).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. Saint, Apex2 and Sadabs; Bruker AXS Inc.: Madison, WI, USA, 2012.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

5. Chylack, L. T. Jr., Henriques, H. F. III, Cheng, H.-M., Tung, W. H. Efficacy of alrestatin, an aldose reductase inhibitor, in human diabetic and nondiabetic lenses. Ophthalmology 1979, 86, 1579–1585; https://doi.org/10.1016/s0161-6420(79)35364-7.Search in Google Scholar

6. Fagius, J., Jameson, S. Effects of aldose reductase inhibitor treatment in diabetic polyneuropathy – a clinical and neurophysiological study. J. Neurol. Neurosurg. Psychiatry 1981, 44, 991–1001; https://doi.org/10.1136/jnnp.44.11.991.Search in Google Scholar PubMed PubMed Central

7. Tsai, S. C., Burnakis, T. G. Aldose reductase inhibitors: an update. Ann. Pharmacother. 1993, 27, 751–754; https://doi.org/10.1177/106002809302700616.Search in Google Scholar PubMed

8. Reger, D. L., Debreczeni, A., Horger, J. J., Smith, M. D. Structures of bifunctional molecules containing two very different supramolecular synthons: carboxylic acid and strong π…π stacking 1,8-naphthalimide ring. Cryst. Growth Des. 2011, 11, 4068–4079; https://doi.org/10.1021/cg200636k.Search in Google Scholar

9. d’Agostino, S., Grepioni, F., Braga, D., Moreschi, D., Fattori, V., Delchiaro, F., Di Motta, S., Negri, F. Exciton coupling in molecular salts of 2-(1,8-naphthalimido)ethanoic acid and cyclic amines: modulation of the solid-state luminescence. CrystEngComm 2013, 15, 10470–10480; https://doi.org/10.1039/c3ce41651h.Search in Google Scholar

Received: 2022-05-07
Accepted: 2022-05-30
Published Online: 2022-06-13
Published in Print: 2022-08-26

© 2022 Wei Peng et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 15.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2022-0237/html
Scroll to top button