Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 20, 2017

Role of oxygen-containing functional surface groups of activated carbons on the elimination of 2-hydroxybenzothiazole from waters in A hybrid heterogeneous ozonation system

  • Héctor Valdés EMAIL logo , Manuel Sánchez-Polo and Claudio A. Zaror

Abstract

The influence of the variation of chemical surface properties of activated carbons on the sorption capacity of activated carbons used in hybrid heterogeneous ozonation systems is still under discussion. In this study, the effect of long exposure of activated carbon to ozone and its implication on the removal of emerging organic pollutants from waters is evaluated. A commercial activated carbon (Filtrasorb-400) is used here as a raw material. It is chemically modified by continuous ozone exposure. 2-hydroxybenzothiazole (OHBT) is chosen as a target organic contaminant, representative of emerging micro-pollutants. Results obtained here reveal that extensive exposition of activated carbon surface to ozone weakens adsorbate–adsorbent interactions. Highly exposed activated carbon to ozone increases the concentration of oxygen-containing acidic functional groups, leading to a higher concentration of surface electron-withdrawing groups such as carboxylic acid anhydrides and carboxylic acids and reducing the sorption capacity toward OHBT in the hybrid heterogeneous ozonation system. At pH conditions around the point of zero charge (pHPZC), such sorption reduction could be due to a decrease on dispersive interactions among π-electrons of aromatic ring of OHBT molecules and the π-electron system of carbon graphene layers, coming after extensive exposition of activated carbon surface to ozone. However, at pH >pHPZC low removal of OHBT is obtained because of the appearing of repulsive electrostatic interactions among the ionised form of OHBT molecules and the de-protonated form of oxygen-containing functional groups that appears after long contact with ozone. In addition, a new concept to predict activated carbon performances in a hybrid heterogeneous ozonation process is proposed.

Funding statement: This research was financially supported by Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) of Chile, Fondo Nacional de Desarrollo Científico y Tecnológico of Chile (FONDECYT) with the Project (CONICTY/FONDECYT Grant N° 1060304) to whom the authors are indebted.

References

1. Dussert B, Kovacic S. Ozone Sci Eng. 1997;19:1–11.10.1080/01919519708547315Search in Google Scholar

2. Logemann FP, Anne JH. Water Sci Technol. 1997;35:353–360.10.2166/wst.1997.0151Search in Google Scholar

3. Kaptijn JP. Ozone Sci Eng. 1997;19:297–305.10.1080/01919519708547294Search in Google Scholar

4. Zaror CA. J Chem Tech Biotechnol. 1997;70:21–28.10.1002/(SICI)1097-4660(199709)70:1<21::AID-JCTB706>3.0.CO;2-3Search in Google Scholar

5. Zaror CA, Soto G, Valdés H, Mansilla H. Water Sci Technol. 2001;44:125–130.10.2166/wst.2001.0267Search in Google Scholar

6. Valdés H, Sánchez-Polo M, Rivera-Utrilla J, Zaror CA. Langmuir. 2002;18:2111–2116.10.1021/la010920aSearch in Google Scholar

7. Rivera-Utrilla J, Sánchez-Polo M. Appl Catal B Environ. 2002;39:319–329.10.1016/S0926-3373(02)00117-0Search in Google Scholar

8. Beltrán FJ, Rivas J, Álvarez P, Montero-de-Espinosa R. Ozone Sci Eng. 2002;24:227–237.10.1080/01919510208901614Search in Google Scholar

9. Kasprzyk-Hodern B, Ziólek M, Nawrocki J. Appl Catal B Environ. 2003;46:639–669.10.1016/S0926-3373(03)00326-6Search in Google Scholar

10. Valdés H, Sánchez-Polo M, Zaror CA. LAAR. 2003;33:129–133.Search in Google Scholar

11. Sánchez-Polo M, Rivera-Utrilla J. Carbon. 2003;41:303–307.10.1016/S0008-6223(02)00288-9Search in Google Scholar

12. Beltrán FJ, Acedo B, Rivas FJ, Gimeno O. Ozone Sci Eng. 2005;27:159–169.10.1080/01919510590925338Search in Google Scholar

