Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 8, 2023

The Zika virus infection remodels the expression of the synaptotagmin-9 secretory protein

  • Santiago Leiva , Alejo Cantoia , Cintia Fabbri , Marina Bugnon Valdano , Victoria Luppo , María Alejandra Morales , Germán Rosano and Daniela Gardiol EMAIL logo
From the journal Biological Chemistry

Abstract

The exact mechanisms involved in flaviviruses virions’ release and the specific secretion of viral proteins, such as the Non Structural protein-1 (NS1), are still unclear. While these processes might involve vesicular transport to the cell membrane, NS1 from some flaviviruses was shown to participate in viral assembly and release. Here, we assessed the effect of the Zika virus (ZIKV) NS1 expression on the cellular proteome to identify trafficking-related targets that may be altered in the presence of the viral protein. We detected an increase in the synaptotagmin-9 (SYT9) secretory protein, which participates in the intracellular transport of protein-laden vesicles. We confirmed the effect of NS1 on SYT9 levels by transfection models while also detecting a significant subcellular redistribution of SYT9. We found that ZIKV prM-Env proteins, required for the viral particle release, also increased SYT9 levels and changed its localization. Finally, we demonstrated that ZIKV cellular infection raises SYT9 levels and promotes changes in its subcellular localization, together with a co-distribution with both Env and NS1. Altogether, the data suggest SYT9’s implication in the vesicular transport of viral proteins or virions during ZIKV infection, showing for the first time the association of synaptotagmins with the flavivirus’ life cycle.


Corresponding author: Daniela Gardiol, Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario-CONICET, Universidad Nacional de Rosario, Suipacha 590, 2000, Rosario, Argentina, E-mail:

Funding source: Fundación Fiorini

Award Identifier / Grant number: Subsidio Investigación

Funding source: Fondo para la Investigación Científica y Tecnológica

Award Identifier / Grant number: PICT 03050

Acknowledgments

We gratefully acknowledge to Dolores Campos and Rodrigo Vena from Instituto de Biología Molecular y Celular de Rosario-CONICET for excellent technical support and help with cell culture and confocal laser microscopy and image software, respectively. The protein identification by nLC-MS/MS was carried out in the Proteomics and Genomics Facility (CIB-CSIC, Madrid, Spain), a member of ProteoRed-ISCIII network. Data was analysed at the Mass Spectrometry Unit from the Instituto de Biología Molecular y Celular de Rosario-CONICET.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: Santiago Leiva were supported by a fellowship from CONICET. This work was supported by a research grant from the Agencia de Promoción Científica y Tecnológica (Argentina, PICT 2019–03050) and by a grant from Fundación Fiorini (Subsidio Investigacón).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

Alcon-Lepoder, S., Sivard, P., Drouet, M.T., Talarmin, A., Rice, C., and Flamand, M. (2006). Secretion of flaviviral non-structural protein NS1: from diagnosis to pathogenesis. Novartis Found. Symp. 277: 233–250, https://doi.org/10.1002/0470058005.ch17.Search in Google Scholar PubMed

Allison, S.L., Stadler, K., Mandl, C.W., Kunz, C., and Heinz, F.X. (1995). Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form. J. Virol. 69: 5816–5820, https://doi.org/10.1128/jvi.69.9.5816-5820.1995.Search in Google Scholar PubMed PubMed Central

Apte-Sengupta, S., Sirohi, D., and Kuhn, R.J. (2014). Coupling of replication and assembly in flaviviruses. Curr. Opin. Virol. 9: 134–142, https://doi.org/10.1016/j.coviro.2014.09.020.Search in Google Scholar PubMed PubMed Central

Barnard, T.R., Abram, Q.H., Lin, Q.F., Wang, A.B., and Sagan, S.M. (2021). Molecular determinants of flavivirus virion assembly. Trends Biochem. Sci. 46: 378–390, https://doi.org/10.1016/j.tibs.2020.12.007.Search in Google Scholar PubMed

