Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 2, 2016

Plasmon spectroscopy: Theoretical and numerical calculations, and optimization techniques

  • Rogelio Rodríguez-Oliveros , Ramón Paniagua-Domínguez , José A. Sánchez-Gil and Demetrio Macías
From the journal Nanospectroscopy

Abstract

We present an overview of recent advances in plasmonics, mainly concerning theoretical and numerical tools required for the rigorous determination of the spectral properties of complex-shape nanoparticles exhibiting strong localized surface plasmon resonances (LSPRs). Both quasistatic approaches and full electrodynamic methods are described, providing a thorough comparison of their numerical implementations. Special attention is paid to surface integral equation formulations, giving examples of their performance in complicated nanoparticle shapes of interest for their LSPR spectra. In this regard, complex (single) nanoparticle configurations (nanocrosses and nanorods) yield a hierarchy of multiple-order LSPR s with evidence of a rich symmetric or asymmetric (Fano-like) LSPR line shapes. In addition, means to address the design of complex geometries to retrieve LSPR spectra are commented on, with special interest in biologically inspired algorithms. Thewealth of LSPRbased applications are discussed in two choice examples, single-nanoparticle surface-enhanced Raman scattering (SERS) and optical heating, and multifrequency nanoantennas for fluorescence and nonlinear optics.

References

[1] P. Drude, “Zur Elektronentheorie der metalle,” Ann. Phys. 306, 566 (1900). Search in Google Scholar

[2] G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908). Search in Google Scholar

[3] M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980). Search in Google Scholar

[4] H. C. Van De Hulst, Light Scattering by Small Particles, 1st ed. (Dover, 1981). Search in Google Scholar

[5] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998). 10.1002/9783527618156Search in Google Scholar

[6] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111, 3669–3712 (2011). Search in Google Scholar

[7] J. T. Shawn, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nature Nanotech. 6, 268– 276 (2011). Search in Google Scholar

[8] W. L. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). Search in Google Scholar

[9] P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, and B. Hecht, “Resonant optical antennas,” Science 308, 1607–1609 (2005). Search in Google Scholar

[10] S. A. Maier, Plasmonics: Fundamental And Applications (Springer Verlag, New York, 2007). Search in Google Scholar

[11] J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008). Search in Google Scholar

[12] P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photon. 1, 438–483 (2009). Search in Google Scholar

[13] W. L. Barnes, “Comparing experiment and theory in plasmonics,” J. Opt. A Pure Appl. Opt. 11, 114002 (2009). Search in Google Scholar

[14] V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011). Search in Google Scholar

[15] N. J. Halas, S. Lal,W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011). Search in Google Scholar

[16] M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011). 10.1364/OE.19.022029Search in Google Scholar

[17] R. L. Rich and D. G.Myszka, “Spying on HIV with SPR," Trends in Microbiology 11, 124–133 (2003). 10.1016/S0966-842X(03)00025-8Search in Google Scholar

[18] C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surfaceenhanced Raman spectroscopy,” Anal. Chem. 77, 338A–346A (2005). 10.1021/ac053456dSearch in Google Scholar

[19] C. L. Haynes, C. R. Yonzon, X. Zhang, and R. P. Van Duyne, “Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection" J. Raman Spectrosc. 36, 471–484 (2005). Search in Google Scholar

[20] K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–97 (2007). Search in Google Scholar

[21] J. Lakowicz and Y. Fu, “Modification of single molecule fluorescence near metallic nanostructures,” Laser & Photonics Reviews 3, 221–232 (2009). 10.1002/lpor.200810035Search in Google Scholar

[22] K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011). Search in Google Scholar

[23] L. Rayleigh, “On the scattering of ligth by small particles,” Philos. Mag. 41, 447–454 (1871). Search in Google Scholar

[24] L. Rayleigh, “On the light from the sky, its polarization and color,” Philos. Mag. 41, 107–120 (1871). Search in Google Scholar

[25] R. Gans, “Über die Form ultramikroskopischer Goldteilchen,” Ann. Phys. 342, 881–900 (1912). Search in Google Scholar

[26] J. Zuloaga and P. Nordlander, “On the energy shift between Near-Field and Far-field Peak Intensities in Localized Plasmon Systems,” Nano Lett. 11, 1280–1283 (2011). Search in Google Scholar

