Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 17, 2021

Effects of some level density models and γ-ray strength functions on production cross-section calculations of 16,18O and 24,26Mg radioisotopes

Einfluss von Niveaudichtemodellen und Strahlenstärkefunktionen auf die Berechnung des Produktionsquerschnitts von 16,18O- und 24,26Mg-Radioisotopen
  • Y. Kavun EMAIL logo and R. Makwana
From the journal Kerntechnik

Abstract

Oxygen and magnesium isotopes can be used in nuclear reactor materials as cooling, shielding, coating, electronics etc. They can also occur through nuclear reactions during the reactor operation. The exposure of high energy gamma can change the material and its properties, and hence its objective of selection may not remain satisfied. Thus, it is required to study the cross section of different reactions on nuclear reactor materials to understand their sustainability for the properties, for which they are chosen. In the scope of this study, theoretically, different level density model calculations and γ-ray strength functions have been performed for (γ, p) reaction for 16,18O and 24,26Mg nuclei using TALYS 1.9 and EMPI˙RE 3.2.2 codes. Also, semi empirical (γ, p) formula by Tel et al., have been calculated and compared with all results. The effect of different level density models defined in these codes on gamma strength has been studied. Finally, the consistency of these obtained data with EXFOR data have been investigated.

Abstract

Sauerstoff- und Magnesiumisotope können in Materialien für Kernreaktoren zur Kühlung, Abschirmung, Beschichtung, Elektronik usw. verwendet werden. Sie können auch durch Kernreaktionen während des Reaktorbetriebs entstehen. Die Bestrahlung mit hochenergetischen Gammastrahlen kann das Material und seine Eigenschaften verändern, so dass das Ziel der Auswahl möglicherweise nicht erreicht wird. Daher ist es erforderlich, den Querschnitt verschiedener Reaktionen der Reaktormaterialien zu untersuchen, um ihre Nachhaltigkeit für die Eigenschaften zu verstehen, für die sie ausgewählt wurden. Im Rahmen dieser Studie wurden theoretische Berechnungen verschiedener Niveaudichtemodelle und Strahlenstärkefunktionen für die (γ, p)-Reaktion für 16,18O- und 24,26Mg-Kerne mit den Codes TALYS 1.9 und EMPI˙RE 3.2.2 durchgeführt. Auch die halbempirische (γ, p)-Formel von Tel et al. wurde berechnet und mit allen Ergebnissen verglichen. Die Auswirkung der verschiedenen in diesen Codes definierten Niveaudichtemodelle auf die Gammastärke wurde untersucht. Abschließend wurde die Übereinstimmung der erhaltenen Daten mit den EXFOR-Daten untersucht.

Acknowledgements

This study was supported by the Scientific Research Projects Coordination Unit of Kahramanmaras Sutcu Imam University. Project numbers 2020/7-18 M, 2020/7-19 M, 2020/7-21 M and 2021/3-2 YLS..

References

1 Kara, A.: Determination of nuclear excitation functions of zirconium using certain level density parameters for neutron-induced reactions. Indian J. Phys. 93 [2019] 1458–1488, DOI:10.1007/s12648-019-01415-910.1007/s12648-019-01415-9Search in Google Scholar

2 Kara, A.: Excitation Function Calculations of Neutron-Induced Reactions of Some Zirconium Target Isotopes. J. Fusion Energy 36 [2017] 230–233, , DOI:10.1007/S10894-017-0143-010.1007/S10894-017-0143-0Search in Google Scholar

3 Akca, S.; Tel, E.; Kara, A.: Calculation of excitation functions for the production of Cu and Co medical isotopes. Kerntechnik 78 [2013] 484–488, DOI:10.3139/124.11039010.3139/124.110390Search in Google Scholar

4 Schwerer, O.: IAEA nuclear databases for applications. Brazilian J. Phys. 33 (2003) 231–237, DOI:10.1590/S0103-9733200300020001110.1590/S0103-97332003000200011Search in Google Scholar

5 Sood, D. D.; Obložinsky´, P.; Herman, M.; Schwerer, O.: Nuclear data for applications. J. Radioanal. Nucl. Chem. 243 [2000] 227–233, DOI:10.1023/A:100671260756710.1023/A:1006712607567Search in Google Scholar

