Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 23, 2019

Identification of the molecular determinants for nuclear import of PRV EP0

  • Mingsheng Cai , Ping Wang , Yuanfang Wang , Tao Chen , Zuo Xu , Xingmei Zou , Xiaowen Ou , Yiwen Li , Daixiong Chen , Tao Peng and Meili Li EMAIL logo
From the journal Biological Chemistry

Abstract

Pseudorabies virus (PRV) early protein EP0 is a homologue of the herpes simplex virus 1 (HSV-1) immediate-early protein ICP0, which is a multifunctional protein and important for HSV-1 infection. However, the definite function of EP0 during PRV infection is not clear. In this study, to determine if EP0 might localize to the nucleus, as it is shown for its homologue in HSV-1, the subcellular localization pattern and molecular determinants for the nuclear import of EP0 were investigated. EP0 was demonstrated to predominantly target the nucleus in both PRV infected- and plasmid-transfected cells. Furthermore, the nuclear import of EP0 was shown to be dependent on the Ran-, importin α1-, α3-, α7-, β1- and transportin-1-mediated multiple pathways. Taken together, these data will open up new horizons for portraying the biological roles of EP0 in the course of PRV lytic cycle.

Award Identifier / Grant number: 81772179

Award Identifier / Grant number: 2018A0303130257

Award Identifier / Grant number: 2015A030313473

Funding statement: This work was supported by grants from the National Natural Science Foundation of China (Funder Id: http://dx.doi.org/10.13039/501100001809, 81772179); the Natural Science Foundation of Guangdong Province (2018A0303130257 and 2015A030313473); the Regular University Distinguished Innovation Project from Education Department of Guangdong Province, China (2018KTSCX184); the Training Program for Outstanding Young Teachers in Universities of Guangdong Province (YQ2015132); the Medical Scientific Research Foundation of Guangdong Province, China (A2017055); the Science and Technology Plan Projects of Guangzhou City, China (201607010088); the Scientific Research Projects in Colleges and Universities of Guangzhou (1201610025 and 1201610024); High-Level Universities Academic Backbone Development Program of Guangzhou Medical University; and the Thousand Hundred Ten Projects of Guangzhou Medical University, Guangdong; the Undergraduate Laboratory Opening Project of Guangzhou Medical University (2018 and 2019). We thank Drs. Lynn W. Enquist, Nobuyuki Nukina, Yoshihiro Yoneda, Ben Margolis, Christopher F. Basler, Reinhard Depping and Chunfu Zheng for the generous gifts pBecker2, RFP-M9M/RFP-Bimax2, pcDNA-Flag-kα1 (importin α5), pCMV9-3×FLAG-importin β1, Flag-kα6 (importin α7), Flag-kα2 (importin α1), Flag-kα4 (importin α3) and pFLAG-CMV-transportin-1, respectively.

  1. Conflict of interest statement: The authors declare that they have no competing interests.

References

Brukman, A. and Enquist, L.W. (2006). Pseudorabies virus EP0 protein counteracts an interferon-induced antiviral state in a species-specific manner. J. Virol. 80, 10871–10873.10.1128/JVI.01308-06Search in Google Scholar PubMed PubMed Central

Cai, M.S., Jiang, S., Zeng, Z.C., Li, X.W., Mo, C.C., Yang, Y.J., Chen, C.K., Xie, P.P., Bian, Y., Wang, J.L., et al. (2016). Probing the nuclear import signal and nuclear transport molecular determinants of PRV ICP22. Cell Biosci. 6, 3.10.1186/s13578-016-0069-7Search in Google Scholar PubMed PubMed Central

Cai, M., Huang, Z., Liao, Z., Chen, T., Wang, P., Jiang, S., Chen, D., Peng, T., Bian, Y., Hong, G., et al. (2017a). Characterization of the subcellular localization and nuclear import molecular mechanisms of herpes simplex virus 1 UL2. Biol. Chem. 398, 509–517.10.1515/hsz-2016-0268Search in Google Scholar PubMed