Barrows, N.J., Campos, R.K., Liao, K.C., Prasanth, K.R., Soto-Acosta, R., Yeh, S.C., Schott-Lerner, G., Pompon, J., Sessions, O.M., Bradrick, S.S., et al.. (2018). Biochemistry and molecular biology of flaviviruses. Chem. Rev. 118: 4448–4482, https://doi.org/10.1021/acs.chemrev.7b00719.Search in Google Scholar PubMed PubMed Central

Belov, G.A. and Van Kuppeveld, F.J. (2012). (+)RNA viruses rewire cellular pathways to build replication organelles. Curr. Opin. Virol. 2: 740–747, https://doi.org/10.1016/j.coviro.2012.09.006.Search in Google Scholar PubMed PubMed Central

Brasil, P., Sequeira, P.C., Freitas, A.D.A., Zogbi, H.E., Calvet, G.A., De Souza, R.V., Siqueira, A.M., De Mendonca, M.C.L., Nogueira, R.M.R., De Filippis, A.M.B., et al.. (2016). Guillain-Barré syndrome associated with Zika virus infection. The Lancet 387: 1482, https://doi.org/10.1016/S0140-6736(16)30058-7.Search in Google Scholar PubMed

Burlaud-Gaillard, J., Sellin, C., Georgeault, S., Uzbekov, R., Lebos, C., Guillaume, J.M., and Roingeard, P. (2014). Correlative scanning-transmission electron microscopy reveals that a chimeric flavivirus is released as individual particles in secretory vesicles. PloS One 3: e93573, https://doi.org/10.1371/JOURNAL.PONE.0093573.Search in Google Scholar PubMed PubMed Central

Chapman, E.R. (2002). Synaptotagmin: a Ca2+ sensor that triggers exocytosis? Nat. Rev. Mol. Cell Biol. 3: 498–508, https://doi.org/10.1038/nrm855.Search in Google Scholar PubMed

Ci, Y., Liu, Z.Y., Zhang, N.N., Niu, Y., Yang, Y., Xu, C., Yang, W., Qin, C.F., and Shi, L. (2020). Zika NS1-induced ER remodeling is essential for viral replication. J. Cell Biol. 219: 1–13, https://doi.org/10.1083/jcb.201903062.Search in Google Scholar PubMed PubMed Central

Cui, L., Li, H., Xi, Y., Hu, Q., Liu, H., Fan, J., Xiang, Y., Zhang, X., Shui, W., and Lai, Y. (2022). Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. Mol. Biomed. 3: 29, https://doi.org/10.1186/s43556-022-00090-3.Search in Google Scholar PubMed PubMed Central

Ferro, L.S., Fang, Q., Eshun-Wilson, L., Fernandes, J., Jack, A., Farrell, D.P., Golcuk, M., Huijben, T., Costa, K., Gur, M., et al.. (2022). Structural and functional insight into regulation of kinesin-1 by microtubule-associated protein MAP7. Science 375: 326–331, https://doi.org/10.1126/science.abf6154.Search in Google Scholar PubMed PubMed Central

Fukuda, M. (2004). RNA interference-mediated silencing of synaptotagmin IX, but not synaptotagmin I, inhibits dense-core vesicle exocytosis in PC12 cells. Biochem. J. 380: 875–879, https://doi.org/10.1042/bj20040096.Search in Google Scholar PubMed PubMed Central

Fukuhara, T. and Matsuura, Y. (2019). Roles of secretory glycoproteins in particle formation of Flaviviridae viruses. Microbiol. Immunol. 63: 401–406, https://doi.org/10.1111/1348-0421.12733.Search in Google Scholar PubMed

Garg, H., Sedano, M., Plata, G., Punke, E.B., and Joshi, A. (2017). Development of virus-like-particle vaccine and reporter assay for zika virus. J. Virol. 91: 1–16, https://doi.org/10.1128/jvi.00834-17.Search in Google Scholar