6 Pearl,W. L.; Kassen,W. R.; Sawochka, S.G.: Oxygen monitoring and control in boiling water reactor plants. Nucl. Technol. 37 [1978] 94–98, DOI:10.13182/NT78-A3197510.13182/NT78-A31975Search in Google Scholar

7 Jensen, S. E.; Nonbol, E.: Description of the Magnox Type of Gas Cooled Reactor (MAGNOX). NKS-2 (1998), ISBN 87–7893–050–2Search in Google Scholar

8 Tel, E.; Kavun, Y.; Sahan, M.; Aydin, A.: A Study on the New Empirical Cross Section Formulae for (γ, p) Reactions at 20 ± 1 MeV Incident Energy. J. Fusion Energy 37 [2018] 270–274, DOI:10.1007/s10894-018-0184-z10.1007/s10894-018-0184-zSearch in Google Scholar

9 Varlamov, V. V.; Ishkhanov, B. S.: Giant dipole resonance in photonuclear experiments of various types: Discrepancies, reasons, methods of overcoming, and consequences. Phys. Part. Nucl. 35 [2004] 459Search in Google Scholar

10 Kavun, Y.; Boztosun, I˙.; Ðapo, H.; Maraş, I˙.; Segebade, C.: Determination of the Sr/Ca ratio of tooth samples by photoactivation analysis in Southern Turkey, Radiochim. Acta. 106 [2018] 759–768, DOI:10.1515/ract-2017-291810.1515/ract-2017-2918Search in Google Scholar

11 Krane, K. S.; Lynch, W. G.: Introductory Nuclear Physics. Phys. Today 42 [1989] 78, DOI:10.1063/1.281088410.1063/1.2810884Search in Google Scholar

12 Varlamov, A. V.; Varlamov, V. V.; Rudenko, D. S.; Stepanov, M. E.: Atlas of Giant Dipole Resonances Parameters and Graphs of Photonuclear Reaction Cross Sections. IAEA/INDC, INDC(NDS)-394 [1999]Search in Google Scholar

13 Yig˘it, M.; Kara, A.: Simulation study of the proton-induced reaction cross sections for the production of 18 F and 66 –68 Ga radioisotopes. Journal of Radioanalytical and Nuclear Chemistry 314 [2017] 2383–2392, DOI:10.1007/s10967-017-5613-310.1007/s10967-017-5613-3Search in Google Scholar

14 Kavun, Y.; Makwana, R.: Study of (γ, p) reaction cross-section calculations of 52Cr, 54Fe, 60Ni and 64Zn isotopes. Nucl. Instruments and Methods in Phys. Res. Sect. B: Beam Interact. with Mater and Atoms 472 [2020] 72–77, DOI:10.1016/j.nimb.2020.03.03610.1016/j.nimb.2020.03.036Search in Google Scholar

15 Sarpün, I. H.; Özdog˘an, H.; Taşdöven, K.; Yalim, H. A.; Kaplan, A.: Theoretical photoneutron cross-section calculations on Osmium isotopes by Talys and Empire codes. Mod. Phys. Lett. A. 34 [2019]1950210, DOI:10.1142/S021773231950210910.1142/S0217732319502109Search in Google Scholar

16 Grimes, S. M.: Level densities for basic and applied nuclear physics. Radiat. Eff. 94 [1986] 321–332, DOI:10.1080/0033757860820840110.1080/00337578608208401Search in Google Scholar

17 Jensen, A. S.; Sandberg, J.: Analytic Nuclear Level Density Formula with Shell and Pairing Effects. Physica Scripta 17 [1978] 107, DOI:10.1088/0031-8949/17/2/00910.1088/0031-8949/17/2/009Search in Google Scholar

18 Koning, A. J.; Rochman, D.; van der Marck, S. C.: Extension of TALYS to 1 GeV. Nucl. Data Sheets 118 [2014] 187–190, DOI:10.1016/j.nds.2014.04.03310.1016/j.nds.2014.04.033Search in Google Scholar