Cai, M., Liao, Z., Chen, T., Wang, P., Zou, X., Wang, Y., Xu, Z., Jiang, S., Huang, J., Chen, D., et al. (2017b). Characterization of the subcellular localization of Epstein-Barr virus encoded proteins in live cells. Oncotarget 8, 70006–70034.10.18632/oncotarget.19549Search in Google Scholar PubMed PubMed Central

Canning, M., Boutell, C., Parkinson, J., and Everett, R.D. (2004). A RING finger ubiquitin ligase is protected from autocatalyzed ubiquitination and degradation by binding to ubiquitin-specific protease USP7. J. Biol. Chem. 279, 38160–38168.10.1074/jbc.M402885200Search in Google Scholar PubMed

Cansizoglu, A.E., Lee, B.J., Zhang, Z.C., Fontoura, B.M., and Chook, Y.M. (2007). Structure-based design of a pathway-specific nuclear import inhibitor. Nat. Struct. Mol. Biol. 14, 452–454.10.1038/nsmb1229Search in Google Scholar PubMed PubMed Central

Chi, N.C., Adam, E.J., and Adam, S.A. (1997). Different binding domains for Ran-GTP and Ran-GDP/RanBP1 on nuclear import factor p97. J. Biol. Chem. 272, 6818–6822.10.1074/jbc.272.10.6818Search in Google Scholar PubMed

Cuchet-Lourenco, D., Vanni, E., Glass, M., Orr, A., and Everett, R.D. (2012). Herpes simplex virus 1 ubiquitin ligase ICP0 interacts with PML isoform I and induces Its SUMO-independent degradation. J. Virol. 86, 11209–11222.10.1128/JVI.01145-12Search in Google Scholar PubMed PubMed Central

Cummins, J.M., Rago, C., Kohli, M., Kinzler, K.W., Lengauer, C., and Vogelstein, B. (2004). Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428, 1 p following 486.10.1038/nature02501Search in Google Scholar

Davis, L.I. (1995). The nuclear pore complex. Annu. Rev. Biochem. 64, 865–896.10.1146/annurev.bi.64.070195.004245Search in Google Scholar PubMed

Depping, R., Steinhoff, A., Schindler, S.G., Friedrich, B., Fagerlund, R., Metzen, E., Hartmann, E., and Kohler, M. (2008). Nuclear translocation of hypoxia-inducible factors (HIFs): involvement of the classical importin alpha/beta pathway. Biochim. Biophys. Acta 1783, 394–404.10.1016/j.bbamcr.2007.12.006Search in Google Scholar PubMed

Everett, R.D., Boutell, C., McNair, C., Grant, L., and Orr, A. (2010). Comparison of the biological and biochemical activities of several members of the alphaherpesvirus ICP0 family of proteins. J. Virol. 84, 3476–3487.10.1128/JVI.02544-09Search in Google Scholar

Fuchs, W., Klupp, B.G., Granzow, H., Leege, T., and Mettenleiter, T.C. (2009). Characterization of pseudorabies virus (PrV) cleavage-encapsidation proteins and functional complementation of PrV pUL32 by the homologous protein of herpes simplex virus type 1. J. Virol. 83, 3930–3943.10.1128/JVI.02636-08Search in Google Scholar

Garcia-Yague, A.J., Rada, P., Rojo, A.I., Lastres-Becker, I., and Cuadrado, A. (2013). Nuclear import and export signals control the subcellular localization of Nurr1 protein in response to oxidative stress. J. Biol. Chem. 288, 5506–5517.10.1074/jbc.M112.439190Search in Google Scholar

Gorlich, D. and Kutay, U. (1999). Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660.10.1146/annurev.cellbio.15.1.607Search in Google Scholar