Goedhart, J. and Luijsterburg, M.S. (2020). VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci. Rep. 10: 20560, https://doi.org/10.1038/s41598-020-76603-3.Search in Google Scholar PubMed PubMed Central

Haberman, Y., Grimberg, E., Fukuda, M., and Sagi-Eisenberg, R. (2003). Synaptotagmin IX, a possible linker between the perinuclear endocytic recycling compartment and the microtubules. J. Cell Sci. 116: 4307–4318, https://doi.org/10.1242/jcs.00719.Search in Google Scholar PubMed

Haberman, Y., Ziv, I., Gorzalczany, Y., Hirschberg, K., Mittleman, L., Fukuda, M., and Sagi-Eisenberg, R. (2007). Synaptotagmin (Syt) IX is an essential determinant for protein sorting to secretory granules in mast cells. Blood 109: 3385–3392, https://doi.org/10.1182/blood-2006-07-033126.Search in Google Scholar PubMed

Hamel, R., Liégeois, F., Wichit, S., Pompon, J., Diop, F., Talignani, L., Thomas, F., Desprès, P., Yssel, H., and Missé, D. (2016). Zika virus: epidemiology, clinical features and host-virus interactions. Microbes Infect 18: 441–449, https://doi.org/10.1016/j.micinf.2016.03.009.Search in Google Scholar PubMed

Iezzi, M., Eliasson, L., Fukuda, M., and Wollheim, C.B. (2005). Adenovirus-mediated silencing of Synaptotagmin 9 inhibits Ca2+-dependent insulin secretion in islets. FEBS Lett. 579: 5241–5246, https://doi.org/10.1016/j.febslet.2005.08.047.Search in Google Scholar PubMed

Kraemer, M.U.G., Sinka, M.E., Duda, K.A., Mylne, A.Q.N., Shearer, F.M., Barker, C.M., Moore, C.G., Carvalho, R.G., Coelho, G.E., Van Bortel, W., et al.. (2015). The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4: e08347, https://doi.org/10.7554/ELIFE.08347.Search in Google Scholar PubMed PubMed Central

Li, M.Y., Naik, T.S., Siu, L.Y.L., Acuto, O., Spooner, E., Wang, P., Yang, X., Lin, Y., Bruzzone, R., Ashour, J., et al.. (2020). Lyn kinase regulates egress of flaviviruses in autophagosome-derived organelles. Nat. Commun. 11: 5189, https://doi.org/10.1038/s41467-020-19028-w.Search in Google Scholar PubMed PubMed Central

Link, A.J. and LaBaer, J. (2009). In-gel trypsin digest of gel-fractionated proteins. Cold Spring Harb. Protoc. 2009: pdb.prot5110, https://doi.org/10.1101/pdb.prot5110.Search in Google Scholar PubMed

Liu, J., Kline, B.A., Kenny, T.A., Smith, D.R., Soloveva, V., Beitzel, B., Pang, S., Lockett, S., Hess, H.F., Palacios, G., et al.. (2018). A novel sheet-like virus particle array is a hallmark of Zika virus infection. Emerg. Microbes Infect. 7: 69, https://doi.org/10.1038/s41426-018-0071-8.Search in Google Scholar PubMed PubMed Central

Lundberg, R., Mel, K., Westenius, V., Jiang, M., Österlund, P., Khan, H., Vapalahti, O., Julkunen, I., and Kakkola, L. (2019). RIG-I pathway and interferon Lambda 1 promoter activation by targeting IKK Epsilon. Viruses 11: 1024, https://doi.org/10.3390/v11111024.Search in Google Scholar PubMed PubMed Central

Mohd Ropidi, M.I., Khazali, A.S., Nor Rashid, N., and Yusof, R. (2020). Endoplasmic reticulum: a focal point of Zika virus infection. J. Biomed. Sci. 27: 27, https://doi.org/10.1186/s12929-020-0618-6.Search in Google Scholar PubMed PubMed Central

