Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 11, 2022

A varying-coefficient partially linear transformation model for length-biased data with an application to HIV vaccine studies

  • Alan T. K. Wan ORCID logo , Wei Zhao EMAIL logo , Peter Gilbert and Yong Zhou

Abstract

Prevalent cohort studies in medical research often give rise to length-biased survival data that require special treatments. The recently proposed varying-coefficient partially linear transformation (VCPLT) model has the virtue of providing a more dynamic content of the effects of the covariates on survival times than the well-known partially linear transformation (PLT) model by allowing flexible interactions between the covariates. However, no existing analysis of the VCPLT model has considered length-biased sampling. In this paper, we consider the VCPLT model when the data are length-biased and right censored, thereby extending the reach of this flexible and powerful tool. We develop a martingale estimating function-based approach to the estimation of this model, provide theoretical underpinnings, evaluate finite sample performance via simulations, and showcase its practical appeal via an empirical application using data from two HIV vaccine clinical trials conducted by the U.S. National Institute of Allergy and Infectious Diseases.


Corresponding author: Wei Zhao, Zhongtai Securities Institute for Financial Studies, Shandong University, Jinan 250100, China, E-mail:

Funding source: Emory University

Award Identifier / Grant number: Unassigned

Acknowledgements

We thank the editor Prof. Michael Rosenblum and the referees for their helpful comments. All remaining errors are ours.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Part of this work was carried out when Wei Zhao was visiting Emory University. Wan’s work was supported by the Hong Kong Research Grants Council (Grant No. 11500419) and the National Natural Science Foundation of China (No. 71973116). Zhou’s work was supported by the Key Program of the National Natural Science Foundation of China (Grant No. 71931004) and the National Key R&D Program of China (Grant Nos. 2021YFA1000100 and 2021YFA1000101).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix

Let ‖⋅‖ denote the L 2 norm, and β 0 and f 0 be the true values of β and f . For any ϵ > 0, define D ϵ 1 = { β : β β 0 ϵ } , D ϵ 2 = { f : sup z | f ( z ) f 0 ( z ) | ϵ } , D ϵ 3 = { f ̇ : sup z | f ̇ ( z ) f ̇ 0 ( z ) | ϵ } , and D ϵ = β T , α 0 T , α 1 T T : ( β T , α 0 T ( z ) , α 1 T ( z ) ) T ( β 0 T , f 0 T ( z ) , f ̇ 0 T ( z ) ) T ϵ .

Our Proof of Theorem 1 requires the following lemma:

Lemma 1

Assume that Conditions (C1)–(C6) hold, and h → 0 and nh → 0 as n → ∞. Also, assume that the matrix A z (defined in the proof) is finite and non-degenerate for any z. Then the one-step estimators β ̃ ( z ) , α ̃ 1 ( z ) , and α ̃ 0 ( z ) are locally consistent.

Proof of Lemma 1

Let H ̃ z ( t ; β , α 0 , α 1 ) be the solution of (8) for fixed β , α 0, and α 1. Note that the left-hand side of (8) is monotone in H. By similar arguments to Chen et al. [19]; it can be shown that (8) has a unique solution H ̃ z ( t ; β , f 0 , f ̇ 0 ) , and for any t ∈ (0, τ],

H ̃ z ( t ; β , f 0 , f ̇ 0 ) a.s. H 0 ( t ) ,

where →a.s. denotes the convergence almost surely. Let

U ̃ z ( β , α 1 , α 0 ) = 1 n i = 1 n 0 τ K h ( Z i z ) X i W i ( Z i z ) W i d N i ( t ) R i ( t ) × d Λ ϵ H ̃ z ( t ; β , α 0 , α 1 ) + β T X i + α 0 T ( z ) W i + α 1 T ( z ) W i ( Z i z ) .

Then H ̃ z ( t ; β , α 0 , α 1 ) may be considered as a random mapping from D ϵ to another open connected set B n in R p + 2 q .

We divide our proof into three steps. First, by the law of large numbers and Lemma 1 in Cai et al. [25]; we have

U ̃ z ( β , f ̇ 0 , f 0 ) = 0 τ E K h ( Z z ) X ( Z z ) W W d N ( t ) R ( t ) × d Λ ϵ H 0 ( t ) + β 0 T X + f 0 T ( z ) W + f ̇ 0 T ( z ) W ( Z z ) + o p ( 1 ) = 0 τ E X 0 W d N ( t ) R ( t ) d Λ ϵ H 0 ( t ) + β 0 T X + f 0 T ( z ) W | Z = z g ( z ) + o p ( 1 ) = o p ( 1 ) ,

where g(z) is the density function of Z. Thus, B n contains 0 with probability approaching 1.

Second, let

A 11 , z = E X 2 R ( t ) λ ϵ H 0 ( t ) + β 0 T X + f 0 T ( z ) W | Z = z g ( z ) , A 22 , z = E W 2 R ( t ) λ ϵ H 0 ( t ) + β 0 T X + f 0 T ( z ) W | Z = z g ( z ) k 2 , A 33 , z = E W 2 R ( t ) λ ϵ H 0 ( t ) + β 0 T X + f 0 T ( z ) W | Z = z g ( z ) a n d A 13 , z = E X W T R ( t ) λ ϵ H 0 ( t ) + β 0 T X + f 0 T ( z ) W | Z = z g ( z ) ,

where k 2 = ∫x 2 k(x)dx. By techniques similar to those used above,

lim n U ̃ z ( β , α 1 , α 0 ) ( β T , α 1 T , α 0 T ) | β = β 0 , α 0 = f 0 , α 1 = f ̇ 0 = A 11 , z 0 A 13 , z 0 A 22 , w 0 A 13 , z T 0 A 33 , z A z

in probability. Using methods similar to Lu and Zhang [17] and the uniform law of large numbers, we can obtain,

sup β D ϵ 1 , α 0 D ϵ z 2 , α 1 D ϵ z 3 U ̃ z ( β , α 1 , α 0 ) ( β T , α 1 T , α 0 T ) A z a.s. 0 ,

as n → ∞, ϵ → ∞ and ϵ z → ∞.

Third, as A z is finite and non-degenerate by assumption, the map U ̃ z ( β , α 1 , α 0 ) is a homeomorphism from D ϵ to B n . However, U ̃ z ( β ̃ , α ̃ 1 , α ̃ 0 ) = 0 . Thus, by letting ϵ → 0, it can be shown that β ̃ ( z ) , α ̃ 1 ( z ) and α ̃ 0 ( z ) are locally consistent.