Guo, H., Zhou, R., Xi, Y., Xiao, S., and Chen, H. (2009). Transcriptional suppression of IE180 and TK promoters by the EP0 of pseudorabies virus strains Ea and Fa. Virus Genes. 38, 269–275.10.1007/s11262-008-0320-3Search in Google Scholar

Guo, H., Mao, R., Block, T.M., and Guo, J.T. (2010). Production and function of the cytoplasmic deproteinized relaxed circular DNA of hepadnaviruses. J. Virol. 84, 387–396.10.1128/JVI.01921-09Search in Google Scholar

Hagglund, R. and Roizman, B. (2004). Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus 1. J. Virol. 78, 2169–2178.10.1128/JVI.78.5.2169-2178.2004Search in Google Scholar

Ho, T.Y., Wu, S.L., Chang, T.J., Hsiang, C.H., Chang, S.H., and Hsiang, C.Y. (1999). Pseudorabies virus early protein 0 trans-activates the TATA-associated promoter by stimulating the transcription initiation. Virus Res. 61, 77–86.10.1016/S0168-1702(99)00030-1Search in Google Scholar

Hung, M.C. and Link, W. (2011). Protein localization in disease and therapy. J. Cell Sci. 124, 3381–3392.10.1242/jcs.089110Search in Google Scholar PubMed

Kawaguchi, Y., Tanaka, M., Yokoymama, A., Matsuda, G., Kato, K., Kagawa, H., Hirai, K., and Roizman, B. (2001). Herpes simplex virus 1 alpha regulatory protein ICP0 functionally interacts with cellular transcription factor BMAL1. Proc. Natl. Acad Sci. USA 98, 1877–1882.10.1073/pnas.041592598Search in Google Scholar

Kino, Y., Washizu, C., Aquilanti, E., Okuno, M., Kurosawa, M., Yamada, M., Doi, H., and Nukina, N. (2010). Intracellular localization and splicing regulation of FUS/TLS are variably affected by amyotrophic lateral sclerosis-linked mutations. Nucleic. Acids Res. 39, 2781–2798.10.1093/nar/gkq1162Search in Google Scholar PubMed PubMed Central

Kobe, B. (1999). Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin alpha. Nat. Struct. Biol. 6, 388–397.10.1038/7625Search in Google Scholar PubMed

Kosugi, S., Hasebe, M., Entani, T., Takayama, S., Tomita, M., and Yanagawa, H. (2008). Design of peptide inhibitors for the importin alpha/beta nuclear import pathway by activity-based profiling. Chem. Biol. 15, 940–949.10.1016/j.chembiol.2008.07.019Search in Google Scholar PubMed

Kutay, U., Izaurralde, E., Bischoff, F.R., Mattaj, I.W., and Gorlich, D. (1997). Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex. EMBO J. 16, 1153–1163.10.1093/emboj/16.6.1153Search in Google Scholar PubMed PubMed Central

Li, M.L., Wang, S., Cai, M.S., Guo, H., and Zheng, C.F. (2011a). Characterization of molecular determinants for nucleocytoplasmic shuttling of PRV UL54. Virology 417, 385–393.10.1016/j.virol.2011.06.004Search in Google Scholar PubMed

Li, M.L., Wang, S., Cai, M.S., and Zheng, C.F. (2011b). Identification of nuclear and nucleolar localization signals of pseudorabies virus (PRV) early protein UL54 reveals that its nuclear targeting is required for efficient production of PRV. J. Virol. 85, 10239–10251.10.1128/JVI.05223-11Search in Google Scholar PubMed PubMed Central

Li, M.L., Cui, W., Zhao, Z.Y., Mo, C.C., Wang, J.L., Chen, Y.L., and Cai, M.S. (2014). Molecular cloning and characterization of pseudorabies virus EP0 gene. Indian J. Biochem. Biophys. 51, 100–114.Search in Google Scholar

