Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 12, 2023

NMDA receptors – regulatory function and pathophysiological significance for pancreatic beta cells

  • Héctor Noguera Hurtado , Anne Gresch ORCID logo and Martina Düfer ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

Due to its unique features amongst ionotropic glutamate receptors, the NMDA receptor is of special interest in the physiological context but even more as a drug target. In the pathophysiology of metabolic disorders, particularly type 2 diabetes mellitus, there is evidence that NMDA receptor activation contributes to disease progression by impairing beta cell function. Consequently, channel inhibitors are suggested for treatment, but up to now there are many unanswered questions about the signaling pathways NMDA receptors are interfering with in the islets of Langerhans. In this review we give an overview about channel structure and function with special regard to the pancreatic beta cells and the regulation of insulin secretion. We sum up which signaling pathways from brain research have already been transferred to the beta cell, and what still needs to be proven. The main focus is on the relationship between an over-stimulated NMDA receptor and the production of reactive oxygen species, the amount of which is crucial for beta cell function. Finally, pilot studies using NMDA receptor blockers to protect the islet from dysfunction are reviewed and future perspectives for the use of such compounds in the context of impaired glucose homeostasis are discussed.


Corresponding author: Martina Düfer, Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, University of Münster, Corrensstraße 48, D-48149 Münster, Germany, E-mail:
Héctor Noguera Hurtado and Anne Gresch contributed equally to this work.

Funding source: Deutsche Forschungsgemeinschaft 10.13039/501100001659

Award Identifier / Grant number: GRK2515

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Deutsche Forschungsgemeinschaft (Research Training Group GRK 2515, Chemical Biology of Ion Channels). The figures were generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Ackermann, A. and Palladino, A. (2015). Managing congenital hyperinsulinism: improving outcomes with a multidisciplinary approach. Res. Rep. Endocr. Disord. 5: 103–117, https://doi.org/10.2147/rred.s56608.Search in Google Scholar

Acton, D. and Miles, G.B. (2017). Differential regulation of NMDA receptors by D-serine and glycine in mammalian spinal locomotor networks. J. Neurophysiol. 117: 1877–1893, https://doi.org/10.1152/jn.00810.2016.Search in Google Scholar PubMed PubMed Central

Ahlqvist, E., Storm, P., Käräjämäki, A., Martinell, M., Dorkhan, M., Carlsson, A., Vikman, P., Prasad, R.B., Aly, D.M., Almgren, P., et al.. (2018). Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6: 361–369, https://doi.org/10.1016/s2213-8587(18)30051-2.Search in Google Scholar PubMed

Alberdi, E., Sánchez-Gómez, M.V., Cavaliere, F., Pérez-Samartín, A., Zugaza, J.L., Trullas, R., Domercq, M., and Matute, C. (2010). Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 47: 264–272, https://doi.org/10.1016/j.ceca.2009.12.010.Search in Google Scholar PubMed

Amico-Ruvio, S.A., Murthy, S.E., Smith, T.P., and Popescu, G.K. (2011). Zinc effects on NMDA receptor gating kinetics. Biophys. J. 100: 1910–1918, https://doi.org/10.1016/j.bpj.2011.02.042.Search in Google Scholar PubMed PubMed Central

Anderson, M., Suh, J.M., Kim, E.Y., and Dryer, S.E. (2011). Functional NMDA receptors with atypical properties are expressed in podocytes. Am. J. Physiol. Cell Physiol. 300: C22–C32, https://doi.org/10.1152/ajpcell.00268.2010.Search in Google Scholar PubMed PubMed Central

Bertrand, G., Gross, R., Puech, R., Loubatières-Mariani, M.M., and Bockaert, J. (1992). Evidence for a glutamate receptor of the AMPA subtype which mediates insulin release from rat perfused pancreas. Br. J. Pharmacol. 106: 354–359, https://doi.org/10.1111/j.1476-5381.1992.tb14340.x.Search in Google Scholar PubMed PubMed Central

Block, K., Gorin, Y., and Abboud, H.E. (2009). Subcellular localization of Nox4 and regulation in diabetes. Proc. Natl. Acad. Sci. U.S.A. 106: 14385–14390, https://doi.org/10.1073/pnas.0906805106.Search in Google Scholar PubMed PubMed Central

Brennan-Minnella, A.M., Shen, Y., El-Benna, J., and Swanson, R.A. (2013). Phosphoinositide 3-kinase couples NMDA receptors to superoxide release in excitotoxic neuronal death. Cell Death Dis. 4: e580, https://doi.org/10.1038/cddis.2013.164.Search in Google Scholar