Mohan, S.K. and Yu, C. (2011). The IL1alpha-S100A13 heterotetrameric complex structure: a component in the non-classical pathway for interleukin 1alpha secretion. J. Biol. Chem. 286: 14608–14617, https://doi.org/10.1074/jbc.m110.201954.Search in Google Scholar PubMed PubMed Central

Musso, D. and Gubler, D.J. (2016). Zika virus. Clin. Microbiol. Rev. 29: 487–524, https://doi.org/10.1128/cmr.00072-15.Search in Google Scholar

Neufeldt, C.J., Cortese, M., Acosta, E.G., and Bartenschlager, R. (2018). Rewiring cellular networks by members of the Flaviviridae family. Nat. Rev. Microbiol. 16: 125–142, https://doi.org/10.1038/nrmicro.2017.170.Search in Google Scholar PubMed PubMed Central

Perez-Riverol, Y., Bai, J., Bandla, C., García-Seisdedos, D., Hewapathirana, S., Kamatchinathan, S., Kundu, D.J., Prakash, A., Frericks-Zipper, A., Eisenacher, M., et al.. (2022). The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50: D543–D552, https://doi.org/10.1093/nar/gkab1038.Search in Google Scholar PubMed PubMed Central

Ponpuak, M., Mandell, M.A., Kimura, T., Chauhan, S., Cleyrat, C., and Deretic, V. (2015). Secretory autophagy. Curr. Opin. Cell Biol. 35: 106–116, https://doi.org/10.1016/j.ceb.2015.04.016.Search in Google Scholar PubMed PubMed Central

Prudovsky, I., Mandinova, A., Soldi, R., Bagala, C., Graziani, I., Landriscina, M., Tarantini, F., Duarte, M., Bellum, S., Doherty, H., et al.. (2003). The non-classical export routes: FGF1 and IL-1alpha point the way. J. Cell Sci. 116: 4871–4881, https://doi.org/10.1242/jcs.00872.Search in Google Scholar PubMed

R Core Team (2019). A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Search in Google Scholar

Rastogi, M., Sharma, N., and Singh, S.K. (2016). Flavivirus NS1: a multifaceted enigmatic viral protein. Virol. J. 13: 131, https://doi.org/10.1186/s12985-016-0590-7.Search in Google Scholar PubMed PubMed Central

Ravussin, A., Brech, A., Tooze, S.A., and Stenmark, H. (2021). The phosphatidylinositol 3-phosphate-binding protein SNX4 controls ATG9A recycling and autophagy. J. Cell Sci. 134: jcs250670, https://doi.org/10.1242/jcs.250670.Search in Google Scholar PubMed PubMed Central

Ringer, K., Riehl, J., Müller, M., Dewes, J., Hoff, F., and Jacob, R. (2018). The large GTPase Mx1 binds Kif5B for cargo transport along microtubules. Traffic Cph. Den. 19: 947–964, https://doi.org/10.1111/tra.12616.Search in Google Scholar PubMed

Rossignol, E.D., Peters, K.N., Connor, J.H., and Bullitt, E. (2017). Zika virus induced cellular remodelling. Cell. Microbiol. 19, https://doi.org/10.1111/cmi.12740.Search in Google Scholar PubMed PubMed Central

Sager, G., Gabaglio, S., Sztul, E., and Belov, G.A. (2018). Role of host cell secretory machinery in zika virus life cycle. Viruses 10: 559, https://doi.org/10.3390/v10100559.Search in Google Scholar PubMed PubMed Central

Scaturro, P., Cortese, M., Chatel-Chaix, L., Fischl, W., and Bartenschlager, R. (2015). Dengue virus non-structural protein 1 modulates infectious particle production via interaction with the structural proteins. PLoS Pathog. 11: e1005277, https://doi.org/10.1371/journal.ppat.1005277.Search in Google Scholar PubMed PubMed Central