13. Valdés H, Zaror CA. Water Sci Technol. 2005;52:281–288.10.2166/wst.2005.0704Search in Google Scholar

14. Valdés H, Zaror CA. Chemosphere. 2006;65:1131–1136.10.1016/j.chemosphere.2006.04.027Search in Google Scholar PubMed

15. Valdés H, Zaror CA. J Hazard Mater. 2006;137:1042–1048.10.1016/j.jhazmat.2006.03.025Search in Google Scholar PubMed

16. Rivera-Utrilla J, Méndez-Díaz J, Sánchez-Polo M, Ferro-García MA, Bautista-Toledo I. Water Res. 2006;40:1717–1725.10.1016/j.watres.2006.02.015Search in Google Scholar PubMed

17. Faria PC, Orfao JJ, Pereira MF. Appl Catal B Environ. 2008;79:237–243.10.1016/j.apcatb.2007.10.021Search in Google Scholar

18. Alvárez PM, Beltrán FJ, Masa FJ, Pocostales JP. Appl Catal B Environ. 2009;92:393–400.10.1016/j.apcatb.2009.08.019Search in Google Scholar

19. Beltrán FJ, Pocostales JP, Alvarez PM, Jaramillo J. J Hazard Mater. 2009;169:532–538.10.1016/j.jhazmat.2009.03.127Search in Google Scholar PubMed

20. Merle T, Pic J-S, Manero M-H, Mathé S, Debellefontaine H. Catal Today. 2010;151:166–172.10.1016/j.cattod.2010.03.044Search in Google Scholar

21. Merle T, Pic J-S, Manero M-H, Debellefontaine H. Ozone Sci Eng. 2010;32:391–398.10.1080/01919512.2010.522933Search in Google Scholar

22. Dehouli H, Chedeville O, Cagnon B, Caqueret V, Porte C. Desalination. 2010;254:12–16.10.1016/j.desal.2009.12.021Search in Google Scholar

23. Ferreira De Oliveira T, Chedeville O, Cagnon B, Fauduet H. Desalination. 2011;269:271–275.10.1016/j.desal.2010.11.013Search in Google Scholar

24. Radovic LR, Moreno-Castilla C, Rivera-Utrilla J. Chem Phys Carbon. 2000;27:227–405.Search in Google Scholar

25. Marsh H, Rodríguez-Reinoso F. Activated Carbon. Oxford: Elsevier Ltd.; 2006.10.1016/B978-008044463-5/50016-9Search in Google Scholar

26. Figueiredo JL, Pereira MF. Catal Today. 2010;1:2–7.10.1016/j.cattod.2009.04.010Search in Google Scholar

27. Radovic LR, Silva IF, Ume JI, Menéndez JA, Leon Y Leon CA, Scaroni AW. Carbon N Y. 1997;35:1339–1348.10.1016/S0008-6223(97)00072-9Search in Google Scholar

28. Rodríguez DM, Wrobel K, Jiménez MG, Wrobel K. Bull Environ Contam Toxicol. 2004;73:818–824.10.1007/s00128-004-0500-3Search in Google Scholar PubMed

29. Kloepfer A, Gnirss R, Jekel M, Reemtsma T. Water Sci Technol. 2004;50:203–208.10.2166/wst.2004.0329Search in Google Scholar

30. Kloepfer A, Jekel M, Reemtsma T. Environ Sci Technol. 2005;39:3792–3798.10.1021/es048141eSearch in Google Scholar PubMed

31. Catallo WJ, Junk T. J Environ Qual. 2005;34(5):1746–1754.10.2134/jeq2004.0182Search in Google Scholar PubMed

32. Céspedes R, Lacorte S, Ginebreda A, Barceló D. Anal Bioanal Chem. 2006;385:992–1000.10.1007/s00216-006-0448-8Search in Google Scholar PubMed