Chan, S.L.F., Pallett, A.L., Clews, J., Ramsden, C.A., and Morgan, N.G. (1997). Evidence that the ability of imidazoline compounds to stimulate insulin secretion is not due to interaction with σ receptors. Eur. J. Pharmacol. 323: 241–244, https://doi.org/10.1016/s0014-2999(97)00133-7.Search in Google Scholar PubMed

Chen, Q.-Y., Li, X.-H., and Zhuo, M. (2021). NMDA receptors and synaptic plasticity in the anterior cingulate cortex. Neuropharmacology 197: 108749, https://doi.org/10.1016/j.neuropharm.2021.108749.Search in Google Scholar PubMed

Cochrane, V.A., Wu, Y., Yang, Z., ElSheikh, A., Dunford, J., Kievit, P., Fortin, D.A., and Shyng, S.-L. (2020). Leptin modulates pancreatic β-cell membrane potential through Src kinase-mediated phosphorylation of NMDA receptors. J. Biol. Chem. 295: 17281–17297, https://doi.org/10.1074/jbc.ra120.015489.Search in Google Scholar PubMed PubMed Central

Corless, M., Kiely, A., McClenaghan, N.H., Flatt, P.R., and Newsholme, P. (2006). Glutamine regulates expression of key transcription factor, signal transduction, metabolic gene, and protein expression in a clonal pancreatic beta-cell line. J. Endocrinol. 190: 719–727, https://doi.org/10.1677/joe.1.06892.Search in Google Scholar PubMed

Deep, S.N., Mitra, S., Rajagopal, S., Paul, S., and Poddar, R. (2019). GluN2A-NMDA receptor-mediated sustained Ca2+ influx leads to homocysteine-induced neuronal cell death. J. Biol. Chem. 294: 11154–11165, https://doi.org/10.1074/jbc.ra119.008820.Search in Google Scholar

Detimary, P., Gilon, P., and Henquin, J.C. (1998). Interplay between cytoplasmic Ca2+ and the ATP/ADP ratio: a feedback control mechanism in mouse pancreatic islets. Biochem. J. 333: 269–274, https://doi.org/10.1042/bj3330269.Search in Google Scholar PubMed PubMed Central

Drews, G., Krippeit-Drews, P., and Düfer, M. (2015). Electrophysiology of islet cells. In: Islam, M.S. (Ed.), Islet of Langerhans. Advances in experimental medicine and biology. Springer Netherlands, Dordrecht, pp. 249–303.10.1007/978-94-007-6686-0_5Search in Google Scholar

Düfer, M., Gier, B., Wolpers, D., Krippeit-Drews, P., Ruth, P., and Drews, G. (2009). Enhanced glucose tolerance by SK4 channel inhibition in pancreatic beta-cells. Diabetes 58: 1835–1843, https://doi.org/10.2337/db08-1324.Search in Google Scholar PubMed PubMed Central

Eberle, C. and Ament, C. (2012). Diabetic and metabolic programming: mechanisms altering the intrauterine milieu. ISRN Pediatr. 2012: 975685, https://doi.org/10.5402/2012/975685.Search in Google Scholar PubMed PubMed Central

Eizirik, D.L., Cardozo, A.K., and Cnop, M. (2008). The role for endoplasmic reticulum stress in diabetes mellitus. Endocr. Rev. 29: 42–61, https://doi.org/10.1210/er.2007-0015.Search in Google Scholar PubMed

Erreger, K. and Traynelis, S.F. (2005). Allosteric interaction between zinc and glutamate binding domains on NR2A causes desensitization of NMDA receptors. J. Physiol. 569: 381–393, https://doi.org/10.1113/jphysiol.2005.095497.Search in Google Scholar PubMed PubMed Central

Erreger, K. and Traynelis, S.F. (2008). Zinc inhibition of rat NR1/NR2A N-methyl-D-aspartate receptors. J. Physiol. 586: 763–778, https://doi.org/10.1113/jphysiol.2007.143941.Search in Google Scholar PubMed PubMed Central

Feldmann, N., Del Rio, R.M., Gjinovci, A., Tamarit-Rodriguez, J., Wollheim, C.B., and Wiederkehr, A. (2011). Reduction of plasma membrane glutamate transport potentiates insulin but not glucagon secretion in pancreatic islet cells. Mol. Cell. Endocrinol. 338: 46–57, https://doi.org/10.1016/j.mce.2011.02.019.Search in Google Scholar PubMed

