Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 17, 2023

Characterization of the active site in the thiocyanate-forming protein from Thlaspi arvense (TaTFP) using EPR spectroscopy

  • Haleh Hashemi Haeri , Nicola Schneegans , Daniela Eisenschmidt-Bönn , Wolfgang Brandt , Ute Wittstock EMAIL logo and Dariush Hinderberger ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

Glucosinolates are plant thioglucosides, which act as chemical defenses. Upon tissue damage, their myrosinase-catalyzed hydrolysis yields aglucones that rearrange to toxic isothiocyanates. Specifier proteins such as thiocyanate-forming protein from Thlaspi arvense (TaTFP) are non-heme iron proteins, which capture the aglucone to form alternative products, e.g. nitriles or thiocyanates. To resolve the electronic state of the bound iron cofactor in TaTFP, we applied continuous wave electron paramagnetic resonance (CW EPR) spectroscopy at X-and Q-band frequencies (∼9.4 and ∼34 GHz). We found characteristic features of high spin and low spin states of a d5 electronic configuration and local rhombic symmetry during catalysis. We monitored the oxidation states of bound iron during conversion of allylglucosinolate by myrosinase and TaTFP in presence and absence of supplemented Fe2+. Without added Fe2+, most high spin features of bound Fe3+ were preserved, while different g’-values of the low spin part indicated slight rearrangements in the coordination sphere and/or structural geometry. We also examined involvement of the redox pair Fe3+/Fe2 in samples with supplemented Fe2+. The absence of any EPR signal related to Fe3+ or Fe2+ using an iron-binding deficient TaTFP variant allowed us to conclude that recorded EPR signals originated from the bound iron cofactor.


Corresponding authors: Ute Wittstock, Institute of Pharmaceutical Biology, Technische Universität Braunschweig, D-38106 Braunschweig, Germany, E-mail: ; and Dariush Hinderberger, Martin Luther University Halle-Wittenberg, Institute of Chemistry, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany, E-mail:

Acknowledgments

We thank Heike Schimm (MLU, Halle) for technical support with the EPR measurements and Anita Backenköhler (TU Braunschweig) for activitiy tests.

  1. Author contributions: HHH: investigation, measurements, methodology, writing original draft, review and editing. NS: protein expression and purification, sample preparation, writing and editing. DEB: Docking experiments and writing. WB: conceptualization. UW: supervision, conceptualization, methodology, writing, review and editing. DH: supervision, conceptualization, methodology, funding acquisition, writing, review and editing.

  2. Research funding: This work was financially supported by the European Union and the State of Saxony-Anhalt under grant number ZS/2016/06/79740.

  3. Conflict of interest statement: The Authors declare no conflict of interests.

References

Adams, J., Kelso, R., and Cooley, L. (2000). The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell. Biol. 10: 17–24, https://doi.org/10.1016/s0962-8924(99)01673-6.Search in Google Scholar PubMed

Backenköhler, A., Eisenschmidt, D., Schneegans, N., Strieker, M., Brandt, W., and Wittstock, U. (2018). Iron is a centrally bound cofactor of specifier proteins involved in glucosinolate breakdown. PLoS One 5: e0205755, https://doi.org/10.1371/journal.pone.0205755.Search in Google Scholar PubMed PubMed Central

Bolman, P.S.H., Safarik, I., Stiles, D.A., Tyerman, W.J.R., and Strausz, O.P. (1970). Electron paramagnetic resonance spectra of some sulfur-containing radicals. Can. J. Chem. 48: 3872–3876, https://doi.org/10.1139/v70-651.Search in Google Scholar

Brandt, W., Backenköhler, A., Schulze, E., Plock, A., Herberg, T., Roese, E., and Wittstock, U. (2014). Molecular models and mutational analyses of plant specifier proteins suggest active site residues and reaction mechanism. Plant Mol. Biol. 84: 173–188, https://doi.org/10.1007/s11103-013-0126-0.Search in Google Scholar PubMed

Burow, M., Markert, J., Gershenzon, J., and Wittstock, U. (2006). Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. FEBS J. 273: 2432–2446, https://doi.org/10.1111/j.1742-4658.2006.05252.x.Search in Google Scholar PubMed

