Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 26, 2017

Visible Light Communication – The Journey So Far

  • Muhammad Saadi and Lunchakorn Wuttisittikulkij EMAIL logo

Abstract

An unprecedented demand for connecting physical objects with the internet expedites the realization of internet of things, thus creating new challenges to explore new spectrums which are suitable for communication. Visible light communication (VLC) is one promising candidate not only to remove the spectrum crunch issues but also to offer virtually unlimited, unregulated spectrum. This paper discusses how VLC can help solving spectrum crunch, non-availability issues of radio frequency spectrum and how readily available spectrum of VLC can be utilized to cope up with the bandwidth requirements of next-generation networks. Furthermore, this paper also lists the technological innovations in the area of VLC from early days till present and its possible applications in various domains.

References

1. Pang G, Ho KL, Kwan T, Yang E. Visible light communication for audio systems. IEEE Trans Consum Electron. 1999;45(4):1112–18.10.1109/30.809190Search in Google Scholar

2. Tanaka Y, Komine T, Haruyama S, Nakagawa M Indoor visible communication utilizing plural white LEDs as lighting. In: 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2001, Vol. 2, IEEE, Sep 2001:F-81.10.1109/PIMRC.2001.965300Search in Google Scholar

3. Visible Light Communication Consortium. Available at: http://www.vlcc.net/?ml_lang=en. Accessed: 16 Jun 2017.Search in Google Scholar

4. Komine T, Nakagawa M. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans Consum Electron. 2004;50(1):100–07.10.1109/TCE.2004.1277847Search in Google Scholar

5. Ghassemlooy Z, Popoola W, Rajbhandari S. Optical wireless communications: system and channel modelling with Matlab®. Boca Raton, FL: CRC Press, 2012.Search in Google Scholar

6. Wireless World Research Forum. Available at: http://www.wwrf.ch/. Accessed: 19 Jun 2017.Search in Google Scholar

7. Kavehrad M. Broadband room service by light. Sci Am. 2007;297(1):82–87.10.1038/scientificamerican0707-82Search in Google Scholar PubMed

8. JEITA Standards. Available at: http://www.jeita.or.jp/cgi-bin/standard_e/list.cgi?cateid=1&subcateid=50. Accessed: 17 Jun 2017.Search in Google Scholar

9. Saadi M, Sittivangkul T, Zhao Y, Wuttisittikulkij L, Sangwongngam P, Dec. System demonstration for visible light communication using adaptive threshold detection for low data rate applications. In: 2012 IEEE International Conference on Electron Devices and Solid State Circuit (EDSSC), IEEE, 2012:1–3.10.1109/EDSSC.2012.6482814Search in Google Scholar

10. Visible Light Communication Omega Project. Available at: http://visiblelightcomm.com/tag/omega-project/. Accessed: 20 June.Search in Google Scholar

11. Lin KIX, Hirohashi K High-speed full-duplex multiaccess system for LED-based wireless communications using visible light. In: Proc of the International Symposium on Optical Engineering and Photonic Technology (OEPT), Jul 2009:1–5.Search in Google Scholar

12. IEEE Standard for Local and Metropolitan Area Networks–Part 15.7. Available at: https://standards.ieee.org/findstds/standard/802.15.7-2011.html. Accessed: 26 Jun 2017.Search in Google Scholar

13. Haruyama S. Visible light communications: recent activities in Japan. Smart Spaces: A Smart Lighting ERC Industry—Academia Day at BU Photonics Center, Boston University, 8 Feb 2011:49 pagesSearch in Google Scholar

14. Le Minh H, O’Brien D, Faulkner G, Bouchet O, Wolf M, Grobe L, et al. A 1.25-Gb/s indoor cellular optical wireless communications demonstrator. IEEE Photonics Technol Lett. 2010;22(21):1598–600.10.1109/LPT.2010.2073696Search in Google Scholar

15. Optical Communicating Research Group. Available at: http://soe.northumbria.ac.uk/ocr/. Accessed: 27 Jun 2017.Search in Google Scholar

16. Borogovac T, Rahaim MB, Tuganbayeva M, Little TD Lights-off” visible light communications. In: 2011 IEEE GLOBECOM Workshops (GC Wkshps), IEEE, Dec 2011:797–801.10.1109/GLOCOMW.2011.6162564Search in Google Scholar

17. International Organization for Standardization. Available at: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=59692. Accessed: 5 Jul 2017.Search in Google Scholar