Fernandes, H.B., Baimbridge, K.G., Church, J., Hayden, M.R., and Raymond, L.A. (2007). Mitochondrial sensitivity and altered calcium handling underlie enhanced NMDA-induced apoptosis in YAC128 model of Huntington‘s disease. J. Neurosci. 27: 13614–13623, https://doi.org/10.1523/jneurosci.3455-07.2007.Search in Google Scholar PubMed PubMed Central

Ferrario, C.R. and Reagan, L.P. (2018). Insulin-mediated synaptic plasticity in the CNS: anatomical, functional and temporal contexts. Neuropharmacology 136: 182–191, https://doi.org/10.1016/j.neuropharm.2017.12.001.Search in Google Scholar PubMed PubMed Central

Ferreira-Neto, H.C. and Stern, J.E. (2021). Functional coupling between NMDA receptors and small conductance Ca2+-activated (SK) channels in rat hypothalamic magnocellular neurons: altered mechanisms during heart failure. J. Physiol. 599: 507–520.10.1113/JP278910Search in Google Scholar PubMed PubMed Central

Galcheva, S., Demirbilek, H., Al-Khawaga, S., and Hussain, K. (2019). The genetic and molecular mechanisms of congenital hyperinsulinism. Front. Endocrinol. 10: 111, https://doi.org/10.3389/fendo.2019.00111.Search in Google Scholar PubMed PubMed Central

Gomez-Rodriguez, J., Meylan, F., Handon, R., Hayes, E.T., Anderson, S.M., Kirby, M.R., Siegel, R.M., and Schwartzberg, P.L. (2016). Itk is required for Th9 differentiation via TCR-mediated induction of IL-2 and IRF4. Nat. Commun. 7: 10857, https://doi.org/10.1038/ncomms10857.Search in Google Scholar PubMed PubMed Central

Gonoi, T., Mizuno, N., Inagaki, N., Kuromi, H., Seino, Y., Miyazaki, J., and Seino, S. (1994). Functional neuronal ionotropic glutamate receptors are expressed in the non-neuronal cell line MIN6. J. Biol. Chem. 269: 16989–16992, https://doi.org/10.1016/s0021-9258(17)32507-3.Search in Google Scholar

Gorman, A. and Griffiths, R. (1994). Sulphur-containing excitatory amino acid-stimulated inositol phosphate formation in primary cultures of cerebellar granule cells is mediated predominantly by N-methyl-d-aspartate receptors. Neuroscience 59: 299–308, https://doi.org/10.1016/0306-4522(94)90598-3.Search in Google Scholar PubMed

Gresch, A. and Düfer, M. (2020). Dextromethorphan and dextrorphan influence insulin secretion by interacting with KATP and L-type Ca2+ channels in pancreatic β-cells. J. Pharmacol. Exp. Therapeut. 375: 10–20, https://doi.org/10.1124/jpet.120.265835.Search in Google Scholar PubMed

Gresch, A., Hurtado, H.N., Wörmeyer, L., Luca de, V., Wiggers, R., Seebohm, G., Wünsch, B., and Düfer, M. (2021). Selective inhibition of N-Methyl-d-aspartate receptors with GluN2B subunit protects β-cells against stress-induced apoptotic cell death. J. Pharmacol. Exp. Therapeut. 379: 235–244, https://doi.org/10.1124/jpet.121.000807.Search in Google Scholar PubMed

Griffith, T., Tsaneva-Atanasova, K., and Mellor, J.R. (2016). Control of Ca2+ influx and calmodulin activation by SK-channels in dendritic spines. PLoS Comput. Biol. 12: e1004949, https://doi.org/10.1371/journal.pcbi.1004949.Search in Google Scholar PubMed PubMed Central

Hansen, K.B., Bräuner-Osborne, H., and Egebjerg, J. (2008). Pharmacological characterization of ligands at recombinant NMDA receptor subtypes by electrophysiological recordings and intracellular calcium measurements. Comb. Chem. High Throughput Screen. 11: 304–315, https://doi.org/10.2174/138620708784246040.Search in Google Scholar PubMed

Hardingham, G.E., Fukunaga, Y., and Bading, H. (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5: 405–414, https://doi.org/10.1038/nn835.Search in Google Scholar PubMed

Hestrin, S., Nicoll, R.A., Perkel, D.J., and Sah, P. (1990). Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices. J. Physiol. 422: 203–225, https://doi.org/10.1113/jphysiol.1990.sp017980.Search in Google Scholar PubMed PubMed Central