Proof of Theorem 1

We need to prove the local consistency of estimators β ̂ , H ̂ ( ) , α ̂ 0 ( z ) and α ̂ 1 ( z ) . Given that β ̃ ( z ) , α ̃ 1 ( z ) and α ̃ 0 ( z ) are locally consistent, then so are β ̂ , α ̂ 0 ( z ) and α ̂ 1 ( z ) from results of Carroll et al. [24]. Thus, we only have to prove the consistency of H ̂ ( ) . Let H ̆ be a limit of H ̂ ( t , β 0 , f 0 ) . By Eq. (5) and arguments similar to those used by Kim et al. [29]; we have

(11) E [ N ( t ) ] = 0 t E R ( s ) λ ϵ H ̆ ( s ) + β 0 T X + f 0 T ( Z ) W d H ̆ ( s ) .

Differentiating (11) with respect to t, we have

(12) d H ̆ ( t ) d t = d E [ N ( t ) ] d t E R ( t ) λ ϵ H ̆ ( s ) + β 0 T X + f 0 T ( Z ) W 1 .

As (12) is a Cauchy problem, it has a unique solution. As well, it is readily seen from Eq. (4) that H 0, the true transformation function, satisfies (12). Hence, by Helly’s Lemma, H 0 = H ̆ and we have H ̂ ( t , β 0 , f 0 ) a.s. H 0 . Note that H ̂ ( t , β , α 0 ) β and H ̂ ( t , β , α 0 ) α 0 are bounded on [0, τ] if β D ϵ 1 1 and α 0 D ϵ 2 2 for some ϵ 1 and ϵ 2. Then by using the Taylor-series expansion, we have H ̂ ( t ) a.s. H 0 ( t ) .

Next, we prove the asymptotic normality of β ̂ . Our proof focuses on the following asymptotic representation of β ̂ :

(13) ( A 1 A 2 ) ( β ̂ β 0 ) = 1 n i = 1 n 0 τ ( X i m ( t ) ) X i * m i * d M i ( t ) + o p ( n 1 / 2 ) .

If it can be proven that if (13) is true, then it is clear that Theorem 1 is also true by the martingale central limit theorem. In order to prove (13), we first give the representation of Λ ϵ * { H ̂ ( t ; β 0 , f 0 ) } Λ ϵ * { H 0 ( t ) } and β H ̂ ( t , β 0 , f 0 ) that will be used to approximate the rate of Taylor-series expansion. Next, we give the representation of 1 n i = 1 n M i ( t ) and 1 n i = 1 n 0 τ X i d M i ( t ) . Finally, we combine the results in the first two steps to obtain (13).

From Eqs. (4) and (5), we have

1 n i = 1 n M i ( t ) = 1 n i = 1 n N i ( t ) 1 n i = 1 n 0 t R i ( s ) d Λ ϵ H 0 ( s ) + β 0 T X i + f 0 T ( Z i ) W i = 1 n i = 1 n 0 t R i ( s ) d Λ ϵ H ̂ ( s ; β 0 , f 0 ) + β 0 T X i + f 0 T ( Z i ) W i d Λ ϵ H 0 ( s ) + β 0 T X i + f 0 T ( Z i ) W i .

By some tedious calculations and results of the empirical process theory for Z-estimator and the definition of λ ϵ * { H 0 ( t ) } , we obtain

(14) 1 n i = 1 n M i ( t ) = 1 n i = 1 n 0 t R i ( s ) d λ ϵ H 0 ( s ) + β 0 T X i + f 0 T ( Z i ) W i λ ϵ * { H 0 ( s ) } × Λ ϵ * { H ̂ ( s ; β 0 , f 0 ) } Λ ϵ * { H 0 ( s ) } + o p ( n 1 / 2 ) = 0 t B 2 ( s ) λ ϵ * { H 0 ( t ) } d Λ ϵ * { H ̂ ( s ; β 0 , f 0 ) } Λ ϵ * { H 0 ( s ) } + o p ( n 1 / 2 ) .

Then it follows, for t ∈ (0, τ], that

(15) Λ ϵ * { H ̂ ( t ; β 0 , f 0 ) } Λ ϵ * { H 0 ( t ) } = 1 n i = 1 n 0 t λ ϵ * { H 0 ( s ) } B 2 ( s ) d M i ( t ) + o p ( n 1 / 2 ) .

Note that for any t ∈ (0, τ],

(16) i = 1 n d N i ( t ) R i ( t ) d Λ ϵ H ̂ ( t ; β , f ) + β T X i + f T ( Z i ) W i = 0

for the parameter β . Differentiating (16) with respect to β on both sides yields

i = 1 n R i ( t ) d λ ϵ H ̂ ( t ; β , f ) + β T X i + f T ( Z i ) W i X i + β H ̂ ( t ; β , f ) = 0 .

Following arguments similar to Chen et al. [19] and Lu and Zhang [17]; it can be shown that

(17) β H ̂ ( t ; β , f ) | β = β 0 , f = f 0 = 0 t B ( s , t ) B 2 ( s ) E X λ ̇ ϵ H 0 ( s ) + β 0 T X + f 0 T ( Z ) W R ( s ) d H 0 ( s ) + o p ( 1 ) = 0 t B ( s , t ) B 2 ( s ) B 1 X ( s ) d H 0 ( s ) + o p ( 1 ) a ( t ) + o p ( 1 ) .

Next we give the representation of 1 n i = 1 n M i ( t ) and 1 n i = 1 n 0 τ X i d M i ( t ) .

Denote

U 1 ( β , f ) = 1 n i = 1 n 0 τ X i d N i ( t ) R i ( t ) d Λ ϵ H ̂ ( t ; β , f ) + β T X i + f T ( Z i ) W i .

Taking the derivative of U 1( β , f ) with respect to β , setting β = β 0 and f = f 0, and using the law of large numbers and (17), we obtain

(18) U 1 ( β , f ) β | β = β 0 , f = f 0 = 1 n i = 1 n 0 τ { X i μ ( t ) } X i T R i ( t ) λ ̇ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( Z i ) W i d H 0 ( t ) + o p ( 1 ) = 0 τ E { X μ ( t ) } X T R ( t ) λ ̇ ϵ H 0 ( t ) + β 0 T X + f 0 T ( Z ) W d H 0 ( t ) + o p ( 1 ) = A 1 + o p ( 1 ) .