18. Lin WY, Chen CY, Lu HH, Chang CH, Lin YP, Lin HC, et al. 10 m/500Mbps WDM visible light communication systems. Opt Express. 2012;20(9):9919–24.10.1364/OE.20.009919Search in Google Scholar PubMed

19. Khalid AM, Cossu G, Corsini R, Choudhury P, Ciaramella E. 1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation. IEEE Photonics J. 2012;4(5):1465–73.10.1109/JPHOT.2012.2210397Search in Google Scholar

20. Cossu G, Khalid AM, Choudhury P, Corsini R, Ciaramella E. 3.4 Gbit/s visible optical wireless transmission based on RGB LED. Opt Express. 2012;20(26):B501–B506.10.1364/OE.20.00B501Search in Google Scholar PubMed

21. Nakajima M, Haruyama S. New indoor navigation system for visually impaired people using visible light communication. EURASIP J Wireless Commun Netw. 2013;2013(1):1–10.10.1186/1687-1499-2013-37Search in Google Scholar

22. Azhar AH, Tran TA, O’Brien D. A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications. IEEE Photonics Technol Lett. 2013;25(2):171–74.10.1109/LPT.2012.2231857Search in Google Scholar

23. Saadi M, Bajpai A, Zhao Y, Sangwongngam P, Wuttisittikulkij L. Design and implementation of secure and reliable communication using optical wireless communication. Frequenz. 2014;68(11-12):501–09.10.1515/freq-2014-0027Search in Google Scholar

24. Zhang B, Ren K, Xing G, Fu X, Wang C. SBVLC: secure barcode-based visible light communication for smartphones. IEEE Trans Mobile Comput. 2016;15(2):432–46.10.1109/TMC.2015.2413791Search in Google Scholar

25. Visible Light Communication Association. Available at: http://vlca.net/about-vlca/. Accessed: 26 Jun 2017.Search in Google Scholar

26. Aminikashani M, Gu W, Kavehrad M Indoor positioning in high speed OFDM visible light communications. arXiv preprint arXiv:1505.01811. 201510.1109/CCNC.2016.7444832Search in Google Scholar

27. Yang Z, Wang Z, Zhang J, Huang C, Zhang Q Wearables can afford: light-weight indoor positioning with visible light. In: Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, ACM, May 2015:317–30.10.1145/2742647.2742648Search in Google Scholar

28. Wang Y, Huang X, Tao L, Shi J, Chi N. 4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization. Opt Express. 2015;23(10):13626–33.10.1364/OE.23.013626Search in Google Scholar PubMed

29. Li-Fi, the New Frontier in Communications. Available at: https://www.bbvaopenmind.com/en/li-fi-the-new-frontier-in-communications/. Accessed: 3 Jul 2017.Search in Google Scholar

30. Liu Y, Chen HY, Liang K, Hsu CW, Chow CW, Yeh CH. Visible light communication using receivers of camera image sensor and solar cell. IEEE Photonics J. 2016;8(1):1–7.10.1109/JPHOT.2015.2507364Search in Google Scholar

31. Islim MS, Ferreira RX, He X, Xie E, Videv S, Viola S, et al. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photonics Res. 5(2):A35–A43.10.1364/PRJ.5.000A35Search in Google Scholar

32. Lee C, Shen C, Cozzan C, Farrell RM, Speck JS, Nakamura S, et al. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors. Opt Express. 2017;25(15):17480–87.10.1364/OE.25.017480Search in Google Scholar PubMed

33. Cossu G, Khalid AM, Corsini R, Ciaramella E 2013. Non-directed line-of-sight visible light system providing high-speed and robustness to ambient light. In Optical Fiber Communication Conference. Optical Society of America.10.1364/OFC.2013.OTh1G.2Search in Google Scholar

34. Saadi M, Zhao Y, Naseer O, Wuttisittikulkij L. A beam scanning-based indoor localization system using light emitting diodes. Eng J. 2016;20(3):197–206.10.4186/ej.2016.20.3.197Search in Google Scholar

35. Global LED Market Size, Regional Outlook, Application Analysis, Competitive Insights and Forecasts, 2014 – 2020 from Hexa Research. 2014.Search in Google Scholar

36. The Zettabyte Era - Trends and Analysis, Cisco® Visual Networking Index (VNI) White paper. Document ID: 1465272001812119. Updated 2 Jun 2016Search in Google Scholar

Received: 2017-06-30
Accepted: 2017-09-28
Published Online: 2017-10-26
Published in Print: 2019-10-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/joc-2017-0107/html
Scroll to top button