Eisenschmidt-Bönn, D., Schneegans, N., Backenköhler, A., Wittstock, U., and Brandt, W. (2019). Structural diversification during glucosinolate breakdown: mechanisms of thiocyanate, epithionitrile and simple nitrile formation. Plant J. 99: 329–343, https://doi.org/10.1111/tpj.14327.Search in Google Scholar PubMed PubMed Central

Feig, A.L. and Lippard, S.J. (1994). Reactions of Non-Heme iron (III) centers with dioxygen in biology and chemistry. Chem. Rev. 94: 759–805, https://doi.org/10.1021/cr00027a011.Search in Google Scholar

Ferreira, C.M.H., Pinto, I.S., Soares, E.V., and Soares, H.M. (2015). (Un) suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions – a review. RSC Adv. 5: 30989–31003, https://doi.org/10.1039/c4ra15453c.Search in Google Scholar

Finel, C. and Kevan, L. (1993). Effects of Fe3+ on electron spin echo signals in zeolites. J. Chem. Soc. Faraday Trans. 89: 2559–2565, https://doi.org/10.1039/ft9938902559.Search in Google Scholar

Gaffney, B.J., Mavrophilipos, D.V., and Doctor, K.S. (1993). Access of ligands to the ferric center in lipoxygenase-1. Biophys. J. 64: 773–783, https://doi.org/10.1016/s0006-3495(93)81438-3.Search in Google Scholar

Gaffney, B.J. (2009). EPR of mononuclear non-Heme iron proteins. In: Berliner, L. and Hanson, G. (Eds.), High resolution EPR applications to metalloenzymes and metals in medicine, biological magnetic resonance. Springer, New York, pp. 232–268.10.1007/978-0-387-84856-3_6Search in Google Scholar

Gamarra, L.F., Pontuschka, W.M., Amaro, E., Costa-Filho, A.J., Brito, G.E.S., Vieira, E.D., Carneiro, S.M., Escriba, D.M., Falleiros, A.M.F., and Salvador, V.L. (2008). Kinetics of elimination and distribution in blood and liver of biocompatible ferrofluids based on Fe3O4 nanoparticles: an EPR and XRF study. Mater. Sci. Eng. 28: 519–525, https://doi.org/10.1016/j.msec.2007.06.005.Search in Google Scholar

Gonçalves, L.C.P., Mansouri, H.R., Bastos, E.L., Abdellah, M., Fadiga, B.S., Sá, J., Rudroff, F., and Mihovilovic, M.D. (2019). Morpholine-based buffers activate aerobic photobiocatalysis via spin correlated ion pair formation. Catal. Sci. Technol. 9: 1365–1371, https://doi.org/10.1039/c8cy02524j.Search in Google Scholar PubMed PubMed Central

Gumz, F., Krausze, J., Eisenschmidt, D., Backenköhler, A., Barleben, L., Brandt, W., and Wittstock, U. (2015). The crystal structure of the thiocyanate-forming protein from Thlaspi arvense, a kelch protein involved in glucosinolate breakdown. Plant Mol. Biol. 89: 67–81, https://doi.org/10.1007/s11103-015-0351-9.Search in Google Scholar PubMed

Habib, A., Tabata, M., and Wu, Y.G. (2005). Formation of gold nanoparticles by good’s buffers. Bull. Chem. Soc. Jpn. 78: 262–269, https://doi.org/10.1246/bcsj.78.262.Search in Google Scholar

Hasegawa, H. and Nakamura, K. (2010). Tryptophan hydroxylase and serotonin synthesis regulation. In: Müller, C.P. and Jacobs, B.L. (Eds.), Handbook of behavioral neuroscience. Elsevier, pp. 183–202.10.1016/S1569-7339(10)70078-3Search in Google Scholar

Hinderberger, D., Ebner, S., Mayr, S., Jaun, B., Reiher, M., Goenrich, M., Thauer, R.K., and Harmer, J. (2008). Coordination and binding geometry of methyl-coenzyme M in the red1m state of methyl-coenzyme M reductase. J. Biol. Inorg. Chem. 13: 1275–1289, https://doi.org/10.1007/s00775-008-0417-0.Search in Google Scholar PubMed

