Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 13, 2018

An internally quenched peptide as a new model substrate for rhomboid intramembrane proteases

  • Elena Arutyunova , Zhenze Jiang , Jian Yang , Ayodeji N. Kulepa , Howard S. Young , Steven Verhelst , Anthony J. O’Donoghue EMAIL logo and M. Joanne Lemieux EMAIL logo
From the journal Biological Chemistry

Abstract

Rhomboids are ubiquitous intramembrane serine proteases that cleave transmembrane substrates. Their functions include growth factor signaling, mitochondrial homeostasis, and parasite invasion. A recent study revealed that the Escherichia coli rhomboid protease EcGlpG is essential for its extraintestinal pathogenic colonization within the gut. Crystal structures of EcGlpG and the Haemophilus influenzae rhomboid protease HiGlpG have deciphered an active site that is buried within the lipid bilayer but exposed to the aqueous environment via a cavity at the periplasmic face. A lack of physiological transmembrane substrates has hampered progression for understanding their catalytic mechanism and screening inhibitor libraries. To identify a soluble substrate for use in the study of rhomboid proteases, an array of internally quenched peptides were assayed with HiGlpG, EcGlpG and PsAarA from Providencia stuartti. One substrate was identified that was cleaved by all three rhomboid proteases, with HiGlpG having the highest cleavage efficiency. Mass spectrometry analysis determined that all enzymes hydrolyze this substrate between norvaline and tryptophan. Kinetic analysis in both detergent and bicellular systems demonstrated that this substrate can be cleaved in solution and in the lipid environment. The substrate was subsequently used to screen a panel of benzoxazin-4-one inhibitors to validate its use in inhibitor discovery.

Acknowledgments

Funding: M.J.L. gratefully acknowledges supported by grant MOP-93557, Funder Id: 10.13039/501100000030 from the Canadian Institutes of Health Research, Neuroscience and Mental Health Institute (Brad Mates Foundation), Parkinson Alberta, and the Department of Biochemistry, University of Alberta. M.J.L. was supported in part by funding from Alberta Innovates Health Solutions and the Parkinson’s Society of Canada. J.Y. acknowledges funding by a CSC scholarship. S.V. was supported in part by the Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen, the Senatsverwaltung für Wirtschaft, Technologie und Forschung des Landes Berlin and the Bundesministerium für Bildung und Forschung. A.J.O. gratefully acknowledges financial support from UC San Diego Skaggs School of Pharmacy and Pharmaceutical Science. H.S.Y. gratefully acknowledges support from the Heart and Stroke Foundation of Canada.

  1. Conflict of interest statement: The authors declare that they have no conflicts of interest concerning the contents of this article.

References

Arutyunova, E., Panwar, P., Skiba, P.M., Gale, N., Mak, M.W., and Lemieux, M.J. (2014). Allosteric regulation of rhomboid intramembrane proteolysis. EMBO J. 33, 1869–1881.10.15252/embj.201488149Search in Google Scholar PubMed PubMed Central

Arutyunova, E., Smithers, C.C., Corradi, V., Espiritu, A.C., Young, H.S., Tieleman, D.P., and Lemieux, M.J. (2016). Probing catalytic rate enhancement during intramembrane proteolysis. Biol. Chem. 397, 907–919.10.1515/hsz-2016-0124Search in Google Scholar PubMed

Baker, R.P., Young, K., Feng, L., Shi, Y., and Urban, S. (2007). Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate. Proc. Natl. Acad. Sci. USA 104, 8257–8262.10.1073/pnas.0700814104Search in Google Scholar PubMed PubMed Central

Boulware, K.T., Jabaiah, A., and Daugherty, P.S. (2010). Evolutionary optimization of peptide substrates for proteases that exhibit rapid hydrolysis kinetics. Biotechnol. Bioeng. 106, 339–346.10.1002/bit.22693Search in Google Scholar PubMed

Brooks, C.L., Lazareno-Saez, C., Lamoureux, J.S., Mak, M.W., and Lemieux, M.J. (2011). Insights into substrate gating in H. influenzae rhomboid. J. Mol. Biol. 407, 687–697.10.1016/j.jmb.2011.01.046Search in Google Scholar PubMed

Cho, S., Dickey, S.W., and Urban, S. (2016). Crystal structures and inhibition kinetics reveal a two-stage catalytic mechanism with drug design implications for rhomboid proteolysis. Mol. Cell. 61, 329–340.10.1016/j.molcel.2015.12.022Search in Google Scholar PubMed PubMed Central