[27] F. Moreno, P. Albella, and M. Nieto-Vesperinas, “Analysis of the spectral behavior of localized plasmon resonances in the nearand far-field regimes,” Langmuir 29, 6715–6721 (2013). Search in Google Scholar

[28] B. Khlebtsov and N. Khlebtsov, “Multipole plasmons in metal nanorods: Scaling properties and dependence on particle size, shape, orientation, and dielectric environment," J. Phys. Chem. C 111, 11516–11527 (2007). Search in Google Scholar

[29] A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242-1246 (1951). Search in Google Scholar

[30] M. Kerker, “Scattering of electromagnetic waves from concentric infinite cylinders,” J. Opt. Soc. Am. A 51, 506–508 (1961). Search in Google Scholar

[31] I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988– 9999 (2006). 10.1364/OE.14.009988Search in Google Scholar

[32] O. Keller, “Optical Polarizability of Small Quantum Particles : Local-field Effects in a Self-field Approach," J. Opt. Soc. Am. B 11, 1480–1489 (1994). Search in Google Scholar

[33] K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012). Search in Google Scholar

[34] P. B. Johnson and R. W. Christy, “Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). Search in Google Scholar

[35] E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998). Search in Google Scholar

[36] U. Kreibig and M Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995). 10.1007/978-3-662-09109-8Search in Google Scholar

[37] M. I. Stockman, S.V. Faleev and D. J. Bergman, “Localization versus Delocalization of Surface Plasmons in Nanosystems: Can One State Have Both Characteristics?," Phys. Rev. Lett. 87, 167401 (2001). Search in Google Scholar

[38] F. Ouyang and M. Isaacson, “Surface plasmon excitation of objects with arbitrary shape and dielectric constant," Philosophical Magazine B 60, 481–492 (1989). 10.1080/13642818908205921Search in Google Scholar

[39] F. Ouyang and M. Isaacson, “Accurate modeling of particlesubstrate coupling of surface plasmon excitation in EELS," Ultramicroscopy 31, 345–350 (1989). 10.1016/0304-3991(89)90332-XSearch in Google Scholar

[40] D. R. Fredkin and I. D. Mayergoyz, “Resonant Behavior of Dielectric Objects (Electrostatic Resonances)," Phys. Rev. Lett. 91, 253902 (2003). Search in Google Scholar

[41] I. D.Mayergoyz, D. R. Fredkin and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles," Phys. Rev. B 72, 155412 (2005). 10.1103/PhysRevB.72.155412Search in Google Scholar

[42] I. D. Mayergoyz and Z. Zhang, “Modeling of the Electrostatic (Plasmon) Resonance in Metallic and Semiconductor Nanoparticles", Journal of Computational Electronics 4, 139 (2005). 10.1007/s10825-005-7125-6Search in Google Scholar

[43] I. D. Mayergoyz and Z. Zhang, “Numerical analysis of plasmon resonances in nanoparticles," Magnetics, IEEE Transactions on , 42, 759–762 (2006). 10.1109/TMAG.2006.870976Search in Google Scholar

[44] Z. Zhang, I. D.Mayergoyz, ID.,N. A. Gumerov and R. Duraiswami, “Numerical Analysis of Plasmon Resonances in Nanoparticles Based on Fast Multipole Method," Magnetics, IEEE Transactions on 43, 1465–1468 (2007). Search in Google Scholar

[45] I. D. Mayergoyz and Z. Zhang, “The Computation of Extinction Cross Sections of Resonant Metallic Nanoparticles Subject to Optical Radiation," Magnetics, IEEE Transactions on 43, 1681–1684 (2007). 10.1109/TMAG.2007.892500Search in Google Scholar

[46] I. D. Mayergoyz and Z. Zhang, “Numerical Analysis of Nanoparticle-Structured Plasmon Waveguides of Light," Magnetics, IEEE Transactions on 43, 1685–1688 (2007). 10.1109/TMAG.2006.892270Search in Google Scholar

[47] I. D. Mayergoyz and Z. Zhang, “Numerical Analysis of Plasmon Resonances in Metallic Nanoshells," Magnetics, IEEE Transactions on 43, 1689–1692 (2007). 10.1109/TMAG.2006.892271Search in Google Scholar

[48] I. D. Mayergoyz, Plasmon Resonances in Naoparticles, (World Scientific Publishing, 2013). Search in Google Scholar