33. Matamoros V, Jover E, Bayona JM. Water Sci Technol. 2010;61:191–198.10.2166/wst.2010.797Search in Google Scholar

34. Stasinakis AS, Thomaidis NS, Arvaniti OS, Asimakopoulos AG, Samaras VG, Ajibola A, et al. Sci Total Environ. 2013;463-464:1067–1075.10.1016/j.scitotenv.2013.06.087Search in Google Scholar

35. Asimakopoulos AG, Ajibola A, Kannan K, Thomaidis NS. Sci Total Environ. 2013;452-453:163–171.10.1016/j.scitotenv.2013.02.041Search in Google Scholar

36. De Wever H, Verachtert H. Water Res. 1997;31:2673–2684.10.1016/S0043-1354(97)00138-3Search in Google Scholar

37. Gaja MA, Knapp JS. Water Res. 1998;32:3786–3789.10.1016/S0043-1354(98)00146-8Search in Google Scholar

38. De Wever H, Weiss S, Reemtsma T, Vereecken J, Müller J, Knepper T, et al. Water Res. 2007;41:935–945.10.1016/j.watres.2006.11.013Search in Google Scholar

39. Andriozzi R, Caprio V, Marotta R. J Chem Technol Biotechnol. 2001;76:196–202.10.1002/jctb.360Search in Google Scholar

40. Brunauer S, Emmett PH, Teller E. J Am Chem Soc. 1938;60:309–319.10.1021/ja01269a023Search in Google Scholar

41. Rodríguez-Reinoso F, Martin-Martínez JM, Prado-Burguete C, McEnaney BA. J Phys Chem. 1987;91:515–516.10.1021/j100287a006Search in Google Scholar

42. Boehm HP. Adv Catal. 1966;16:179–274.Search in Google Scholar

43. Boehm HP. Carbon N Y. 2002;40:145–149.10.1016/S0008-6223(01)00165-8Search in Google Scholar

44. Stumm W, Morgan JJ. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. New York: John Wiley & Sons Inc.; 1996.Search in Google Scholar

45. Valdés H, Tardón RF, Zaror CA. Environ Technol. 2012;33:1895–1903.10.1080/09593330.2011.650222Search in Google Scholar

46. Rivera-Utrilla J, Sánchez-Polo M. Carbon N Y. 2002;40:2685–2691.10.1016/S0008-6223(02)00182-3Search in Google Scholar

47. Álvarez PM, García-Araya JF, Beltrán FJ, Masa FJ, Medina F. J Colloid Interf Sci. 2005;283:503–512.10.1016/j.jcis.2004.09.014Search in Google Scholar

48. Couglhin RW, Ezra FS. Environ Sci Technol. 1968;2:291–297.10.1021/es60016a002Search in Google Scholar

49. Mahajan OP, Moreno-Castilla C, Walker PL. Sep Sci Technol. 1980;15:1733–1752.10.1080/01496398008055619Search in Google Scholar

50. Haydar S, Ferro-García MA, Rivera-Utrilla J, Poly JP. Carbon N Y. 2003;41:387–395.10.1016/S0008-6223(02)00344-5Search in Google Scholar

51. Rivera-Utrilla J, Sánchez-Polo M. Adsorption. 2011;17:611–620.10.1007/s10450-011-9345-3Search in Google Scholar

52. Bautista-Toledo MI, Méndez-Díaz JD, Sánchez-Polo M, Rivera-Utrilla J, Ferro-García MA. J Colloid Interf Sci. 2008;317:11–17.10.1016/j.jcis.2007.09.039Search in Google Scholar PubMed

53. Ocampo-Pérez R, Orellana-Garcia F, Sánchez-Polo M, Rivera-Utrilla J, Velo-Gala I, López-Ramón MV, et al. J Colloid Interf Sci. 2013;401:116–124.10.1016/j.jcis.2013.03.038Search in Google Scholar PubMed

Received: 2016-2-11
Revised: 2016-7-19
Accepted: 2016-8-23
Published Online: 2017-1-20
Published in Print: 2017-1-1

© 2017 by Walter De Gruyter GmbH

Downloaded on 18.4.2024 from https://www.degruyter.com/document/doi/10.1515/jaots-2016-0170/html
Scroll to top button