Debela, M., Magdolen, V., Schechter, N., Valachova, M., Lottspeich, F., Craik, C.S., Choe, Y., Bode, W., and Goettig, P. (2006). Specificity profiling of seven human tissue kallikreins reveals individual subsite preferences. J. Biol. Chem. 281, 25678–25688.10.1074/jbc.M602372200Search in Google Scholar PubMed

Dickey, S.W., Baker, R.P., Cho, S., and Urban, S. (2013). Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity. Cell. 155, 1270–1281.10.1016/j.cell.2013.10.053Search in Google Scholar PubMed PubMed Central

Drag, M. and Salvesen, G.S. (2010). Emerging principles in protease-based drug discovery. Nat. Rev. Drug Discov. 9, 690–701.10.1038/nrd3053Search in Google Scholar PubMed PubMed Central

Durr, U.H., Gildenberg, M., and Ramamoorthy, A. (2012). The magic of bicelles lights up membrane protein structure. Chem. Rev. 112, 6054–6074.10.1021/cr300061wSearch in Google Scholar PubMed PubMed Central

Dusterhoft, S., Kunzel, U., and Freeman, M. (2017). Rhomboid proteases in human disease: mechanisms and future prospects. Biochim. Biophys. Acta 1864, 2200–2209.10.1016/j.bbamcr.2017.04.016Search in Google Scholar PubMed

Erez, E. and Bibi, E. (2009). Cleavage of a multispanning membrane protein by an intramembrane serine protease. Biochemistry 48, 12314–12322.10.1021/bi901648gSearch in Google Scholar PubMed

Goel, P., Jumpertz, T., Ticha, A., Ogorek, I., Mikles, D.C., Hubalek, M., Pietrzik, C.U., Strisovsky, K., Schmidt, B., and Weggen, S. (2018). Discovery and validation of 2-styryl substituted benzoxazin-4-ones as a novel scaffold for rhomboid protease inhibitors. Bioorg. Med. Chem. Lett. 28, 1417–1422.10.1016/j.bmcl.2018.02.017Search in Google Scholar PubMed

Golde, T.E., Wolfe, M.S., and Greenbaum, D.C. (2009). Signal peptide peptidases: a family of intramembrane-cleaving proteases that cleave type 2 transmembrane proteins. Semin. Cell. Dev. Biol. 20, 225–230.10.1016/j.semcdb.2009.02.003Search in Google Scholar PubMed PubMed Central

Gonzalez Flecha, F.L. (2017). Kinetic stability of membrane proteins. Biophys. Rev. 9, 563–572.10.1007/s12551-017-0324-0Search in Google Scholar PubMed PubMed Central

Goupil, L.S., Ivry, S.L., Hsieh, I., Suzuki, B.M., Craik, C.S., O’Donoghue, A.J., and McKerrow, J.H. (2016). Cysteine and aspartyl proteases contribute to protein digestion in the gut of freshwater planaria. PLoS Negl. Trop. Dis. 10, e0004893.10.1371/journal.pntd.0004893Search in Google Scholar PubMed PubMed Central

Harris, J.L., Backes, B.J., Leonetti, F., Mahrus, S., Ellman, J.A., and Craik, C.S. (2000). Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc. Natl. Acad. Sci. USA 97, 7754–7759.10.1073/pnas.140132697Search in Google Scholar PubMed PubMed Central

Hedstrom, L. (2002). An overview of serine proteases. Curr. Protoc. Protein Sci. Chapter 21, Unit 21.10.1–21.10.8.10.1002/0471140864.ps2110s26Search in Google Scholar PubMed

Kasperkiewicz, P., Poreba, M., Snipas, S.J., Lin, S.J., Kirchhofer, D., Salvesen, G.S., and Drag, M. (2015). Design of a selective substrate and activity based probe for human neutrophil serine protease 4. PLoS One 10, e0132818.10.1371/journal.pone.0132818Search in Google Scholar PubMed PubMed Central

Kateete, D.P., Katabazi, F.A., Okeng, A., Okee, M., Musinguzi, C., Asiimwe, B.B., Kyobe, S., Asiimwe, J., Boom, W.H., and Joloba, M.L. (2012). Rhomboids of Mycobacteria: characterization using an aarA mutant of Providencia stuartii and gene deletion in Mycobacterium smegmatis. PLoS One 7, e45741.10.1371/journal.pone.0045741Search in Google Scholar PubMed PubMed Central