Hogan-Cann, A.D. and Anderson, C.M. (2016). Physiological roles of non-neuronal NMDA receptors. Trends Pharmacol. Sci. 37: 750–767, https://doi.org/10.1016/j.tips.2016.05.012.Search in Google Scholar PubMed

Hu, B. and Zheng, F. (2005). Molecular determinants of glycine-independent desensitization of NR1/NR2A receptors. J. Pharmacol. Exp. Therapeut. 313: 563–569, https://doi.org/10.1124/jpet.104.080168.Search in Google Scholar PubMed

Huang, X.-T., Li, C., Peng, X.-P., Guo, J., Yue, S.-J., Liu, W., Zhao, F.-Y., Han, J.-Z., Huang, Y.-H., Yang-Li, et al.. (2017a). An excessive increase in glutamate contributes to glucose-toxicity in β-cells via activation of pancreatic NMDA receptors in rodent diabetes. Sci. Rep. 7: 44120, https://doi.org/10.1038/srep44120.Search in Google Scholar PubMed PubMed Central

Huang, X.-T., Liu, W., Zhou, Y., Sun, M., Sun, C.-C., Zhang, C.-Y., and Tang, S.-Y. (2019). Endoplasmic reticulum stress contributes to NMDA-induced pancreatic β-cell dysfunction in a CHOP-dependent manner. Life Sci. 232: 116612, https://doi.org/10.1016/j.lfs.2019.116612.Search in Google Scholar PubMed

Huang, X.-T., Yue, S.-J., Li, C., Huang, Y.-H., Cheng, Q.-M., Li, X.-H., Hao, C.-X., Wang, L.-Z., Xu, J.-P., Ji, M., et al.. (2017b). A sustained activation of pancreatic NMDARs is a novel factor of β-cell apoptosis and dysfunction. Endocrinology 158: 3900–3913, https://doi.org/10.1210/en.2017-00366.Search in Google Scholar PubMed

Huang, X.-T., Yue, S.-J., Li, C., Guo, J., Huang, Y.-H., Han, J.-Z., Feng, D.-D., and Luo, Z.-O. (2017c). Antenatal blockade of N-methyl-D-aspartate receptors by Memantine reduces the susceptibility to diabetes induced by a high-fat diet in rats with intrauterine growth restriction. Biol. Reprod. 96: 960–970, https://doi.org/10.1095/biolreprod.116.145011.Search in Google Scholar PubMed

Imai, R., Misaka, S., Horita, S., Yokota, S., O’hashi, R., Maejima, Y., and Shimomura, K. (2018). Memantine has no effect on KATP channels in pancreatic β cells. BMC Res. Notes 11: 614, https://doi.org/10.1186/s13104-018-3715-9.Search in Google Scholar PubMed PubMed Central

Inagaki, N., Kuromi, H., Gonoi, T., Okamoto, Y., Ishida, H., Seino, Y., Kaneko, T., Iwanaga, T., and Seino, S. (1995). Expression and role of ionotropic glutamate receptors in pancreatic islet cells. Faseb. J. 9: 686–691, https://doi.org/10.1096/fasebj.9.8.7768362.Search in Google Scholar

Isaacson, J.S. and Murphy, G.J. (2001). Glutamate-mediated extrasynaptic inhibition: direct coupling of NMDA receptors to Ca2+-activated K+ Channels. Neuron 31: 1027–1034, https://doi.org/10.1016/s0896-6273(01)00428-7.Search in Google Scholar PubMed

Jezek, P. and Hlavatá, L. (2005). Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int. J. Biochem. Cell Biol. 37: 2478–2503, https://doi.org/10.1016/j.biocel.2005.05.013.Search in Google Scholar PubMed

Jones, M.L. and Leonard, J.P. (2005). PKC site mutations reveal differential modulation by insulin of NMDA receptors containing NR2A or NR2B subunits. J. Neurochem. 92: 1431–1438, https://doi.org/10.1111/j.1471-4159.2004.02985.x.Search in Google Scholar PubMed

Kim, B.J., Kim, Y.H., Kim, S., Kim, J.W., Koh, J.Y., Oh, S.H., Lee, M.K., Kim, K.W., and Lee, M.S. (2000). Zinc as a paracrine effector in pancreatic islet cell death. Diabetes 49: 367–372, https://doi.org/10.2337/diabetes.49.3.367.Search in Google Scholar PubMed