19 Herman, M.; Capote, R.; Carlson, B. V.; Obložinsky´, P.; Sin, M.; Trkov, A.; Wienke, H.; Zerkin, V.: EMPIRE: Nuclear Reaction Model Code System for Data Evaluation. Nucl. Data Sheets 108 [2007] 2655–2715, DOI:10.1016/j.nds.2007.11.00310.1016/j.nds.2007.11.003Search in Google Scholar

20 Sublet, J. C.; Koning, A.; Rochman, D.: TENDL-2017: The making of multi-faceted technological nuclear data library. in: 20th Top. Meet. Radiat. Prot. Shield. Div. RPSD American Nuclear Society (ANS), USA, [2018]Search in Google Scholar

21 Parashari, S.; Mukherjee, S.; Nayak, B. K.; Makwana, R.; Suryanarayana, S. V.; Naik, H.; Sharma, S. C.: Excitation functions of the p + 93Nb reaction in the energy range 10 –22 MeV. Nucl. Phys. A. 978 [2018] 160–172, DOI:10.1016/j.nuclphysa.2018.08.00210.1016/j.nuclphysa.2018.08.002Search in Google Scholar

22 Hauser, W.; Feshbach, H.: The inelastic scattering of neutrons. Phys. Rev. 87 [1952] 366, DOI:10.1103/PhysRev.87.36610.1103/PhysRev.87.366Search in Google Scholar

23 Kalbach, C.: Two-component exciton model: Basic formalism away from shell closures. Phys. Rev. C. 33 [1986] 818–833, PMid:9953213, DOI:10.1103/PhysRevC.33.81810.1103/PhysRevC.33.818Search in Google Scholar PubMed

24 Koning, A. J.; Hilaire, S. M.; Duijvestijn, C.: TALYS: Comprehensive nuclear reaction modeling. in: AIP Conf. Proc.769 [2005], DOI:10.1063/1.194521210.1063/1.1945212Search in Google Scholar

25 Koning, A. J.; Hilaire, S.; Duijvestijn, M. C.: TALYS-1.0. in: International Conference on Nuclear Data for Science and Technology [2007] 211–214. , DOI:10.1051/ndata:0776710.1051/ndata:07767Search in Google Scholar

26 Koning, A. J.; Hilaire, S.; Goriely, S.: Global and local level density models. Nucl. Phys. A. 810 [2008] 13 –76, DOI:10.1016/j.nuclphysa.2008.06.00510.1016/j.nuclphysa.2008.06.005Search in Google Scholar

27 Kavun, Y.; Makwana, R.: Study of (γ, p) reaction cross-section calculations of 52Cr, 54Fe, 60Ni and 64Zn isotopes. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 472 [2020] 72 –77, DOI:10.1016/j.nimb.2020.03.03610.1016/j.nimb.2020.03.036Search in Google Scholar

28 Sharifian, M.; Sadeghi, M.; Alimohamadi, M.: Calculation of 89Y(p,x)86,88,89 gZr, 86 g,87 g,88 gY, 85 gSr, and 84Rb reaction cross sections based on level density. Appl. Radiat. Isot. 151 [2019] 25–29, PMid:31154076, DOI:10.1016/J.APRADISO.2019.05.00410.1016/J.APRADISO.2019.05.004Search in Google Scholar

29 Grossjean, M. K.; Feldmeier, H.: Level density of a Fermi gas with pairing interactions. Nucl. Physics, Sect. A. 444 [1985] 113–132, DOI:10.1016/0375-9474(85)90294-510.1016/0375-9474(85)90294-5Search in Google Scholar

30 Demetriou, P.; Goriely, S.: Microscopic nuclear level densities for practical applications. Nucl. Phys. A. 695 [2001] 95–108, DOI:10.1016/S0375-9474(01)01095-°10.1016/S0375-9474(01)01095-°Search in Google Scholar

31 Hilaire, S.; Girod, M.; Goriely, S.; Koning, A. J.: Temperature-dependent combinatorial level densities with the D1M Gogny force. Phys. Rev. Γ– Nucl. Phys. 86 [2012] 064317, DOI:10.1103/PhysRevC.86.06431710.1103/PhysRevC.86.064317Search in Google Scholar