Scaturro, P., Stukalov, A., Haas, D.A., Cortese, M., Draganova, K., P\laszczyca, A., Bartenschlager, R., Götz, M., and Pichlmair, A. (2018). An orthogonal proteomic survey uncovers novel Zika virus host factors. Nature 561: 253–257, https://doi.org/10.1038/s41586-018-0484-5.Search in Google Scholar PubMed

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al.. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9: 676–682, https://doi.org/10.1038/nmeth.2019.Search in Google Scholar PubMed PubMed Central

Socha, W., Kwasnik, M., Larska, M., Rola, J., and Rozek, W. (2022). Vector-borne viral diseases as a current threat for human and animal health-one health perspective. J. Clin. Med. 11: 3026, https://doi.org/10.3390/jcm11113026.Search in Google Scholar PubMed PubMed Central

Suzuki, S.W. and Emr, S.D. (2018). Membrane protein recycling from the vacuole/lysosome membrane. J. Cell Biol. 217: 1623–1632, https://doi.org/10.1083/jcb.201709162.Search in Google Scholar PubMed PubMed Central

Tian, X., Teng, J., and Chen, J. (2021). New insights regarding SNARE proteins in autophagosome-lysosome fusion. Autophagy 17: 2680–2688, https://doi.org/10.1080/15548627.2020.1823124.Search in Google Scholar PubMed PubMed Central

Toyooka, K. and Matsuoka, K. (2009). Exo- and endocytotic trafficking of SCAMP2. Plant Signal. Behav. 4: 1196–1198, https://doi.org/10.4161/psb.4.12.10075.Search in Google Scholar PubMed PubMed Central

Troupin, A., Shirley, D., Londono-Renteria, B., Watson, A.M., McHale, C., Hall, A., Hartstone-Rose, A., Klimstra, W.B., Gomez, G., and Colpitts, T.M. (2016). A role for human skin mast cells in Dengue virus infection and systemic spread. J. Immunol. 197: 4382–4391, https://doi.org/10.4049/jimmunol.1600846.Search in Google Scholar PubMed

Tyanova, S. and Cox, J. (2018). Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research. Methods Mol. Biol. 1711: 133–148, https://doi.org/10.1007/978-1-4939-7493-1_7.Search in Google Scholar PubMed

Valente, A.P., Moraes, A.H. (2019). Zika virus proteins at an atomic scale: how does structural biology help us to understand and develop vaccines and drugs against Zika virus infection? J. Venom. Anim. Toxins. Incl. Trop. Dis. 25: e20190013, https://doi.org/10.1590/1678-9199-jvatitd-2019-0013,Search in Google Scholar PubMed PubMed Central

Viranaicken, W., Ndebo, A., Bos, S., Souque, P., Gadea, G., El-Kalamouni, C., Krejbich-Trotot, P., Charneau, P., Desprès, P., and Roche, M. (2018). Recombinant zika NS1 protein secreted from vero cells is efficient for inducing production of immune serum directed against NS1 dimer. Int. J. Mol. Sci. 19: 38, https://doi.org/10.3390/ijms19010038.Search in Google Scholar PubMed PubMed Central

WHO (2015). Zika virus outbreaks in the Americas. Weekly Epidemiol. Rec. 90: 609–610.Search in Google Scholar

Zhang, Z.W., Li, Z.L., and Yuan, S. (2017). The role of secretory autophagy in Zika virus transfer through the placental barrier. Front. Cell. Infect. Microbiol. 6: 206, https://doi.org/10.3389/fcimb.2016.00206.Search in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/hsz-2023-0165).


Received: 2023-03-20
Accepted: 2023-08-08
Published Online: 2023-09-08
Published in Print: 2024-03-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.5.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2023-0165/html
Scroll to top button