Krippeit-Drews, P., Düfer, M., and Drews, G. (2000). Parallel oscillations of intracellular calcium activity and mitochondrial membrane potential in mouse pancreatic B-cells. Biochem. Biophys. Res. Commun. 267: 179–183, https://doi.org/10.1006/bbrc.1999.1921.Search in Google Scholar PubMed

Lai, T.W., Zhang, S., and Wang, Y.T. (2014). Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog. Neurobiol. 115: 157–188, https://doi.org/10.1016/j.pneurobio.2013.11.006.Search in Google Scholar PubMed

Lee, J.-H., Mellado-Gil, J.M., Bahn, Y.J., Pathy, S.M., Zhang, Y.E., and Rane, S.G. (2020). Protection from β-cell apoptosis by inhibition of TGF-β/Smad3 signaling. Cell Death Dis. 11: 184, https://doi.org/10.1038/s41419-020-2365-8.Search in Google Scholar PubMed PubMed Central

Liu, L., Brown, J.C., Webster, W.W., Morrisett, R.A., and Monaghan, D.T. (1995). Insulin potentiates N-methyl-d-aspartate receptor activity in Xenopus oocytes and rat hippocampus. Neurosci. Lett. 192: 5–8, https://doi.org/10.1016/0304-3940(95)11593-l.Search in Google Scholar PubMed

Lockridge, A., Gustafson, E., Wong, A., Miller, R.F., and Alejandro, E.U. (2021). Acute D-Serine co-agonism of β-cell NMDA receptors potentiates glucose-stimulated insulin secretion and excitatory β-cell membrane activity. Cells 10: 93, https://doi.org/10.3390/cells10010093.Search in Google Scholar PubMed PubMed Central

Ly, L.D., Xu, S., Choi, S.-K., Ha, C.-M., Thoudam, T., Cha, S.-K., Wiederkehr, A., Wollheim, C.B., Lee, I.-K., and Park, K.-S. (2017). Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp. Mol. Med. 49: e291, https://doi.org/10.1038/emm.2016.157.Search in Google Scholar PubMed PubMed Central

Ma, L., Tian, M.-X., Sun, Q.-Y., Liu, N.-N., Dong, J.-F., Feng, K., Wu, Y.-K., Wang, Y.-X., Wang, G.-Y., Chen, W., et al.. (2020). Fetal growth restriction mice are more likely to exhibit depression-like behaviors due to stress-induced loss of dopaminergic neurons in the VTA. Faseb. J. 34: 13257–13271, https://doi.org/10.1096/fj.202000534r.Search in Google Scholar PubMed

MacDonald, J.F., Jackson, M.F., and Beazely, M.A. (2007). G protein-coupled receptors control NMDARs and metaplasticity in the hippocampus. Biochim. Biophys. Acta 1768: 941–951, https://doi.org/10.1016/j.bbamem.2006.12.006.Search in Google Scholar PubMed

Maedler, K. and Donath, M.Y. (2004). β-cells in type 2 diabetes: a loss of function and mass. Horm. Res. 62: 67–73, https://doi.org/10.1159/000080503.Search in Google Scholar PubMed

Marquard, J., Otter, S., Welters, A., Stirban, A., Fischer, A., Eglinger, J., Herebian, D., Kletke, O., Klemen, M.S., Stožer, A., et al.. (2015). Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nat. Med. 21: 363–372, https://doi.org/10.1038/nm.3822.Search in Google Scholar PubMed

Marquard, J., Stirban, A., Schliess, F., Sievers, F., Welters, A., Otter, S., Fischer, A., Wnendt, S., Meissner, T., Heise, T., et al.. (2016). Effects of dextromethorphan as add-on to sitagliptin on blood glucose and serum insulin concentrations in individuals with type 2 diabetes mellitus: a randomized, placebo-controlled, double-blinded, multiple crossover, single-dose clinical trial. Diabetes Obes. Metabol. 18: 100–103, https://doi.org/10.1111/dom.12576.Search in Google Scholar PubMed PubMed Central

Marrif, H.I. and Al-Sunousi, S.I. (2016). Pancreatic β cell mass death. Front. Pharmacol. 7: 83, https://doi.org/10.3389/fphar.2016.00083.Search in Google Scholar PubMed PubMed Central