Let ( α ̂ 0 , α ̂ 1 ) be the solution of (7), and for t ∈ [0, τ], define H ̂ 0 ( t ; β ) = H ̂ ( t ; β , α ̂ 0 ) . For any z, let

U 21 ( α 0 , α 1 , H , β ) ( z ) = 1 n i = 1 n 0 τ K h ( Z i z ) W i d N i ( t ) R i ( t ) d Λ ϵ H ( t ) + β T X i + α 0 T ( z ) W i + α 1 T ( z ) W i ( Z i z ) , U 22 ( α 0 , α 1 , H , β ) ( z ) = 1 n i = 1 n 0 τ K h ( Z i z ) W i Z i z h d N i ( t ) R i ( t ) d Λ ϵ H ( t ) + β T X i + α 0 T ( z ) W i + α 1 T ( z ) W i ( Z i z ) , a n d U 2 ( α 0 , α 1 , H , β ) ( z ) = U 21 T ( α 0 , α 1 , H , β ) ( z ) , U 22 T ( α 0 , α 1 , H , β ) ( z ) .

Then we have

U 2 ( α ̂ 0 , α ̂ 1 , H ̂ 0 ( t ; β ̂ ) , β ̂ ) ( z ) = 0 ,

where ( α ̂ 0 , α ̂ 1 ) is the solution of (7) at convergence, and ( β ̂ , H ̂ 0 ( t ; β ̂ ) ) is the solution of (5) and (6) at convergence. By the Taylor-series expansion and the law of large numbers, we obtain

(19) 0 = U 2 ( α ̂ 0 , α ̂ 1 , H ̂ 0 ( ; β ̂ ) , β ̂ ) ( z ) = U 2 ( α ̂ 0 , α ̂ 1 , H ̂ 0 ( ; β 0 ) , β 0 ) ( z ) E 1 ( z ) + o p ( n 1 / 2 ) ,

where

E 1 ( z ) = 1 n i = 1 n K h ( Z i z ) R i ( t ) W i W i Z i z h × λ ϵ H ̂ 0 ( t , β ̂ 0 ) + X i T β ̂ 0 + α ̂ 0 T ( z ) W i + α ̂ 1 T ( z ) W i ( Z i z ) X i + H ̂ 0 ( t ; β ) β | β = β 0 T ( β ̂ β 0 ) .

However, as H ̂ 0 ( t ; β ) = H ̂ ( t ; β , α ̂ 0 ) , we have

(20) 1 n i = 1 n d N i ( t ) R i ( t ) d Λ ϵ H ̂ 0 ( t ; β ) + β T X i + α ̂ 0 T ( Z i ) W i = 0 .

Taking derivative with respect to β on both sides of (20), applying the law of large numbers and using arguments similar to those in Step 2, we obtain

(21) H ̂ 0 ( s ; β ) β | β = β 0 d B 1 ( s ) + B 2 ( s ) d H ̂ ( s ; β ) β | β = β 0 = E R ( s ) X λ ̇ ϵ H 0 ( s ) + β 0 T X + f 0 T ( Z ) W d H 0 ( s ) + o p ( 1 ) .

Multiplying λ ϵ * { H 0 ( s ) } to both sides of (21) and performing integration with respect to s over the range (0, t) yields

(22) H ̂ 0 ( t ; β ) β | β = β 0 = a ( t ) + o p ( 1 ) .

Substituting (22) into E 1(z) leads to

(23) E 1 ( z ) = 1 n i = 1 n K h ( Z i z ) R i ( t ) W i W i Z i z h λ ϵ H ̂ 0 ( t , β ̂ 0 ) + X i T β ̂ 0 + α ̂ 0 T ( z ) W i + α ̂ 1 T ( z ) W i ( Z i z ) X i a ( t ) T β ̂ β 0 T + o p ( n 1 / 2 ) = e 1 T ( z ) 0 T ( β ̂ β 0 ) + o p ( n 1 / 2 ) ,

where e 1 T ( z ) = g ( z ) E R ( t ) W λ ϵ H 0 ( t ) + β 0 T X + f 0 T ( z ) W ( X a ( t ) ) T | Z = z . On the other hand,

(24) U 2 ( α ̂ 0 , α ̂ 1 , H ̂ 0 ( ; β 0 ) , β 0 ) ( z ) = U 2 ( α ̂ 0 , α ̂ 1 , H 0 , β 0 ) ( z ) 1 n i = 1 n K h ( Z i z ) R i ( t ) W i W i Z i z h × λ ϵ H ̂ 0 ( t ) + X i T β 0 + α ̂ 0 T ( z ) W i + α ̂ 1 T ( z ) W i ( Z i z ) ( H ̂ 0 ( t ; β 0 ) H ̂ 0 ( t ) ) + o p ( n 1 / 2 ) = U 2 ( α ̂ 0 , α ̂ 1 , H 0 , β 0 ) ( z ) 0 τ g ( z ) E R ( t ) W λ ϵ H 0 ( t ) + β 0 T X + f 0 T ( z ) W λ ϵ * { H 0 ( t ) } 0 | Z = z × d Λ ϵ * { H ̂ 0 ( t ; β 0 ) } Λ ϵ * { H 0 ( t ) } + o p ( n 1 / 2 ) = U 2 ( α ̂ 0 , α ̂ 1 , H 0 , β 0 ) ( z ) 0 τ e 2 ( z , t ) 0 d Λ ϵ * { H ̂ 0 ( t ; β 0 ) } Λ ϵ * { H 0 ( t ) } + o p ( n 1 / 2 ) ,

where

e 2 ( z , t ) = g ( z ) E R ( t ) W λ ϵ H 0 ( t ) + β 0 T X + f 0 T ( z ) W λ ϵ * { H 0 ( t ) } | Z = z .