Hinderberger, D., Piskorski, R.P., Goenrich, M., Thauer, R.K., Schweiger, A., Harmer, J., and Jaun, B. (2006). A nickel-alkyl bond in an inactivated state of the enzyme catalyzing methane formation. Angew. Chem. Int. Ed. 45: 3602–3607, https://doi.org/10.1002/anie.200600366.Search in Google Scholar PubMed

Hunold, J., Eisermann, J., Brehm, M., and Hinderberger, D. (2020). Characterization of aqueous lower polarity solvation shells around amphiphilic TEMPO radicals in water. J. Phys. Chem. B 124: 8601–8609, https://doi.org/10.1021/acs.jpcb.0c04863.Search in Google Scholar PubMed

Kappl, R., Eltis, L.D., Caspersen, M.B., Christensen, H.E.M., and Hüttermann, J. (2007). Site-specific oxidation of the (Fe4S4) cubanes in high-potential iron sulfur proteins as probed by EPR and orientation-selective proton ENDOR spectroscopy: Ectothiorhodospira halophila I versus Rhodocyclus tenuis. Appl. Magn. Reson. 31: 483–507, https://doi.org/10.1007/bf03166598.Search in Google Scholar

Kappl, R., Bracic, G., and Hüttermann, J. (2009). Probing structural and electronic parameters in randomly oriented metalloproteins by orientation-selective ENDOR spectroscopy. In: Berliner, L., and Hanson, G. (Eds.), High resolution EPR applications to metalloenzymes and metals in medicine, biological magnetic resonance. Springer, New York, pp. 63–103.10.1007/978-0-387-84856-3_3Search in Google Scholar

Kostka, K.L., Fox, B.G., Hendrich, M.P., Collins, T.J., Rickard, C.E.F., Wright, J., and Munck, E. (1993). High-valent transition metal chemistry. Mössbauer and EPR studies of high-spin (S = 2) iron (1V) and intermediate-spin (S = 3/2) iron (II1) complexes with a macrocyclic Tetraamido-N ligand. J. Am. Chem. Soc. 115: 6746–6757, https://doi.org/10.1021/ja00068a035.Search in Google Scholar

Kuchernig, J.C., Backenköhler, A., Lübbecke, M., Burow, M., and Wittstock, U. (2011). A thiocyanate-forming protein generates multiple products upon allylglucosinolate breakdown in Thlaspi arvense. Phytochemistry 72: 1699–1709, https://doi.org/10.1016/j.phytochem.2011.06.013.Search in Google Scholar PubMed

Kuchernig, J.C., Burow, M., and Wittstock, U. (2012). Evolution of specifier proteins in glucosinolate-containing plants. BMC Evol. Biol. 12: 127, https://doi.org/10.1186/1471-2148-12-127.Search in Google Scholar PubMed PubMed Central

Labute, P. (2008). The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area. J. Comput. Chem. 29: 1693–1698, https://doi.org/10.1002/jcc.20933.Search in Google Scholar PubMed

Lassmann, G., Kolberg, M., Bleifuss, G., Gräslund, A., Sjöberg, B.M., and Lubitz, W. (2003). Protein thiyl radicals in disordered systems: a comparative EPR study at low temperature. Phys. Chem. 5: 2442–2453, https://doi.org/10.1039/b302601a.Search in Google Scholar

Maltempo, M.M. and Moss, T.H. (1976). The spin 3/2 state and quantum spin mixtures in haem proteins. Q. Rev. Biophys. 9: 181–215, https://doi.org/10.1017/s0033583500002407.Search in Google Scholar PubMed

Matile, P. (1980). Die Senfölbombe. Zur Kompartimentierung des Myrosinasesystems. Biochem. Physiol. Pflanz. 175: 722–731, https://doi.org/10.1016/s0015-3796(80)80059-x.Search in Google Scholar

Molecular Operating Environment (MOE), 2019.01 (2019). Chemical Computing Group ULC, 910-1010 Sherbrooke St. W., Montreal, QC H3A 2R7, Canada.Search in Google Scholar

Mumm, R., Burow, M., Bukovinszkine’Kiss, G., Kazantzidou, E., Wittstock, U., Dicke, M., and Gershenzon, J. (2008). Formation of simple nitriles upon glucosinolate hydrolysis affects direct and indirect defense against the specialist herbivore, Pieris rapae. J. Chem. Ecol. 34: 1311–1321, https://doi.org/10.1007/s10886-008-9534-z.Search in Google Scholar PubMed