32 Vodin, O.M.; et al.: Isomer ratios in photonuclear reactions with multiple neutron emission. Probl. At. Sci. Technol. 3 [2019] 38 –4610.46813/2019-121-038Search in Google Scholar

33 Mamtimin, M.; Starovoitova, V. N.; Harmon, F.: Lınac-Based Photonuclear Applıcatıons At The Idaho Accelerator Center. International Journal of Modern Physics: Conference Series 27 [2014] 1460146, DOI:10.1142/S201019451460146X10.1142/S201019451460146XSearch in Google Scholar

34 Von Neumann-Cosel, P.; Bassauer, S.; Martin, D.; Tamii, A.: Gamma Strength Functions and Level Densities from High-Resolution Proton Scattering under 0°. EPJWeb Conf. 178 [2018] 06001, DOI:10.1051/epjconf/20181780600210.1051/epjconf/201817806002Search in Google Scholar

35 Gandini, A.; Reffo, G.: Proceedings of theWorkshop Nuclear Reaction Data and Nuclear Reactors. in: Nucl. React. Data Nucl. React., World Scientific Pub Co Pte Lt, [1998]:1–1260, DOI:10.1142/978981453038510.1142/9789814530385Search in Google Scholar

36 Bartholomew, G. A.; Earle, E. D.; Ferguson, A. J.; Knowles, J. W.; Lone, M. A.: Gamma-Ray Strength Functions. Adv. Nucl. Phys. [1973] 229–324, DOI:10.1007/978-1-4615-9044-6_410.1007/978-1-4615-9044-6_4Search in Google Scholar

37 Kern, K.: Advanced Treatment of Fission Yield Effects and Method Development for Improved Reactor Depletion Calculations. PhD Thesis, KIT Scientific Publishing [2019], DOI:10.5445/ksp/100008562510.5445/ksp/1000085625Search in Google Scholar

38 Capote, R.; et al.: RIPL – Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations. Nucl. Data Sheets 110 [2009] 3107–3214, DOI:10.1016/j.nds.2009.10.00410.1016/j.nds.2009.10.004Search in Google Scholar

39 Karpuz Demir, N.; Çetin, B.: Theoretical photoneutron cross sections and the effect of gamma strength functions for W, Ag, Nb. Acta Phys. Pol. A 132 [2017] 1076–1079, DOI:10.12693/APhysPolA.132.107610.12693/APhysPolA.132.1076Search in Google Scholar

40 Akkurt, I.; Günog˘lu, K.; Çalik, A.; Karakas, M. S.: Determination of gamma ray attenuation coefficients of Al-4% Cu/B4C metal matrix composites at 662, 1173 and 1332 keV. Bull. Mater. Sci. 37 [2014] 1175–1179, DOI:10.1007/s12034-014-0059-510.1007/s12034-014-0059-5Search in Google Scholar

41 Ou, I.; et al.: Measurement of γ-rays from Giant Resonances of 16 O and 12 C with Application to Supernova Neutrino Detection. Proceedings of the 10th International Workshop on Neutrino-Nucleus Interactions in Few-GeV Region (NuInt15) 12 [2016] 010048, DOI:10.7566/jpscp.12.01004810.7566/jpscp.12.010048Search in Google Scholar

42 Bramanis, E.: An investigation of the (γ, np) reaction in 40Ca and 32S. Nucl. Physics, Sect. A. 175 [1971] 17–30, DOI:10.1016/0375-9474(71)90617-°10.1016/0375-9474(71)90617-°Search in Google Scholar

43 IAEA-CRP: Reference Input Parameter Library (RIPL). IAEATECDOC-1034, Vienna, [1998]. http://www-nds.iaea.org/ripl/(accessed September 30, 2021)Search in Google Scholar

44 Kawano, T.; et al.: IAEA Photonuclear Data Library 2019, Nucl. Data Sheets 163 [2020]109–162, DOI:10.1016/j.nds.2019.12.00210.1016/j.nds.2019.12.002Search in Google Scholar