Moreover,

U 2 ( α ̂ 0 , α ̂ 1 , H 0 , β 0 ) ( z ) = U 2 ( f 0 , f ̇ 0 , H 0 , β 0 ) ( z ) 1 n i = 1 n 0 τ K h ( Z i z ) R i ( t ) W i W i Z i z h × Λ ϵ H 0 ( t ) + X i T β 0 + α ̂ 0 T ( z ) W i + α ̂ 1 T ( z ) W i ( Z i z ) Λ ϵ H 0 ( t ) + X i T β 0 + f 0 T ( z ) W i + f ̇ 0 T ( z ) W i ( Z i z ) = U 2 ( f 0 , f ̇ 0 , H 0 , β 0 ) ( z ) 1 n i = 1 n 0 τ K h ( Z i z ) R i ( t ) W i W i Z i z h × W i T , W i T Z i z h λ ϵ H 0 ( t ) + X i T β 0 + f 0 T ( z ) W i + f ̇ 0 T ( z ) W i ( Z i z ) × α ̂ 0 ( z ) 0 ( z ) h ( α ̂ 1 ( z ) f ̇ 0 ( z ) ) + o p ( n 1 / 2 ) .

Thus, if we define

e 31 ( z ) = g ( z ) E R ( t ) W W T λ ϵ H 0 ( t ) + β 0 T X + f 0 T ( z ) W | Z = z

and

e 3 ( z ) = e 31 ( z ) 0 0 k 2 e 31 ( z ) ,

then we have

(25) U 2 ( α ̂ 0 , α ̂ 1 , H 0 , β 0 ) ( w ) = U 2 ( f 0 , f ̇ 0 , H 0 , β 0 ) ( z ) e 3 ( z ) α ̂ 0 ( z ) f 0 ( z ) h ( α ̂ 1 ( z ) f ̇ 0 ( z ) ) + o p ( n 1 / 2 )

Hence, combining (19), (23)(25), we get

e 3 ( z ) α ̂ 0 ( z ) f 0 ( z ) h ( α ̂ 1 ( z ) f ̇ 0 ( z ) ) = U 2 ( f 0 , f ̇ 0 , H 0 , β 0 ) ( z ) 0 τ e 2 ( z , t ) 0 d Λ ϵ * { H ̂ 0 ( t ; β 0 ) } Λ ϵ * { H 0 ( t ) } e 1 T ( z ) 0 ( β ̂ β 0 ) + o p ( n 1 / 2 ) ,

which yields

(26) α ̂ 0 ( z ) f 0 ( z ) = e 31 1 ( z ) U 21 ( f 0 , f ̇ 0 , H 0 , β 0 ) ( z ) e 31 1 ( z ) e 1 T ( z ) ( β ̂ β 0 ) 0 τ e 31 1 ( z ) e 2 ( z , t ) d Λ ϵ * { H ̂ 0 ( t ; β 0 ) } Λ ϵ * { H 0 ( t ) } + o p ( n 1 / 2 )

and

(27) h ( α ̂ 1 ( z ) f ̇ 0 ( z ) ) = 1 k 2 e 31 1 ( z ) U 22 ( f 0 , f ̇ 0 , H 0 , β 0 ) ( z ) + o p ( n 1 / 2 ) .

By the definition of H ̂ 0 ( t ; β ) ,

i = 1 n d N i ( t ) R i ( t ) d Λ ϵ H ̂ 0 ( t ; β 0 ) + β 0 T X i + α ̂ 0 T ( Z i ) W i = 0 .

By the Taylor-series expansion and derivations analogous to Step 1,

(28) 1 n i = 1 n M i ( t ) = 1 n i = 1 n N i ( t ) 0 t R i ( s ) d Λ ϵ H 0 ( s ) + β 0 T X i + α ̂ 0 T ( Z i ) X i R i ( s ) d Λ ϵ H 0 ( s ) + β 0 T X i + f 0 T ( Z i ) W i = 1 n i = 1 n 0 t R i ( s ) ( α ̂ 0 T ( Z i ) f 0 T ( Z i ) ) W i d λ ϵ H 0 ( s ) + β 0 T X i + f 0 T ( Z i ) W i + o p ( n 1 / 2 ) + 0 t B 2 ( s ) λ ϵ * { H 0 ( s ) } d Λ ϵ * { H ̂ 0 ( s ; β 0 ) } Λ ϵ * { H 0 ( s ) } + o p ( n 1 / 2 ) .

Let

U 3 ( β , H ̂ 0 ( t ; β ) , α ̂ 0 ) = 1 n i = 1 n 0 τ X i d N i ( t ) R i ( t ) d Λ ϵ H ̂ 0 ( t ; β ) + β T X i + α ̂ 0 T ( Z i ) W i .

By arguments similar to those used in Steps 2 and 3, we have

0 = U 3 ( β ̂ , H ̂ 0 ( t ; β ̂ ) , α ̂ 0 ) = U 3 ( β 0 , H ̂ 0 ( t ; β 0 ) , f 0 ) A 1 ( β ̂ β 0 ) 1 n i = 1 n 0 τ R i ( t ) X i W i T ( α ̂ 0 ( Z i ) f 0 ( Z i ) ) × d λ ϵ H ̂ 0 ( t ; β 0 ) + β 0 T X i + f 0 T ( Z i ) W i + o p ( n 1 / 2 ) .

However, because

U 3 ( β 0 , H ̂ 0 ( t ; β 0 ) , f 0 ) = 1 n i = 1 n 0 τ R i ( t ) X i d Λ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( Z i ) W i Λ ϵ H ̂ 0 ( t ; β 0 ) + β 0 T X i + f 0 T ( Z i ) W i + 1 n i = 1 n 0 τ X i d M i ( t ) = 1 n i = 1 n 0 τ X i d M i ( t ) 1 n i = 1 n R i ( t ) X i λ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( Z i ) W i λ ϵ * { H 0 ( t ) } × Λ ϵ * { H ̂ 0 ( t ; β 0 ) } Λ ϵ * { H 0 ( t ) } + o p ( n 1 / 2 ) ,

we obtain

(29) 1 n i = 1 n 0 τ X i d M i ( t ) = A 1 ( β ̂ β 0 ) + 1 n i = 1 n 0 τ R i ( t ) X i W i T ( α ̂ 0 ( Z i ) f 0 ( Z i ) ) × d λ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( Z i ) W i + 1 n i = 1 n R i ( t ) X i λ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( Z i ) W i λ ϵ * { H 0 ( t ) } × Λ ϵ * { H ̂ 0 ( t ; β 0 ) } Λ ϵ * { H 0 ( t ) } + o p ( n 1 / 2 ) .