[49] T. Sandu, D. Vrinceanu and E. Gheorghiu, “Surface Plasmon Resonances of Clustered Nanoparticles," Plasmonics 6, 407–412 (2011). Search in Google Scholar

[50] T. Sandu, “Shape effects on localized surface plasmon resonances in metallic nanoparticles," J. Nanopart Res. 14, 14:905 (2012). 10.1007/s11051-012-0905-6Search in Google Scholar

[51] T. Sandu, “Eigenmode Decomposition of the Near-Field Enhancement in Localized Surface Plasmon Resonances of Metallic Nanoparticles," Plasmonics 8, 391–402 (2013). 10.1007/s11468-012-9403-zSearch in Google Scholar

[52] B. Sturman, E. Podivilov and M. Gorkunov, “Universal plasmonic properties of two-dimensional nanoparticles possessing sharp corners," Phys. Rev. B 87, 115406 (2013). 10.1103/PhysRevB.87.115406Search in Google Scholar

[53] E. Podivilov, B. Sturman, and M. Gorkunov, “Plasmonic resonances of nanowires with periodically corrugated cross sections," J. Opt. Soc. Am. B 29, 3248 (2012). 10.1364/JOSAB.29.003248Search in Google Scholar

[54] B. Sturman, E. Podivilov and M. Gorkunov, “Metal nanoparticles with sharp corners: Universal properties of plasmon resonances," EPL 101, 57009 (2013). Search in Google Scholar

[55] A.A. Maradudin and W.M. Visscher, “Electrostatic and electromagnetic surface shape resonances," Zeitschrift fur Physik B Condensed Matter 60, 215–230 (1985). 10.1007/BF01304441Search in Google Scholar

[56] D. Grieser, H. Uecker, S.-A. Biehs, O. Huth, F. Rüting and M. Holthaus, “Perturbation theory for plasmonic eigenvalues," Phys. Rev. B 80, 245405 (2009). 10.1103/PhysRevB.80.245405Search in Google Scholar

[57] B. Sturman, E. Podivilov and M. Gorkunov, “Critical behavior of optical singularities near sharp metal corners and tips," Phys. Rev. B 89, 045429 (2014). 10.1103/PhysRevB.89.045429Search in Google Scholar

[58] E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures," Science 302, 419–422 (2003). Search in Google Scholar

[59] J. Jin, The finite element method in electromagnetics (Wiley, New York, 2002); P. Monk, Finite element methods forMaxwell’s equations (Oxford Science Publications, Oxford, 2003). Search in Google Scholar

[60] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005). Search in Google Scholar

[61] K. Busch, M. König, and J. Niegemann, “Discontinuous Galerkin methods in nanophotonics,” Laser Photonics Rev. 5, 773–809 (2011). Search in Google Scholar

[62] C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996). Search in Google Scholar

[63] B. T. Draine and P. J. Flatau, “Discrete-Dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994). Search in Google Scholar

[64] M. I. Mishchenko, N. T. Zakharova, G. Videen, N. G. Khlebtsov, and T. Wriedt, “Comprehensive T-matrix reference database: a 2007–2009 update,” J. Quant. Spectrosc. Radiat. Tranfer. 111, 650–658 (2010). Search in Google Scholar

[65] A. A. Maradudin, T. Michel, A. Mcgurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990). Search in Google Scholar

[66] J. Sánchez-Gil and M. Nieto-Vesperinas, “Light scattering from random rough dielectric surfaces,” J. Opt. Soc. Am. A 8, 1270– 1286 (1991). Search in Google Scholar

[67] F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998). Search in Google Scholar

[68] V. Giannini and J. A. Sánchez-Gil, “Calculations of light scattering from isolated and interacting metallic nanowires of arbitrary cross section by means of Green’s theorem surface integral equations in parametric form,” J. Opt. Soc. Am. A 24, 2822–2830 (2007). Search in Google Scholar

[69] V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. García de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Adv. Mat. 20, 4288–4293 (2008). Search in Google Scholar

[70] A. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonics and high permittivity nanostructures,” J. Opt. Soc. Am. A 26, 732–740 (2009). Search in Google Scholar

[71] R. Rodríguez-Oliveros and J. A. Sanchez-Gil, “Localized surfaceplasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surface,” Opt. Express 19, 12208–12219 (2011). 10.1364/OE.19.012208Search in Google Scholar PubMed