Li, M., Jiang, S., Mo, C., Zeng, Z., Li, X., Chen, C., Yang, Y., Wang, J., Huang, J., Chen, D., et al. (2015a). Identification of molecular determinants for the nuclear import of pseudorabies virus UL31. Arch. Biochem. Biophys. 587, 12–17.10.1016/j.abb.2015.09.024Search in Google Scholar PubMed

Li, M.L., Jiang, S., Wang, J.L., Mo, C.C., Zeng, Z.C., Yang, Y.J., Chen, C.K., Li, X.W., Cui, W., Huang, J.L., et al. (2015b). Characterization of the nuclear import and export signals of pseudorabies virus UL31. Arch. Virol. 160, 2591–2594.10.1007/s00705-015-2527-7Search in Google Scholar PubMed

Li, M., Chen, T., Zou, X., Xu, Z., Wang, Y., Wang, P., Ou, X., Li, Y., Chen, D., Peng, T., et al. (2018). Characterization of the nucleocytoplasmic transport mechanisms of epstein-barr virus BFLF2. Cell Physiol. Biochem. 51, 1500–1517.10.1159/000495641Search in Google Scholar PubMed

Lomonte, P., Thomas, J., Texier, P., Caron, C., Khochbin, S., and Epstein, A.L. (2004). Functional interaction between class II histone deacetylases and ICP0 of herpes simplex virus type 1. J. Virol. 78, 6744–6757.10.1128/JVI.78.13.6744-6757.2004Search in Google Scholar PubMed PubMed Central

Maul, G.G. and Everett, R.D. (1994). The nuclear location of PML, a cellular member of the C3HC4 zinc-binding domain protein family, is rearranged during herpes simplex virus infection by the C3HC4 viral protein ICP0. J. Gen. Virol. 75(Pt 6), 1223–1233.10.1099/0022-1317-75-6-1223Search in Google Scholar

Miyamoto, Y., Saiwaki, T., Yamashita, J., Yasuda, Y., Kotera, I., Shibata, S., Shigeta, M., Hiraoka, Y., Haraguchi, T., and Yoneda, Y. (2004). Cellular stresses induce the nuclear accumulation of importin alpha and cause a conventional nuclear import block. J. Cell Biol. 165, 617–623.10.1083/jcb.200312008Search in Google Scholar

Mizuguchi, C., Moriyama, T., and Yoneda, Y. (2011). Generation and characterization of a monoclonal antibody against importin alpha7/NPI-2. Hybridoma (Larchmt) 30, 307–309.10.1089/hyb.2011.0006Search in Google Scholar

Moore, M.S. and Blobel, G. (1993). The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365, 661–663.10.1038/365661a0Search in Google Scholar

Nauwynck, H., Glorieux, S., Favoreel, H., and Pensaert, M. (2007). Cell biological and molecular characteristics of pseudorabies virus infections in cell cultures and in pigs with emphasis on the respiratory tract. Vet. Res. 38, 229–241.10.1051/vetres:200661Search in Google Scholar

Ono, E., Watanabe, S., Nikami, H., Tasaki, T., and Kida, H. (1998). Pseudorabies virus (PRV) early protein 0 activates PRV gene transcription in combination with the immediate-early protein IE180 and enhances the infectivity of PRV genomic DNA. Vet. Microbiol. 63, 99–107.10.1016/S0378-1135(98)00236-3Search in Google Scholar

Orzalli, M.H., DeLuca, N.A., and Knipe, D.M. (2012). Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc. Natl. Acad. Sci. USA 109, E3008–E3017.10.1073/pnas.1211302109Search in Google Scholar PubMed PubMed Central

Palacios, I., Weis, K., Klebe, C., Mattaj, I.W., and Dingwall, C. (1996). RAN/TC4 mutants identify a common requirement for snRNP and protein import into the nucleus. J. Cell Biol. 133, 485–494.10.1083/jcb.133.3.485Search in Google Scholar PubMed PubMed Central