Substituting (26) into (28) yields

1 n i = 1 n M i ( t ) = 0 t B 2 ( s ) λ ϵ * { H 0 ( s ) } d Λ ϵ * { H ̂ 0 ( s ; β 0 ) } Λ ϵ * { H 0 ( s ) } + 1 n i = 1 n 0 τ R i ( s ) e 31 1 ( z ) U 21 ( f 0 , f ̇ 0 , H 0 , β 0 ) ( z ) e 31 1 ( z ) e 1 T ( z ) ( β ̂ β 0 ) 0 τ e 31 1 ( z ) e 2 ( z , t ) d Λ ϵ * { H ̂ 0 ( t ; β 0 ) } Λ ϵ * { H 0 ( t ) } T × W i d λ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( Z i ) W i + o p ( n 1 / 2 ) .

Define

d J 1 ( t ) = E R ( t ) W T e 31 1 ( Z ) e 1 T ( Z ) d λ ϵ H 0 ( t ) + β 0 T X + f 0 T ( Z ) W , a n d J 2 ( s , t ) = E R ( t ) e 2 T ( Z , s ) e 31 1 ( Z ) W λ ̇ ϵ H 0 ( t ) + β 0 T X + f 0 T ( Z ) W .

Then

(30) 1 n i = 1 n M i ( t ) 1 n i = 1 n 0 t R i ( s ) U 21 T ( f 0 , f ̇ 0 , H 0 , β 0 ) ( Z i ) e 31 1 ( Z i ) W i d λ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( Z i ) W i = 0 t B 2 ( s ) λ ϵ * { H 0 ( s ) } d Λ ϵ * { H ̂ 0 ( s ; β 0 ) } Λ ϵ * { H 0 ( s ) } 0 t d J 1 ( s ) ( β ̂ β 0 ) 0 t 0 τ J 2 ( s , u ) d Λ ϵ * { H ̂ 0 ( u ; β 0 ) } Λ ϵ * { H 0 ( u ) } d H 0 ( s ) + o p ( n 1 / 2 ) .

Let A 22 = 0 τ α ( t ) λ ϵ * { H 0 ( t ) } B 2 ( t ) d J 1 ( t ) . Then we have

(31) 1 n i = 1 n 0 τ α ( t ) λ ϵ * { H 0 ( t ) } B 2 ( t ) d M i ( t ) 1 n i = 1 n 0 τ α ( t ) λ ϵ * { H 0 ( t ) } B 2 ( t ) R i ( t ) × U 21 T ( f 0 , f ̇ 0 , H 0 , β 0 ) ( Z i ) e 31 1 ( Z i ) W i d λ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( Z i ) W i = 0 τ α ( t ) d Λ ϵ * { H ̂ 0 ( t ; β 0 ) } Λ ϵ * { H 0 ( t ) } 0 τ α ( t ) λ ϵ * { H 0 ( t ) } B 2 ( t ) d J 1 ( t ) ( β ̂ β 0 ) 0 τ α ( t ) λ ϵ * { H 0 ( t ) } B 2 ( t ) 0 τ J 2 ( s , t ) d Λ ϵ * { H ̂ 0 ( s ; β 0 ) } Λ ϵ * { H 0 ( s ) } d H 0 ( t ) + o p ( n 1 / 2 ) = 0 τ α ( t ) 0 τ α ( s ) λ ϵ * { H 0 ( s ) } B 2 ( s ) J 2 ( s , t ) d H 0 ( s ) d Λ ϵ * { H ̂ 0 ( t ; β 0 ) } Λ ϵ * { H 0 ( t ) } A 22 ( β ̂ β 0 ) + o p ( n 1 / 2 ) .

On the other hand, substituting (26) into (29), we have

1 n i = 1 n 0 τ X i d M i ( t ) = A 1 ( β ̂ β 0 ) + 1 n i = 1 n R i ( t ) X i λ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( Z i ) W i λ ϵ * { H 0 ( t ) } × Λ ϵ * { H ̂ 0 ( t ; β 0 ) } Λ ϵ * { H 0 ( t ) } + 1 n i = 1 n 0 τ R i ( t ) X i W i T e 31 1 ( Z i ) U 21 ( f 0 , f ̇ 0 , H 0 , β 0 ) ( Z i ) e 31 1 ( Z i ) e 1 T ( Z i ) ( β ̂ β 0 ) 0 τ e 31 1 ( Z i ) e 2 ( Z i , t ) d Λ ϵ * { H ̂ 0 ( t ; β 0 ) } Λ ϵ * { H 0 ( t ) } × d λ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( Z i ) W i + o p ( n 1 / 2 ) .

Let

J 3 ( t ) = E R ( t ) X λ ϵ H 0 ( t ) + β 0 T X + f 0 T ( Z ) W λ ϵ * { H 0 ( t ) } , J 4 ( t ) = 0 τ E X R ( s ) W T e 31 1 ( Z ) e 2 ( Z , t ) λ ̇ ϵ H 0 ( s ) + β 0 T X + f 0 T ( Z ) W d H 0 ( s ) , a n d A 21 = 0 τ E X R ( t ) W T e 31 1 ( Z ) e 1 T ( Z ) λ ̇ ϵ H 0 ( t ) + β 0 T X + f 0 T ( Z ) W d H 0 ( t ) .

Then by the law of large numbers, we obtain

(32) ( A 1 A 21 ) ( β ̂ β 0 ) + 0 τ [ J 3 ( t ) J 4 ( t ) ] d Λ ϵ * { H ̂ 0 ( t ; β 0 ) } Λ ϵ * { H 0 ( t ) } 1 n i = 1 n 0 τ X i d M i ( t ) = 1 n i = 1 n 0 τ R i ( t ) X i W i T e 31 1 ( Z i ) U 21 ( f 0 , f ̇ 0 , H 0 , β 0 ) ( Z i ) × d λ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( Z i ) W i + o p ( n 1 / 2 ) .

By the assumption of Theorem 1, and from (31) and (32),

(33) ( A 1 A 2 ) ( β ̂ β 0 ) = 1 n i = 1 n 0 τ [ X i m ( t ) ] d M i ( t ) ( G 1 G 2 ) + o p ( n 1 / 2 ) ,

where

m ( t ) = α ( t ) λ ϵ * { H 0 ( t ) } B 2 ( t ) , A 2 = A 21 A 22 , G 1 = 1 n i = 1 n 0 τ R i ( t ) X i W i T e 31 1 ( Z i ) U 21 ( f 0 , f ̇ 0 , H 0 , β 0 ) ( Z i ) d λ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( Z i ) W i , and  G 2 = 1 n i = 1 n 0 τ α ( t ) λ ϵ * { H 0 ( t ) } B 2 ( t ) R i ( t ) U 21 ( f 0 , f ̇ 0 , H 0 , β 0 ) ( Z i ) × e 31 1 ( Z i ) W i d λ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( Z i ) W i .