[72] J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Lanndesa, “Method-of-moments formulation for the analysis of plasmonics nano-optical antennas,” J. Opt. Soc. Am. A 28, 1341–1348 (2011). Search in Google Scholar

[73] A. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett. 11, 482–487 (2011). Search in Google Scholar

[74] C. Forestiere, G. Iadarola, G. Rubinacci, A. Tamburrino, L. Dal Negro, and G. Miano, “Surface integral formulations for the design of plasmonic nanostructures,” J. Opt. Soc. Am. A 29, 2314–2327 (2012). Search in Google Scholar

[75] S. Rao, D.Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. and Propag. 30, 409–418 (1982). Search in Google Scholar

[76] R. Rodríguez-Oliveros and J. A. Sánchez-Gil, “Gold nanostars as thermoplasmonic nanoparticles for optical heating,” Opt. Express 20, 621–626 (2012). 10.1364/OE.20.000621Search in Google Scholar PubMed

[77] Y. P. Chen, W. E. I. Sha, W. C. H. Choy, L. Jiang, and W. C. Chew, “Study on spontaneous emission in complex multilayered plasmonic system via surface integral equation approach with layered medium Green’s function", Opt. Express 20, 20210-20221 (2012). 10.1364/OE.20.020210Search in Google Scholar PubMed

[78] F. Obelleiro, J. M. Taboada, D. M. Solís, and L. Bote, “Directive antenna nanocoupler to plasmonic gap waveguides,” Opt. Lett. 38, 1630–1633 (2013). Search in Google Scholar

[79] D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzián, and F. J. García de Abajo, “Toward ultimatenanoplasmonics modeling", ACS Nano 8, 7559-7570 (2014). Search in Google Scholar

[80] I. Simonsen, A. A. Maradudin, and T. A. Leskova, “The Scattering of Electromagnetic Waves from Two-Dimensional Randomly Rough Perfectly Conducting Surfaces: The Full Angular Intensity Distribution,” Phys. Rev. A 81, 013806 (2009). Search in Google Scholar

[81] I. Simonsen, A. Maradudin, and T. Leskova, “Scattering of electromagnetic waves from two-dimensional randomly rough penetrable surfaces,” Phys. Rev. Lett. 104, 223904 (2010). Search in Google Scholar

[82] U. Hohenester and J. R. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Phys. Rev. B 72, 195,429 (2005). Search in Google Scholar

[83] J. Jung, “Green’s function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008). 10.1103/PhysRevB.77.245310Search in Google Scholar

[84] P. I. Geshev, U. Fischer, and H. Fuchs, “Calculation of tip enhanced Raman scattering caused by nanoparticle plasmons acting on a molecule placed near a metallic film,” Phys. Rev. B 81, 125441 (2010). 10.1103/PhysRevB.81.125441Search in Google Scholar

[85] I. Chremmos, “Magnetic field integral equation analysis of interaction between a surface plasmon polariton anda circular dielectric cavity," J. Opt. Soc. Am. A 26, 2623-2633 (2009). Search in Google Scholar

[86] Y. Poujet, J. Salvi, and F. I. Baida, “90% Extraordinary optical transmission in the visible range through annular aperture metallic arrays," Opt. Lett. 32, 2942-2944 (2007). Search in Google Scholar

[87] P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. J. García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19, 015606 (2008). 10.1088/0957-4484/19/01/015606Search in Google Scholar PubMed

[88] C. G. Khoury and T. Vo-Dinh, “Gold nanostars for surfaceenhanced Raman scattering: Synthesis, characterization and optimization,” J. Phys. Chem. C 112, 18849–18859 (2008). Search in Google Scholar

[89] C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, “Single gold nanostars enhance Raman scattering,” Appl. Phys. Lett. 94, 153113 (2009). Search in Google Scholar

[90] V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface Plasmon Resonances of Metallic Nanostars/Nanoflowers for Surface-Enhanced Raman Scattering,” Plasmonics 5, 99–104 (2010). Search in Google Scholar

[91] A. García-Leis, J. V. García-Ramos, and S. Sánchez-Cortés, “Silver nanostarswith high SERS performance,” J. Phys. Chem. C 117, 7791–7795 (2013). Search in Google Scholar