Martel, M.-A., Ryan, T.J., Bell, K.F.S., Fowler, J.H., McMahon, A., Al-Mubarak, B., Komiyama, N.H., Horsburgh, K., Kind, P.C., Grant, S.G.N., et al.. (2012). The subtype of GluN2C-terminal domain determines the response to excitotoxic insults. Neuron 74: 543–556, https://doi.org/10.1016/j.neuron.2012.03.021.Search in Google Scholar PubMed PubMed Central

Martin, D. and Grapin-Botton, A. (2017). The importance of REST for development and function of beta cells. Front. Cell Dev. Biol. 5: 12, https://doi.org/10.3389/fcell.2017.00012.Search in Google Scholar PubMed PubMed Central

Matsui, T., Sekiguchi, M., Hashimoto, A., Tomita, U., Nishikawa, T., and Wada, K. (1995). Functional comparison of D-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration. J. Neurochem. 65: 454–458, https://doi.org/10.1046/j.1471-4159.1995.65010454.x.Search in Google Scholar PubMed

Meunier, C.N.J., Dallérac, G., Le Roux, N., Sacchi, S., Levasseur, G., Amar, M., Pollegioni, L., Mothet, J.-P., and Fossier, P. (2016). D-Serine and glycine differentially control neurotransmission during visual cortex critical period. PLoS One 11: e0151233, https://doi.org/10.1371/journal.pone.0151233.Search in Google Scholar PubMed PubMed Central

Molnár, E., Váradi, A., McIlhinney, J.R.A., and Ashcroft, S.J.R. (1995). Identification of functional ionotropic glutamate receptor proteins in pancreatic β-cells and in islets of Langerhans. FEBS Lett. 371: 253–257.10.1016/0014-5793(95)00890-LSearch in Google Scholar PubMed

Mony, L., Kew, J.N.C., Gunthorpe, M.J., and Paoletti, P. (2009). Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential. Br. J. Pharmacol. 157: 1301–1317, https://doi.org/10.1111/j.1476-5381.2009.00304.x.Search in Google Scholar PubMed PubMed Central

Morley, P., MacLean, S., Gendron, T.F., Small, D.L., Tremblay, R., Durkin, J.P., and Mealing, G. (2000). Pharmacological and molecular characterization of glutamate receptors in the MIN6 pancreatic beta-cell line. Neurol. Res. 22: 379–385, https://doi.org/10.1080/01616412.2000.11740687.Search in Google Scholar PubMed

Nahum-Levy, R., Lipinski, D., Shavit, S., and Benveniste, M. (2001). Desensitization of NMDA receptor channels is modulated by glutamate agonists. Biophys. J. 80: 2152–2166, https://doi.org/10.1016/s0006-3495(01)76188-7.Search in Google Scholar PubMed PubMed Central

Ngo-Anh, T.J., Bloodgood, B.L., Lin, M., Sabatini, B.L., Maylie, J., and Adelman, J.P. (2005). SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nat. Neurosci. 8: 642–649, https://doi.org/10.1038/nn1449.Search in Google Scholar PubMed

Oliveira, H.R., Verlengia, R., Carvalho, C.R.O., Britto, L.R.G., Curi, R., and Carpinelli, A.R. (2003). Pancreatic β-cells express phagocyte-like NAD(P)H oxidase. Diabetes 52: 1457–1463, https://doi.org/10.2337/diabetes.52.6.1457.Search in Google Scholar PubMed

Paoletti, P., Bellone, C., and Zhou, Q. (2013). NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14: 383–400, https://doi.org/10.1038/nrn3504.Search in Google Scholar PubMed

Papouin, T., Ladépêche, L., Ruel, J., Sacchi, S., Labasque, M., Hanini, M., Groc, L., Pollegioni, L., Mothet, J.-P., and Oliet, S.H.R. (2012). Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150: 633–646, https://doi.org/10.1016/j.cell.2012.06.029.Search in Google Scholar PubMed

Patterson, S., Irwin, N., Guo-Parke, H., Moffett, R.C., Scullion, S.M., Flatt, P.R., and McClenaghan, N.H. (2016). Evaluation of the role of N-methyl-D-aspartate (NMDA) receptors in insulin secreting beta-cells. Eur. J. Pharmacol. 771: 107–113, https://doi.org/10.1016/j.ejphar.2015.12.015.Search in Google Scholar PubMed

Plecitá-Hlavatá, L., Jabůrek, M., Holendová, B., Tauber, J., Pavluch, V., Berková, Z., Cahová, M., Schröder, K., Brandes, R.P., Siemen, D., et al.. (2020). Glucose-stimulated insulin secretion fundamentally requires H2O2 signaling by NADPH oxidase 4. Diabetes 69: 1341–1354, https://doi.org/10.2337/db19-1130.Search in Google Scholar PubMed