Neese, F. (2009). Spin-Hamiltonian parameters from first principle calculations: Theory and application. In: Berliner, L. and Hanson, G. (Eds.), High resolution EPR applications to metalloenzymes and metals in medicine, biological magnetic resonance. Springer, New York, pp. 175–229.10.1007/978-0-387-84856-3_5Search in Google Scholar

Noveron, J.C., Olmstead, M.M., and Mascharak, P.K. (1998). Effect of carboxamido N coordination to iron on the redox potential of low-spin non-Heme iron centers with N,S coordination: relevance to the iron site of nitrile hydratase. Inorg. Chem. 37: 1138–1139, https://doi.org/10.1021/ic971388a.Search in Google Scholar PubMed

Palmer, G. (1985). The electron paramagnetic resonance of metalloproteins. Biochem. Soc. Trans. 13: 548–560, https://doi.org/10.1042/bst0130548.Search in Google Scholar PubMed

Peisach, J., Blumberg, W.E., Lode, E.T., and Coon, R.M. (1971a). An analysis of the electron paramagnetic resonance spectrum of pseudomonas oleovorans rubredoxin. A method for determination of the ligands of ferric iron in completely rhombic sites. J. Biol. Chem. 246: 5877–5881, https://doi.org/10.1016/s0021-9258(18)61807-1.Search in Google Scholar

Peisach, J., Blumberg, W.E., Ogawa, S., Rachmilewitz, E.A., and Oltzik, R. (1971b). The effects of protein conformation on the heme symmetry in high spin ferric heme proteins as studied by electron paramagnetic resonance. J. Biol. Chem. 246: 3342–3355, https://doi.org/10.1016/s0021-9258(18)62232-x.Search in Google Scholar

Preoteasa, E.A., Schianchi, G., Camillo Giori, D., Duliu, O.G., Butturini, A., and Izzi, G. (2013). Unexpected detection of low and high spin ferrihemoglobin derivatives in blood serum of polytransfused patients with homozygous β-thalassemia under chelation therapy. An EPR study. Dig. J. Nanomater. Biostruct. 8: 469–499.Search in Google Scholar

Que, L.Jr and Ho, R.Y. (1996). Dioxygen activation by enzymes with mononuclear non-Heme iron active sites. Chem. Rev. 96: 2607–2624, https://doi.org/10.1021/cr960039f.Search in Google Scholar PubMed

Rask, L., Andréasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B., and Meijer, J. (2000). Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol. Biol. 42: 93–114, https://doi.org/10.1023/a:1006380021658.10.1023/A:1006380021658Search in Google Scholar

Reed, A.C. and Guiset, F.A. (1996). “Magnetochemical” series. Ligand field strengths of weakly binding anions deduced from S = 3/2, 5/2 spin state mixing in iron (III) porphyrins. J. Am. Chem. Soc. 118: 3281–3282, https://doi.org/10.1021/ja954263i.Search in Google Scholar

Rowland, J.M., Olmstead, M., and Mascharak, P.K. (2001). Syntheses, structures, and reactivity of low spin iron(III) complexes containing a single carboxamido nitrogen in a (FeN5L) chromophore. Inorg. Chem. 40: 2810–2817, https://doi.org/10.1021/ic001127s.Search in Google Scholar PubMed

Shankar, S., Peters, M., Steinborn, K., Krahwinkel, B., Sönnichsen, F.D., Grote, D., Sander, W., Lohmiller, T., Rüdiger, O., and Herges, R. (2018). Light-controlled switching of the spin state of iron (III). Nat. Commun. 9: 4750, https://doi.org/10.1038/s41467-018-07023-1.Search in Google Scholar PubMed PubMed Central

Simonato, J.P., Pécaut, J., Le Pape, L., Oddou, J.L., Jeandey, C., Shang, M., Scheidt, W.R., Wojaczyński, J., Wołowiec, S., Latos-Grazyński, L., et al.. (2000). An integrated approach to the mid-spin state (S = 3/2) in six-coordinate iron (III) chiroporphyrins. Inorg. Chem. 39: 3978–3987, https://doi.org/10.1021/ic000150a.Search in Google Scholar PubMed