[92] J. Gielis, “A generic geometric transformation that unifies awide range of natural and abstract shapes,” Am. J. Bot. 90, 333–338 (2003). 10.3732/ajb.90.3.333Search in Google Scholar PubMed

[93] H. Yuan, C. G. Khoury, C. M. Wilson, G. A. Grant, A. J. Bennett, and T. Vo-Dinh, “In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars,” Nanomedicine 8, 1355–1363 (2012). Search in Google Scholar

[94] B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater. 9, 707– 715 (2010). Search in Google Scholar

[95] U. Fano, “Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866–1878 (1961). Search in Google Scholar

[96] A. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures," Rev. Mod. Phys. 82, 2257–2298 (2010). Search in Google Scholar

[97] V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach," Nano Lett. 11, 2835–2840 (2011). Search in Google Scholar

[98] N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses," Opt. Express 19, 11034–11051 (2011). 10.1364/OE.19.011034Search in Google Scholar PubMed

[99] F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez- Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna," New J. Phys. 14, 023035 (2012). Search in Google Scholar

[100] F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez- Gil, “High-performance nanosensors based on plasmonic Fanolike interference: Probing refractive index with nanorice and nanobelts," ACS Nano 6, 8989–8996 (2012). Search in Google Scholar

[101] N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode Parity-Controlled Fano- and Lorentzlike Line Shapes Arising in Plasmonic Nanorods," Nano Lett. 14, 2322–2329 (2014). Search in Google Scholar

[102] Y.-F. Chau, M.W. Chen, and D. P. Tsai, “Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod," Appl. Opt. 48, 617–622 (2009). Search in Google Scholar

[103] H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice," ACS Nano 80, 2649–2654 (2010). Search in Google Scholar

[104] E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods," J. Phys. Chem. B 110, 2150–2154 (2005). Search in Google Scholar

[105] J. R. Krenn, G. Schider,W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles," App. Phys. Lett. 77, 3379– 3381 (2000). Search in Google Scholar

[106] P. Ghenuche, S. Cherukulappurath, T. Taminiau, N. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116805 (2008). Search in Google Scholar

[107] C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, “Tailoring plasmons with metallic nanorod arrays," Phys. Rev. B 80, 125124 (2009). 10.1103/PhysRevB.80.125124Search in Google Scholar

[108] L. Novotny, “Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007). Search in Google Scholar

[109] G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas," Nano Lett. 8, 631–636 (2008). Search in Google Scholar

[110] J. Kun, J.-L. Bijeon, P.-M. Adam, and E.-R. Ionescu,“A facile and cost-effective TEM grid approach to design gold nano-structured substrates for high throughput plasmonic sensitive detection of biomolecules," Analyst 138, 1015–1019 (2013). Search in Google Scholar

[111] W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography," Nano Letters 4, 1085–1088 (2004). Search in Google Scholar

[112] J. Li, A. Salandrino, and N. Engheta, “Shaping the Beam of Light in Nanometer Scales: A Yagi-Uda Nanoantenna in Optical Domain," Physical Review B 76, 245403 (2007). Search in Google Scholar

[113] P. K. Jain, I. H. El-Hayed, and M. A. El-sayed, “Au nanoparticles target cancer,” Nano Today 7, 1929–1934 (2007). Search in Google Scholar

[114] G. M. Sacha and P. Varona, “Artificial intelligence in nanotechnology," Nanotechnology 24, 452002 (2013). 10.1088/0957-4484/24/45/452002Search in Google Scholar

[115] Ch. Hafner, X. Cui, and R. Vahldieck, “Stochastic parameter optimizers for optical nanostructures," Int. J. of Microwave and Optical Technology 1, 121–132 (2006). Search in Google Scholar

[116] Ch. Hafner, X. Cui, J. Smajic, and R. Vahldieck,“Eflcient procedures for the optimization of defects in photonic crystal structures," J. Opt. Soc. Am. A 24, 1177–1187 (2007). Search in Google Scholar

[117] D.-H. Kwon, Z. Bayraktar, D. H. Werner, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev,“Nature-based optimization of 2D negative-index metamaterials," Proceedings of the IEEE Antennas and Propagation Society Int. Symp., 1589–1592 (2007). Search in Google Scholar