Priestley, T., Laughton, P., Myers, J., Le Bourdellés, B., Kerby, J., and Whiting, P.J. (1995). Pharmacological properties of recombinant human N-methyl-D-aspartate receptors comprising NR1a/NR2A and NR1a/NR2B subunit assemblies expressed in permanently transfected mouse fibroblast cells. Mol. Pharmacol. 48: 841–848.Search in Google Scholar

Rorsman, P. and Ashcroft, F.M. (2018). Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol. Rev. 98: 117–214, https://doi.org/10.1152/physrev.00008.2017.Search in Google Scholar PubMed PubMed Central

Santos, R.M., Rosario, L.M., Nadal, A., Garcia-Sancho, J., Soria, B., and Valdeolmillos, M. (1991). Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets. Pflüger’s Arch. 418: 417–422.10.1007/BF00550880Search in Google Scholar PubMed

Schober, M.E., McKnight, R.A., Yu, X., Callaway, C.W., Ke, X., and Lane, R.H. (2009). Intrauterine growth restriction due to uteroplacental insufficiency decreased white matter and altered NMDAR subunit composition in juvenile rat hippocampi. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296: R681–R692, https://doi.org/10.1152/ajpregu.90396.2008.Search in Google Scholar PubMed

Scholz, O., Otter, S., Welters, A., Wörmeyer, L., Dolenšek, J., Klemen, M.S., Pohorec, V., Eberhard, D., Mrugala, J., Hamacher, A., et al.. (2021). Peripherally active dextromethorphan derivatives lower blood glucose levels by targeting pancreatic islets. Cell Chem. Biol. 28: 1474–1488.e7, https://doi.org/10.1016/j.chembiol.2021.05.011.Search in Google Scholar PubMed

Sessoms-Sikes, S., Honse, Y., Lovinger, D.M., and Colbran, R.J. (2005). CaMKIIalpha enhances the desensitization of NR2B-containing NMDA receptors by an autophosphorylation-dependent mechanism. Mol. Cell. Neurosci. 29: 139–147.10.1016/j.mcn.2005.01.006Search in Google Scholar PubMed

Shanley, L.J., Irving, A.J., and Harvey, J. (2001). Leptin enhances NMDA receptor function and modulates hippocampal synaptic plasticity. J. Neurosci. 21: RC186, https://doi.org/10.1523/jneurosci.21-24-j0001.2001.Search in Google Scholar PubMed PubMed Central

Shanley, L.J., O’Malley, D., Irving, A.J., Ashford, M.L., and Harvey, J. (2002). Leptin inhibits epileptiform-like activity in rat hippocampal neurones via PI 3-kinase-driven activation of BK channels. J. Physiol. 545: 933–944, https://doi.org/10.1113/jphysiol.2002.029488.Search in Google Scholar PubMed PubMed Central

Sibarov, D.A. and Antonov, S.M. (2018). Calcium-dependent desensitization of NMDA receptors. Biochemistry (Moscow) 83: 1173–1183, https://doi.org/10.1134/s0006297918100036.Search in Google Scholar

Sikimic, J., Hoffmeister, T., Gresch, A., Kaiser, J., Barthlen, W., Wolke, C., Wieland, I., Lendeckel, U., Krippeit-Drews, P., Düfer, M., et al.. (2020). Possible new strategies for the treatment of congenital hyperinsulinism. Front. Endocrinol. 11: 545638, https://doi.org/10.3389/fendo.2020.545638.Search in Google Scholar PubMed PubMed Central

Skeberdis, V.A., Lan, J., Zheng, X., Zukin, R.S., and Bennett, M.V. (2001). Insulin promotes rapid delivery of N-methyl-D- aspartate receptors to the cell surface by exocytosis. Proc. Natl. Acad. Sci. U.S.A. 98: 3561–3566, https://doi.org/10.1073/pnas.051634698.Search in Google Scholar PubMed PubMed Central

Šterk, M., Križančić Bombek, L., Skelin Klemen, M., Slak Rupnik, M., Marhl, M., Stožer, A., and Gosak, M. (2021). NMDA receptor inhibition increases, synchronizes, and stabilizes the collective pancreatic beta cell activity: insights through multilayer network analysis. PLoS Comput. Biol. 17: e1009002, https://doi.org/10.1371/journal.pcbi.1009002.Search in Google Scholar PubMed PubMed Central