On the other hand, by the Taylor-series expansion and the definition of U 21 ( f 0 , f ̇ 0 , H 0 , β 0 ) , we have

(34) G 1 = 1 n i = 1 n 0 τ X i * d M i ( t ) + o p ( n 1 / 2 ) ,

and

(35) G 2 = 1 n i = 1 n 0 τ m i * d M i ( t ) + o p ( n 1 / 2 ) .

Substituting (34) and (35) into (33) leads to (13). This completes the Proof of Theorem 1.

To prove Theorem 2, we need the following lemma:

Lemma 2

Assume that conditions (C1) to (C8) hold. Then μ ̂ n ( t ) = n Λ ϵ * { H ̂ 0 ( t ; β 0 ) } Λ ϵ * { H 0 ( t ) } satisfies the following integral equation asymptotically:

(36) μ ̂ n ( t ) 0 τ a ( s , t ) d μ ̂ n ( s ) = W n ( t ) , t ( 0 , τ ] ,

where a ( s , t ) = 0 τ λ ϵ * { H 0 ( u ) } B 2 ( u ) J 2 ( s , u ) d H 0 ( u ) , and W n ( t ) = n 1 / 2 i = 1 n w i ( t ) is a sum of independent mean zero functions.

Remark 5

By using integration by parts, we can write (36) as a Fredholm integral equation of the second kind with the kernel a ( t , s ) s (see, for example, [26]; pp.782–785), i.e.,

μ ̂ n ( t ) + 0 τ μ ̂ n ( s ) a ( s , t ) s d s = W n ( t ) + a ( s , t ) μ ̂ n ( s ) | s = 0 τ .

In order for (36) to yield a unique solution, we assume that

(37) sup t ( 0 , τ ] 0 τ | a ( s , t ) s | d s < .

By arguments analogous argument to Lu and Zhang [17]; we can construct the following solution to (36):

(38) μ ̂ n ( t ) = W n ( t ) + 0 τ b ( s , t ) d W n ( s ) ,

where b(t, s) is the unique solution to

b ( s , t ) 0 τ a ( s , t ) b ( s , u ) u d u = a ( s , t ) , s , t ( 0 , τ ] .

Thus, given condition (37), μ ̂ n ( t ) as defined in (38) is the unique solution to the integral Eq. (36).

Proof of Lemma 2

From (30), we have

(39) μ ̂ n ( t ) 0 t λ ϵ * { H 0 ( s ) } B 2 ( s ) d J 1 ( s ) n ( β ̂ β 0 ) 0 t λ ϵ * { H 0 ( u ) } B 2 ( u ) 0 τ J 2 ( s , u ) d { μ ̂ n ( s ) } d H 0 ( u ) = 1 n i = 1 n 0 t λ ϵ * { H 0 ( s ) } B 2 ( s ) d M i ( s ) 1 n i = 1 n 0 t λ ϵ * { H 0 ( s ) } B 2 ( s ) R i ( s ) U 21 T ( f 0 , f ̇ 0 , H 0 , β 0 ) ( Z i ) × e 31 1 ( Z i ) W i d λ ϵ H 0 ( s ) + β 0 T X i + f 0 T ( Z i ) W i + o p ( 1 ) .

Let a ( s , t ) = 0 τ λ ϵ * { H 0 ( u ) } B 2 ( u ) J 2 ( s , u ) d H 0 ( u ) . Then (39) becomes

μ ̂ n ( t ) 0 τ a ( s , t ) d μ ̂ n ( s ) = 0 t λ ϵ * { H 0 ( s ) } B 2 ( s ) d J 1 ( s ) n ( β ̂ β 0 ) + 1 n i = 1 n 0 t λ ϵ * { H 0 ( s ) } B 2 ( s ) d M i ( s ) 1 n i = 1 n 0 t λ ϵ * { H 0 ( s ) } B 2 ( s ) R i ( s ) U 21 T ( f 0 , f ̇ 0 , H 0 , β 0 ) ( Z i ) e 31 1 ( Z i ) W i × d λ ϵ H 0 ( s ) + β 0 T X i + f 0 T ( Z i ) W i + o p ( 1 ) .

By (13) and arguments similar to (25), we have

μ ̂ n ( t ) 0 τ a ( s , t ) d { μ ̂ n ( s ) } = 1 n i = 1 n 0 t λ ϵ * { H 0 ( s ) } B 2 ( s ) d M i ( s ) 1 n i = 1 n 0 t m ̃ i ( s ) d M i ( s ) + 1 n i = 1 n 0 t λ ϵ * { H 0 ( s ) } B 2 ( s ) d J 1 ( s ) A 1 × 0 τ ( X i m ( t ) ) X i * m i * d M i ( t ) + o p ( 1 ) 1 n i = 1 n W i ( t ) + o p ( 1 ) ,

where

m ̃ l ( t ) = 0 t λ ϵ * { H 0 ( s ) } B 2 ( s ) E R ( s ) W T λ ̇ ϵ H 0 ( s ) + β 0 T X + f 0 T ( Z ) W | Z = Z l × e 31 1 ( Z l ) W l g ( Z l ) d H 0 ( s ) , l = 1 , , n .

This completes the proof.

Proof of Theorem 2

By the Taylor-series expansion, Lemma 2 and (13), we have

n ( Λ ϵ * { H ̂ 0 ( t ; β ̂ ) } Λ ϵ * { H 0 ( t ) } ) = 0 t E R ( s ) X T λ ̇ ϵ H 0 ( s ) + β 0 T X + f 0 T ( Z ) W B 2 ( s ) d Λ ϵ * { H 0 ( s ) } × 1 n i = 1 n A 1 0 τ ( X i m ( t ) ) X i * m i * d M i ( t ) + W n ( t ) + 0 τ b ( s , t ) d W n ( s ) + o p ( 1 ) = 1 n i = 1 n K i ( t ) + o p ( 1 ) ,

where

K i ( t ) = 0 t E R ( s ) X T λ ̇ ϵ H 0 ( s ) + β 0 T X + f 0 T ( Z ) W B 2 ( s ) d Λ ϵ * { H 0 ( s ) } × A 1 0 τ ( X i m ( t ) ) X i * m i * d M i ( t ) + w i ( t ) + 0 τ b ( s , t ) d w i ( s ) .