[118] A. V. Kildishev, U. K. Chettiar, Z. Liu, V. M. Shalaev, D.-H. Kwon, Z. Bayraktar, and D. H. Werner, “Stochastic optimization of lowloss optical negative-index metamaterial," J. Opt. Soc. Am. B 24, A34–A39 (2007). 10.1364/JOSAB.24.000A34Search in Google Scholar

[119] S. Kessentini and D. Barchiesi, “Quantitative comparison of optimized nanorods, nanoshells and hollow nanospheres for photothermal therapy," Biomed. Opt. Express3, 590–604 (2012). 10.1364/BOE.3.000590Search in Google Scholar

[120] C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, and L. Dal Negro, “Particle-swarm optimization of broadband nanoplasmonic arrays," Opt. Lett. 35, 133–135 (2010). Search in Google Scholar

[121] K. Motzek, U. Vogler, M. Hennemeyer, M. Hornung, R. Voelkel, A. Erdmann, B. Meliorisz,“Computational algorithms for optimizing mask layouts in proximity printing," Microelectronic engineering 88, 2066–2069 (2011). Search in Google Scholar

[122] T. Feichtner, O. Selig, M. Kiunke, and B. Hecht,“Evolutionary optimization of optical antennas," Phys. Rev. Lett. 109, 127701 (2012). Search in Google Scholar

[123] I. Grigorenko, S. Haas, A. Balatsky, and A. F. J. Levi, “Optimal control of electromagnetic field using metallic nanoclusters," New J. Phys. 10, 043017 (2008). Search in Google Scholar

[124] C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays," Nano Lett. 12, 2037–2044 (2012) Search in Google Scholar

[125] M. Lilichenko and A. Myers Kelley, “Application of artificial neural networks and genetic algorithms to modeling molecular electronic spectra in solution," J. Chem. Phys. 114, 7094– 7102 (2001). Search in Google Scholar

[126] M. H. Hennessy and A. Myers Kelley, “Using real-valued multiobjective genetic algorithms to model molecular absorption spectra and Raman excitation profiles in solution," Phys. Chem. Chem. Phys. 6, 1085–1095 (2004). Search in Google Scholar

[127] T. Grosges, D. Barchiesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and biomedical applications by plasmonic optimization," Opt. Lett. 33, 2812–2814 (2008). Search in Google Scholar

[128] A. Tassadit, D. Macías, J. A. Sánchez-Gil, P.-M. Adam, and R. Rodríguez-Oliveros, “Metal nanostars: stochastic optimization of resonant scattering properties," Superlattice Microst. 49, 288–293 (2011). Search in Google Scholar

[129] D. Macías, P.-M. Adam, V. Ruiz-Cortés, R. Rodríguez-Oliveros, and J. Sánchez-Gil, “Heuristic optimization for the design of plasmonic nanowires with specific resonant and scattering properties," Opt. Express 20, 13146–13163 (2012). 10.1364/OE.20.013146Search in Google Scholar

[130] S. Kessentini, D. Barchiesi, T. Grosges, and M. Lamy de la Chapelle, “Selective and collaborative optimization methods for plasmonics: a comparison," PIERS Online 7, 291–295 (2011). Search in Google Scholar

[131] P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nano-particles," Nano Lett. 11, 2329–2333 (2011). Search in Google Scholar

[132] M. J. Mendes, I. Tobías, A. Martí, and A. Luque, “Light concentration in the near-field of dielectric spheroidal particles with mesoscopic sizes," Opt. Express 19, 2847–2858 (2011). Search in Google Scholar

[133] H. P. Schwefel, Evolution and Optimum Seeking, (John Wiley & Sons Inc., NY, 1995). Search in Google Scholar

[134] H. G. Beyer, The Theory of Evolution Strategies (Springer- Verlag, 2001). 10.1007/978-3-662-04378-3Search in Google Scholar

[135] J. H. Holland, Adaption in Natural and Artificial Systems, (MIT Press/Bradford Books, US, 1992). Search in Google Scholar

[136] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory," in Proceedings of the Sixth International Symposium on Micro Machine and Human Science (IEEE,1995), pp. 39–43. Search in Google Scholar

[137] R. Salomon, “Evolutionary Algorithms and Gradient Search: Similarities and Differences," IEEE Trans. Evolutionary Computation 2, 45–55, (1997). Search in Google Scholar

[138] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics," IEEE Trans. on Antennas Propag. 52, 397– 407 (2004). Search in Google Scholar