Stroebel, D., Mony, L., and Paoletti, P. (2021). Glycine agonism in ionotropic glutamate receptors. Neuropharmacology 193: 108631, https://doi.org/10.1016/j.neuropharm.2021.108631.Search in Google Scholar PubMed

Suwandhi, L., Hausmann, S., Braun, A., Gruber, T., Heinzmann, S.S., Gálvez, E.J.C., Buck, A., Legutko, B., Israel, A., Feuchtinger, A., et al.. (2018). Chronic D-serine supplementation impairs insulin secretion. Mol. Metabol. 16: 191–202, https://doi.org/10.1016/j.molmet.2018.07.002.Search in Google Scholar PubMed PubMed Central

Terasaki, Y., Sasaki, T., Yagita, Y., Okazaki, S., Sugiyama, Y., Oyama, N., Omura-Matsuoka, E., Sakoda, S., and Kitagawa, K. (2010). Activation of NR2A receptors induces ischemic tolerance through CREB signaling. J. Cerebr. Blood Flow Metabol. 30: 1441–1449, https://doi.org/10.1038/jcbfm.2010.18.Search in Google Scholar PubMed PubMed Central

Tong, G. and Jahr, C.E. (1994). Regulation of glycine-insensitive desensitization of the NMDA receptor in outside-out patches. J. Neurophysiol. 72: 754–761, https://doi.org/10.1152/jn.1994.72.2.754.Search in Google Scholar PubMed

Traynelis, S.F., Wollmuth, L.P., McBain, C.J., Menniti, F.S., Vance, K.M., Ogden, K.K., Hansen, K.B., Yuan, H., Myers, S.J., and Dingledine, R. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62: 405–496, https://doi.org/10.1124/pr.109.002451.Search in Google Scholar PubMed PubMed Central

Villarroel, A., Regalado, M.P., and Lerma, J. (1998). Glycine-independent NMDA receptor desensitization: localization of structural determinants. Neuron 20: 329–339, https://doi.org/10.1016/s0896-6273(00)80460-2.Search in Google Scholar PubMed

Villegas, L., Nørremølle, A., Freude, K., and Vilhardt, F. (2021). Nicotinamide adenine dinucleotide phosphate oxidases are everywhere in brain disease, but not in Huntington’s disease? Front. Aging Neurosci. 13: 736734, https://doi.org/10.3389/fnagi.2021.736734.Search in Google Scholar PubMed PubMed Central

Vyklicky, V., Korinek, M., Smejkalova, T., Balik, A., Krausova, B., Kaniakova, M., Lichnerova, K., Cerny, J., Krusek, J., Dittert, I., et al.. (2014). Structure, function, and pharmacology of NMDA receptor channels. Physiol. Res. 63: S191–S203, https://doi.org/10.33549/physiolres.932678.Search in Google Scholar PubMed

Wu, Y., Fortin, D.A., Cochrane, V.A., Chen, P.-C., and Shyng, S.-L. (2017). NMDA receptors mediate leptin signaling and regulate potassium channel trafficking in pancreatic β-cells. J. Biol. Chem. 292: 15512–15524, https://doi.org/10.1074/jbc.m117.802249.Search in Google Scholar

Wu, Y., Shyng, S.-L., and Chen, P.-C. (2015). Concerted trafficking regulation of Kv2.1 and KATP channels by leptin in pancreatic β-cells. J. Biol. Chem. 290: 29676–29690, https://doi.org/10.1074/jbc.m115.670877.Search in Google Scholar PubMed PubMed Central

Yuan, H., Lu, Y., Huang, X., He, Q., Man, Y., Zhou, Y., Wang, S., and Li, J. (2010). Suppression of NADPH oxidase 2 substantially restores glucose-induced dysfunction of pancreatic NIT-1 cells. FEBS J. 277: 5061–5071, https://doi.org/10.1111/j.1742-4658.2010.07911.x.Search in Google Scholar PubMed

Zhang, M., Houamed, K., Kupershmidt, S., Roden, D., and Satin, L.S. (2005). Pharmacological properties and functional role of Kslow current in mouse pancreatic beta-cells: SK channels contribute to Kslow tail current and modulate insulin secretion. J. Gen. Physiol. 126: 353–363, https://doi.org/10.1085/jgp.200509312.Search in Google Scholar PubMed PubMed Central

Received: 2022-07-26
Accepted: 2022-11-29
Published Online: 2023-01-12
Published in Print: 2023-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2022-0236/html
Scroll to top button