45 Tel, E.; Demirkol, I.; Arasog˘lu, A.; Şarer, B.: Pre-equilibrium emission in differential cross-section calculations and analysis of experimental data for 232Th. Mod. Phys. Lett. A. 19 [2004] 1597–1614, DOI:10.1142/S021773230401413610.1142/S0217732304014136Search in Google Scholar

46 Cole, A. J.: From evaporation to vaporization: statistical models for nuclear decay. in: Statistical Models for Nuclear Decay from evaporation to vaporization. Institute of Physics Pub [200], DOI:10.1201/978142003347210.1201/9781420033472Search in Google Scholar

47 Otuka, N.; et al.: Towards a More complete and accurate experimental nuclear reaction data library (EXFOR): International collaboration between nuclear reaction data centres (NRDC). Nucl. Data Sheets 120 [2014] 272–276, DOI:10.1016/j.nds.2014.07.06510.1016/j.nds.2014.07.065Search in Google Scholar

48 Vautherin, D.; Brink, D. M.: Hartree-fock calculations with skyrme’s interaction. I. Spherical nuclei, Phys. Rev. C. 5 [1972] 626, DOI:10.1103/PhysRevC.5.62610.1103/PhysRevC.5.626Search in Google Scholar

49 Hingu, A.; Parashari, S.; Singh, S. K.; Soni, B.; Mukherjee, S.: Semi-empirical systematics formulas for the (n, p), (n, α), and (n, 2n) reaction cross-sections at 14.5 MeV. Radiat. Phys. Chem. 188 [2021] 109634, DOI:10.1016/J.RADPHYSCHEM.2021.10963410.1016/J.RADPHYSCHEM.2021.109634Search in Google Scholar

50 Spicer, B.M.: The Giant Dipole Resonance. in: Adv. Nucl. Phys., Vol 2, [1969], pp. 1–78, Springer, ISBN: 978–1–4684–8343–7, PMid:4303815, DOI:10.1007/978-1-4684-8343-7_110.1007/978-1-4684-8343-7_1Search in Google Scholar

51 Shoda, K.: Reaction O16(γ, p)N15 by 20.5 MeV Polarized Bremsstrahlung, J. Phys. Soc. Japan 16 [1961] 1841–1848, DOI:10.1143/JPSJ.16.184110.1143/JPSJ.16.1841Search in Google Scholar

52 Woodworth, J. G.; et al.: Photoneutron cross sections for 18O. [1979]. https://www-nds.iaea.org/exfor/servlet/X4sGetSubent?reqx = 3474&subID = 210047005 (accessed April 28, 2020)Search in Google Scholar

53 Varlamov, V. V.; et al.: On the effect of nucleons from various shells in formation of the giant dipole resonance of the Mg-24 nucleus. [1979]. https://www-nds.iaea.org/exfor/servlet/X4sGetSubent?reqx = 3495&-subID = 220001019 (accessed April 28, 2020)Search in Google Scholar

54 Ishkhanov, B. S.; Kapitonov, I. M.; Orlin, V. N.; Piskarev, I. M.; Shvedunov, V. I.; Varlamov, V. V.: Decay channels of the giant dipole resonance in 26Mg, Nucl. Physics, Sect. A. 313 [1979] 317–332, DOI:10.1016/0375-9474(79)90503-710.1016/0375-9474(79)90503-7Search in Google Scholar

55 Khodyachikh, V. V.; et al.: The reaction O-16(g,p)N-15 at energies up to 120 MeV. [1980]. https://www-nds.iaea.org/exfor/servlet/X4sGet-Subent?reqx = 3466&subID = 220039002 (accessed April 28, 2020)Search in Google Scholar

56 Berman, B. L.; Faul, D. D.; Alvarez, R. A.; Meyer, P. P.: Photoproton cross section for 18O as a measure of the effect of the valence neutrons on the 16O core, Phys. Rev. Lett. 36 [1976]1441, DOI:10.1103/PhysRevLett.36.144110.1103/PhysRevLett.36.1441Search in Google Scholar

Received: 2021-08-08
Published Online: 2021-12-17

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 24.5.2024 from https://www.degruyter.com/document/doi/10.1515/kern-2021-1018/html
Scroll to top button