[139] R. Poli, J. Kennedy, and T. Blackwell, “Particle Swarm Optimisation: an overview," Swarm Intelligence 1, 33–57 (2007). Search in Google Scholar

[140] E. Podivilov, B. Sturman, and M. Gorkunov, “Plasmonic resonances of nanowireswith periodically corrugated cross sections" J. Opt. Soc. Am. B 29, 3248-3253 (2012). Search in Google Scholar

[141] R. Aroca, Surface-enhanced vibrational spectroscopy, Wiley, New York (2006). 10.1002/9780470035641Search in Google Scholar

[142] E. M. Purcell, “Spontaneous emision probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946). Search in Google Scholar

[143] R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978). Search in Google Scholar

[144] H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci.. 17, 153–320 (1984). 10.1016/0079-6816(84)90017-0Search in Google Scholar

[145] P. Johansson, H. Xu, and M. Käll, “Surface-enhanced Raman scattering and fluorescence near metal nanoparticles,” Phys. Rev. B 72, 035427 (2005). 10.1103/PhysRevB.72.035427Search in Google Scholar

[146] P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas," Science 308, 1607– 1609 (2005). Search in Google Scholar

[147] S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006). Search in Google Scholar

[148] O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas,” Nano Lett. 7, 2871– 2875 (2007). Search in Google Scholar

[149] T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission," Nat. Photonics 2, 234–237 (2008). 10.1038/nphoton.2008.32Search in Google Scholar

[150] F. Neubrech, A. Pucci, T. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection," Phys. Rev. Lett. 101, 157403 (2008). Search in Google Scholar

[151] J. N. Anker, W. P. Hall, C. Nilam, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors," Nat. Mater. 7, 8–10 (2008). Search in Google Scholar

[152] M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas," Science 332, 702–704 (2011). Search in Google Scholar

[153] L. Novotny and N. van Hulst, “Antennas for light," Nat. Photonics 5, 83–90 (2011). 10.1038/nphoton.2010.237Search in Google Scholar

[154] M.W. Knight, L. Liu, Y.Wang, L. Brown, S.Mukherjee, N. S. King, H.O. Everitt, P. Nordlander, and N. J. Halas, “Aluminumplasmonic nanoantennas," Nano Lett. 12, 6000–6004 (2012). Search in Google Scholar

[155] J. M. McMahon, G. C. Schatz, S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, in, Sn, Tl, Pb, and Bi," Phys. Chem. Chem. Phys. 15, 5415–5423 (2013). Search in Google Scholar

[156] Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry," ACS Photonics 1, 582–589 (2014). Search in Google Scholar

[157] M. A. Barral and A. M. Llois, “Photothermal Imaging of Nanometer-Sized Metal Particles among Scatterers,” Science 297, 1160–1163 (2002). 10.1126/science.1073765Search in Google Scholar

[158] A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2, 30–38 (2007). 10.1016/S1748-0132(07)70017-8Search in Google Scholar

[159] G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7, 171–187 (2013). Search in Google Scholar

[160] C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. J. Halas, and J. L. West, “Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004). Search in Google Scholar

[161] W. Zhao and J. M. Karp, “Tumor targeting: Nanoantennas heat up," Nature Mater. 8, 453–454 (2009). Search in Google Scholar

[162] D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-González, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Soler, “Nanoparticles for photothermal therapies," Nanoscale 6, 9494– 9530 (2014). Search in Google Scholar

[163] O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas," Opt. Express 15, 17736–17746 (2007). 10.1364/OE.15.017736Search in Google Scholar

[164] V. Giannini and J. A. Sánchez-Gil, “Excitation and emission enhancement of single molecule fluorescence through multiple surface-plasmon resonances on metal trimer nanoantennas,” Opt. Lett. 33, 899–901 (2008). Search in Google Scholar

[165] H. Harutyunyan, G. Volpe, R. Quidant, and L. Novotny, “Enhancing the nonlinear optical response using multifrequency goldnanowire antennas,” Phys. Rev. Lett. 108, 1–4 (2012). Search in Google Scholar

Received: 2015-7-14
Accepted: 2015-9-26
Published Online: 2016-2-2

© 2015 R. Rodríguez-Oliveros et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/nansp-2015-0006/html
Scroll to top button