This yields

n [ H ̂ ( t ) H 0 ( t ) ] = 1 n i = 1 n K i ( t ) λ ϵ * { H 0 ( t ) } + o p ( 1 ) ,

which can be shown to converge weakly to a mean zero Gaussian Process by the functional central limit theorem. This completes the proof.

Proof of Theorem 3

By Theorems 1 and 2, and applying the Taylor-series expansion, we have

(40) sup t 0 , τ 1 n i = 1 n K h ( Z i z ) W i W i Z i z h Λ ϵ H ̂ ( t ) + β ̂ T X i + α ̂ 0 T ( Z i ) W i + α ̂ 1 T ( z ) W i ( Z i z ) + Λ ϵ H 0 ( t ) + β 0 T X i + α ̂ 0 T ( Z i ) W i + α ̂ 1 T ( z ) W i ( Z i z ) = O p ( n 1 / 2 ) .

However, U 2 ( α ̂ 0 , α ̂ 1 , H ̂ , β ̂ ) = 0 , hence U 2 ( α ̂ 0 , α ̂ 1 , H 0 , β 0 ) = O p ( n 1 / 2 ) = o p ( 1 / n h ) . Let α ̃ ( z ) = ( α 0 T ( z ) , h α 1 T ( z ) ) T , α ̃ 0 ( z ) = ( f 0 T ( z ) , h f ̇ 0 T ( z ) ) T , and α ̃ ̂ ( z ) = ( α ̂ 0 T ( z ) , h α ̂ 1 T ( z ) ) T . Then by the Taylor-series expansion, we obtain

(41) U 2 ( α ̃ ̂ , H 0 , β 0 ) = U 2 ( α ̃ 0 , H 0 , β 0 ) + α ̃ U 2 α ̃ * , H 0 , β 0 { α ̃ ̂ ( z ) α ̃ 0 ( z ) } ,

where α ̃ * lies between α ̃ ̂ ( z ) and α ̃ 0 ( z ) , and thus α ̃ * p α ̃ 0 . Hence by the law of large numbers, we have

(42) U 2 α ̃ * , H 0 , β 0 α ̃ a.s. Γ 1 ( z ) ,

where

Γ 1 ( w ) = E W W T 0 0 W W T k 2 R ( t ) λ ϵ H 0 ( t ) + β 0 T X + f 0 T ( z ) W | Z = z .

Substituting (4) into U 2 ( α ̃ , H 0 , β 0 ) , we get

U 2 ( α ̃ 0 , H 0 , β 0 ) = 1 n i = 1 n 0 τ K h ( Z i z ) W i W i Z i z h d M i ( t ) + 1 n i = 1 n K h ( Z i z ) W i W i Z i z h R i ( t ) × Λ ϵ H 0 ( t ) + β 0 T X i + f 0 T Z i W i Λ ϵ × H 0 ( t ) + β 0 T X i + f 0 T ( z ) W i + f ̇ 0 T ( z ) W i ( Z i z ) I 1 + I 2 .

By the martingale central limit theorem, we have

n h I 1 d N ( 0 , Σ 2 ( z ) ) ,

where

(43) Σ 2 ( z ) = h E 0 τ K h ( Z z ) W W Z z h dM ( t ) 2 .

Let

Λ ̃ ϵ ( Z i ) = R i ( t ) Λ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( Z i ) W i Λ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( z ) W i + f ̇ 0 T ( z ) W i ( Z i z ) .

Expanding Λ ̃ ϵ ( Z i ) at z by the Taylor-series expansion yields

(44) Λ ̃ ϵ ( Z i ) = Λ ̃ ϵ ( z ) + Λ ̃ ϵ ( z ) ( Z i z ) + Λ ̃ ϵ ( z ) 2 ( Z i z ) 2 + o p ( ( Z i z ) 2 ) ,

where Λ ̃ ϵ ( z ) and Λ ̃ ϵ ( z ) denote the first and second derivatives of function Λ ̃ ϵ ( z ) respectively. It follows from the definition of Λ ̃ ϵ ( Z i ) that

Λ ̃ ϵ ( Z i ) = R i ( t ) λ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( Z i ) W i f ̇ 0 T ( Z i ) W i R i ( t ) λ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( z ) W i + f ̇ 0 T ( z ) W i ( Z i z ) f ̇ 0 T ( z ) W i , a n d Λ ̃ ϵ ( Z i ) = R i ( t ) λ ̇ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( Z i ) W i ( f ̇ 0 T ( Z i ) W i ) 2 + R i ( t ) λ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( Z i ) W i f ̈ 0 T ( Z i ) W i R i ( t ) λ ̇ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( z ) W i + f ̇ 0 T ( z ) W i ( Z i z ) ( f ̇ 0 T ( z ) W i ) 2 .

Substituting these two equations into (44), we get

(45) Λ ̃ ϵ ( Z i ) = 1 2 R i ( t ) λ ϵ H 0 ( t ) + β 0 T X i + f 0 T ( z ) W i f ̈ 0 T W i ( Z i z ) 2 + o p ( ( Z i z ) 2 ) .

Plugging (45) into the definition of I 2, and by nonparametric techniques, we can obtain

(46) I 2 = E W 2 k 2 0 h 2 2 λ ϵ H 0 ( t ) + β 0 T X + f 0 T ( z ) W | Z = z g ( z ) f ̈ 0 ( z ) + o p ( h 2 ) = Γ 1 ( z ) b n ( z ) + o p ( h 2 ) ,

where

b n ( z ) = Γ 1 1 ( z ) g ( z ) f ̈ 0 ( z ) E W 2 k 2 0 h 2 2 λ ϵ H 0 ( t ) + β 0 T W + f 0 T ( z ) W | Z = z .

The Proof of Theorem 3 is complete by combining the results of (42), (43) and (46), and applying the Slutsky Theorem.