Ślawska-Waniewska, A., Mosiniewicz-Szablewska, E., Nedelko, N., Gałązka-Friedman, J., and Friedman, A. (1993). Magnetic studies of iron-entities in human tissues. J. Magn. Magn. Mater. 272–276: 2417–2419, https://doi.org/10.1016/j.jmmm.2003.12.843.Search in Google Scholar

Solomon, E.I., Brunold, T.C., Davis, M.I., Kemsley, J.N., Lee, S.K., Lehnert, N., Neese, F., Skulan, A.J., Yang, Y.S., and Zhou, J. (2000). Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem. Rev. 100: 235–350, https://doi.org/10.1021/cr9900275.Search in Google Scholar PubMed

Traka, M.H., Saha, S., Huseby, S., Kopriva, S., Walley, P.G., Barker, G.C., Moore, J., Mero, G., van den Bosch, F., Constant, H., et al.. (2013). Genetic regulation of glucoraphanin accumulation in Beneforté broccoli. New Phytol. 198: 1085–1095, https://doi.org/10.1111/nph.12232.Search in Google Scholar PubMed PubMed Central

Vinck, E. (2007). The strength of EPR and ENDOR techniques in revealing structure–function relationships in metalloproteins. Phys.Chem. Chem. Phys. 9: 4620–4638, https://doi.org/10.1039/b701568b.Search in Google Scholar PubMed

Van Doorslaer, S. (2017). Understanding heme proteins with hyperfine spectroscopy. J. Magn. Reson. 280: 79–88, https://doi.org/10.1016/j.jmr.2017.01.008.Search in Google Scholar PubMed

van Gastel, M., Lubitz, W., Lassmann, G., and Neese, F. (2004). Electronic structure of the cysteine thiyl radical: a DFT and correlated ab initio study. J. Am. Chem. Soc. 126: 2237–2246, https://doi.org/10.1021/ja038813l.Search in Google Scholar PubMed

Walker, F.A. (1999). Magnetic spectroscopic (EPR, ESEEM, Mössbauer, MCD and NMR) studies of low-spin ferri heme centers and their corresponding heme proteins. Coord. Chem. Rev. 185–186: 471–534, https://doi.org/10.1016/s0010-8545(99)00029-6.Search in Google Scholar

Wang, Y., Davis, I., Chan, Y., Naik, S.G., Griffith, W.P., and Liu, A. (2020). Characterization of the nonheme iron center of cysteamine dioxygenase and its interaction with substrates. J. Biol. Chem. 33: 11789–11802, https://doi.org/10.1074/jbc.ra120.013915.Search in Google Scholar

Wittstock, U., Kliebenstein, D.J., Lambrix, V.M., Reichelt, M., and Gershenzon, J. (2003). Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. In: Romeo, J.T. (Ed.). Recent advances in phytochemistry, Vol. 37. Elsevier, pp. 101–125.10.1016/S0079-9920(03)80020-5Search in Google Scholar

Wittstock, U., Kurzbach, E., Herfurth, A.M., and Stauber, E.J. (2016). Glucosinolate breakdown. Adv Bot Res. 80: 125–169.10.1016/bs.abr.2016.06.006Search in Google Scholar

Zhang, W., Wang, W., Liu, Z., Xie, Y., Wang, H., Mu, Y., Huang, Y., and Feng, Y. (2016). Crystal structure of the Epithiospecifier Protein, ESP from Arabidopsis thaliana provides insights into its product specificity. Biochem. Biophys. Res. Commun. 478: 746–751, https://doi.org/10.1016/j.bbrc.2016.08.019.Search in Google Scholar PubMed

Zhang, W., Zhou, Y., Wang, K., Dong, Y., Wang, W., Feng, Y. (2017). Crystal structure of the nitrile-specifier protein NSP1 from Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 488: 147–152, https://doi.org/10.1016/j.bbrc.2017.05.027.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/hsz-2023-0187).


Received: 2023-04-16
Accepted: 2023-07-19
Published Online: 2023-08-17
Published in Print: 2024-02-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.5.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2023-0187/html
Scroll to top button