Pante, N. and Aebi, U. (1995). Exploring nuclear pore complex structure and function in molecular detail. J. Cell Sci. Suppl. 19, 1–11.10.1242/jcs.1995.Supplement_19.1Search in Google Scholar PubMed

Parkinson, J. and Everett, R.D. (2000). Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins. J. Virol. 74, 10006–10017.10.1128/JVI.74.21.10006-10017.2000Search in Google Scholar PubMed PubMed Central

Parkinson, J., Lees-Miller, S.P., and Everett, R.D. (1999). Herpes simplex virus type 1 immediate-early protein vmw110 induces the proteasome-dependent degradation of the catalytic subunit of DNA-dependent protein kinase. J. Virol. 73, 650–657.10.1128/JVI.73.1.650-657.1999Search in Google Scholar PubMed PubMed Central

Pomeranz, L.E., Reynolds, A.E., and Hengartner, C.J. (2005). Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol. Mol. Biol. Rev. 69, 462–500.10.1128/MMBR.69.3.462-500.2005Search in Google Scholar PubMed PubMed Central

Reid, S.P., Valmas, C., Martinez, O., Sanchez, F.M., and Basler, C.F. (2007). Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1. J. Virol. 81, 13469–13477.10.1128/JVI.01097-07Search in Google Scholar PubMed PubMed Central

Shin, I., Rotty, J., Wu, F.Y., and Arteaga, C.L. (2005). Phosphorylation of p27Kip1 at Thr-157 interferes with its association with importin alpha during G1 and prevents nuclear re-entry. J. Biol. Chem. 280, 6055–6063.10.1074/jbc.M412367200Search in Google Scholar PubMed

Smith, G.A. and Enquist, L.W. (2000). A self-recombining bacterial artificial chromosome and its application for analysis of herpesvirus pathogenesis. Proc. Natl. Acad. Sci. U.S.A. 97, 4873–4878.10.1073/pnas.080502497Search in Google Scholar PubMed PubMed Central

Tombacz, D., Toth, J.S., and Boldogkoi, Z. (2012). Effects of deletion of the early protein 0 gene of pseudorabies virus on the overall viral gene expression. Gene 493, 235–242.10.1016/j.gene.2011.11.049Search in Google Scholar PubMed

Watanabe, S., Ono, E., Shimizu, Y., and Kida, H. (1995). Pseudorabies virus early protein 0 transactivates the viral gene promoters. J. Gen. Virol. 76(Pt 11), 2881–2885.10.1099/0022-1317-76-11-2881Search in Google Scholar PubMed

Watanabe, S., Ono, E., Shimizu, Y., and Kida, H. (1996). Mapping of transregulatory domains of pseudorabies virus early protein 0 and identification of its dominant-negative mutant. Arch. Virol. 141, 1001–1009.10.1007/BF01718604Search in Google Scholar PubMed

Wu, F., Wang, S., Xing, J., Li, M., and Zheng, C. (2012). Characterization of nuclear import and export signals determining the subcellular localization of WD repeat-containing protein 42A (WDR42A). FEBS Lett. 586, 1079–1085.10.1016/j.febslet.2012.02.053Search in Google Scholar PubMed

Zhang, C., Liu, Y., Chen, S., Qiao, Y., Guo, M., Zheng, Y., Xu, M., Wang, Z., Hou, J., and Wang, J. (2019). A gD&gC-substituted pseudorabies virus vaccine strain provides complete clinical protection and is helpful to prevent virus shedding against challenge by a Chinese pseudorabies variant. BMC Vet. Res. 15, 2.10.1186/s12917-018-1766-8Search in Google Scholar PubMed PubMed Central

Received: 2019-03-26
Accepted: 2019-05-12
Published Online: 2019-05-23
Published in Print: 2019-10-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.5.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2019-0201/html
Scroll to top button