References

1. Turnbull, B. The empirical distribution function with arbitrarily grouped, censored and truncated data. J Roy Stat Soc 1976;38:290–5. https://doi.org/10.1111/j.2517-6161.1976.tb01597.x.Search in Google Scholar

2. Lagakos, S, Barraj, L, De Gruttola, V. Nonparametric analysis of truncated survival data with applications to AIDS. Biometrika 1988;75:515–23. https://doi.org/10.1093/biomet/75.3.515.Search in Google Scholar

3. Wang, M. Nonparametric estimation from cross-sectional survival data. J Am Stat Assoc 1991;86:343–54. https://doi.org/10.1080/01621459.1991.10475011.Search in Google Scholar

4. Asgharian, M, M’Lan, C, Wolfson, D. Length-biased sampling with right censoring: an unconditional approach. J Am Stat Assoc 2002;97:207–9. https://doi.org/10.1198/016214502753479347.Search in Google Scholar

5. Asgharian, M, Wolfson, D. Asymptotic behaviour of the unconditional NPMLE of the length-biased survival function from right censored prevalent cohort data. Ann Stat 2005;33:2109–31. https://doi.org/10.1214/009053605000000372.Search in Google Scholar

6. Gill, R, Vardi, Y, Wellner, J. Large sample theory of empirical distributions in biased sampling models. Ann Stat 1988;16:1069–112. https://doi.org/10.1214/aos/1176350948.Search in Google Scholar

7. Luo, X, Tsai, W. Nonparametric estimation for right-censored length-biased data: a pseudo-partial likelihood approach. Biometrika 2009;96:873–86. https://doi.org/10.1093/biomet/asp064.Search in Google Scholar

8. Vardi, Y. Nonparametric estimation in the presence of length bias. Ann Stat 1982;10:616–20. https://doi.org/10.1214/aos/1176345802.Search in Google Scholar

9. Vardi, Y. Empirical distribution in selection bias models. Ann Stat 1985;13:178–203. https://doi.org/10.1214/aos/1176346585.Search in Google Scholar

10. Ning, J, Qin, J, Shen, Y. Semiparametric accelerated failure time model for length-biased data with application to dementia study. Stat Sin 2014;24:313–33. https://doi.org/10.5705/ss.2011.197.Search in Google Scholar PubMed PubMed Central

11. Tsai, W. Pseudo-partial likelihood for proportional hazards models with biased-sampling data. Biometrika 2009;96:601–15. https://doi.org/10.1093/biomet/asp026.Search in Google Scholar PubMed PubMed Central

12. Wang, M. Hazards regression analysis for length-biased data. Biometrika 1996;83:343–54. https://doi.org/10.1093/biomet/83.2.343.Search in Google Scholar

13. Shen, Y, Ning, J, Qin, J. Analyzing length-biased data with semiparametric transformation and accelerated failure time models. J Am Stat Assoc 2009;104:1192–202. https://doi.org/10.1198/jasa.2009.tm08614.Search in Google Scholar PubMed PubMed Central

14. Cheng, Y, Huang, C. Combined estimating equation approaches for semiparametric transformation models with length-biased survival data. Biometrics 2014;70:608–18. https://doi.org/10.1111/biom.12170.Search in Google Scholar PubMed

15. Cheng, S, Wei, L, Ying, Z. Analysis of transformation models with censored data. Biometrika 1995;82:835–45. https://doi.org/10.1093/biomet/82.4.835.Search in Google Scholar

16. Wei, W, Wan, ATK, Zhou, Y. Partially linear transformation model for length-biased and right-censored data. J Nonparametric Stat 2018;30:332–67. https://doi.org/10.1080/10485252.2018.1424335.Search in Google Scholar

17. Lu, W, Zhang, H. On estimation of partially linear transformation models. J Am Stat Assoc 2010;105:683–91. https://doi.org/10.1198/jasa.2010.tm09302.Search in Google Scholar

18. Qiu, Z, Zhou, Y. Partially linear transformation models with varying coefficients for multivariate failure time data. J Multivariate Anal 2015;142:144–66. https://doi.org/10.1016/j.jmva.2015.08.008.Search in Google Scholar

19. Chen, K, Jin, Z, Ying, Z. Semiparametric analysis of transformation models with censored data. Biometrika 2002;89:659–68. https://doi.org/10.1093/biomet/89.3.659.Search in Google Scholar

20. Ning, J, Qin, J, Shen, Y. Buckley-James-type estimator with right-censored and length-biased data. Biometrics 2011;67:1369–78. https://doi.org/10.1111/j.1541-0420.2011.01568.x.Search in Google Scholar PubMed PubMed Central

21. Wang, H, Wang, L. Quantile regression analysis of length-biased survival data. Statistics 2014;3:31–47. https://doi.org/10.1002/sta4.42.Search in Google Scholar

22. Chen, X, Wan, ATK, Zhou, Y. A quantile varying-coefficient regression approach to length-biased data modeling. Electronic Journal of Statistics 2014;8:2514–40. https://doi.org/10.1214/14-ejs959.Search in Google Scholar

23. Huang, C, Qin, J. Composite partial likelihood estimation under length-biased sampling, with application to a prevalent cohort study of dementia. J Am Stat Assoc 2012;107:946–57. https://doi.org/10.1080/01621459.2012.682544.Search in Google Scholar PubMed PubMed Central

24. Carroll, R, Fan, J, Gijbels, I, Wand, M. Generalized partially linear single-index models. J Am Stat Assoc 1997;92:477–89. https://doi.org/10.1080/01621459.1997.10474001.Search in Google Scholar

25. Cai, J, Fan, J, Jiang, J, Zhou, H. Partially linear hazard regression for multivariate survival data. J Am Stat Assoc 2007;102:538–51. https://doi.org/10.1198/016214506000001374.Search in Google Scholar

26. Press, W, Flannery, B, Tuekolsky, S, Vetterling, W. Fredholm equations of the second kind. In: Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, New York; 1992. 782–5 pp. chap. 18.Search in Google Scholar

27. Gross, S, Lai, T. Bootstrap methods for truncated and censored data. Stat Sin 1996;6:509–30.Search in Google Scholar

28. Dabrowska, D, Doksum, K. Estimation and testing in the two-sample generalized odds-rate model. J Am Stat Assoc 1988;83:744–9. https://doi.org/10.1080/01621459.1988.10478657.Search in Google Scholar

29. Kim, J, Lu, W, Sit, T, Ying, Z. A unified approach to semiparametric transformation models under general biased sampling schemes. J Am Stat Assoc 2013;108:217–27. https://doi.org/10.1080/01621459.2012.746073.Search in Google Scholar PubMed PubMed Central

Received: 2021-07-04
Accepted: 2022-06-15
Published Online: 2022-07-11

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.6.2024 from https://www.degruyter.com/document/doi/10.1515/ijb-2021-0057/html
Scroll to top button