Langosch, D., Scharnagl, C., Steiner, H., and Lemberg, M.K. (2015). Understanding intramembrane proteolysis: from protein dynamics to reaction kinetics. Trends Biochem. Sci. 40, 318–327.10.1016/j.tibs.2015.04.001Search in Google Scholar PubMed

Lazareno-Saez, C., Arutyunova, E., Coquelle, N., and Lemieux, M.J. (2013). Domain swapping in the cytoplasmic domain of the Escherichia coli rhomboid protease. J. Mol. Biol. 425, 1127–1142.10.1016/j.jmb.2013.01.019Search in Google Scholar PubMed

Lee, J.R., Urban, S., Garvey, C.F., and Freeman, M. (2001). Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila. Cell 107, 161–171.10.1016/S0092-8674(01)00526-8Search in Google Scholar

Lemieux, M.J., Reithmeier, R.A., and Wang, D.N. (2002). Importance of detergent and phospholipid in the crystallization of the human erythrocyte anion-exchanger membrane domain. J. Struct. Biol. 137, 322–332.10.1016/S1047-8477(02)00010-2Search in Google Scholar

Lemieux, M.J., Fischer, S.J., Cherney, M.M., Bateman, K.S., and James, M.N. (2007). The crystal structure of the rhomboid peptidase from Haemophilus influenzae provides insight into intramembrane proteolysis. Proc. Natl. Acad. Sci. USA 104, 750–754.10.1073/pnas.0609981104Search in Google Scholar PubMed PubMed Central

Li, H., Goh, B.N., Teh, W.K., Jiang, Z., Goh, J.P.Z., Goh, A., Wu, G., Hoon, S.S., Raida, M., Camattari, A., et al. (2018). Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation. J. Invest. Dermatol. 138, 1137–1145.10.1016/j.jid.2017.11.034Search in Google Scholar PubMed

Lopez-Otin, C. and Bond, J.S. (2008). Proteases: multifunctional enzymes in life and disease. J. Biol. Chem. 283, 30433–30437.10.1074/jbc.R800035200Search in Google Scholar PubMed PubMed Central

Maegawa, S., Ito, K., and Akiyama, Y. (2005). Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane. Biochemistry 44, 13543–13552.10.1021/bi051363kSearch in Google Scholar PubMed

Manolaridis, I., Kulkarni, K., Dodd, R.B., Ogasawara, S., Zhang, Z., Bineva, G., O’Reilly, N., Hanrahan, S.J., Thompson, A.J., Cronin, N., et al. (2013). Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature 504, 301–305.10.1038/nature12754Search in Google Scholar PubMed PubMed Central

Mesak, L.R., Mesak, F.M., and Dahl, M.K. (2004). Expression of a novel gene, gluP, is essential for normal Bacillus subtilis cell division and contributes to glucose export. BMC Microbiol. 4, 13.10.1186/1471-2180-4-13Search in Google Scholar PubMed PubMed Central

Nagase, H., Fields, C.G., and Fields, G.B. (1994). Design and characterization of a fluorogenic substrate selectively hydrolyzed by stromelysin 1 (matrix metalloproteinase-3). J. Biol. Chem. 269, 20952–20957.10.1016/S0021-9258(17)31914-2Search in Google Scholar

Panigrahi, R., Arutyunova, E., Panwar, P., Gimpl, K., Keller, S., and Lemieux, M.J. (2016). Reversible Unfolding of rhomboid intramembrane proteases. Biophys. J. 110, 1379–1390.10.1016/j.bpj.2016.01.032Search in Google Scholar PubMed PubMed Central

Perona, J.J. and Craik, C.S. (1995). Structural basis of substrate specificity in the serine proteases. Protein. Sci. 4, 337–360.10.1002/pro.5560040301Search in Google Scholar PubMed PubMed Central

Poreba, M., Salvesen, G.S., and Drag, M. (2017). Synthesis of a HyCoSuL peptide substrate library to dissect protease substrate specificity. Nat. Protoc. 12, 2189–2214.10.1038/nprot.2017.091Search in Google Scholar PubMed

Powers, J.C., Asgian, J.L., Ekici, O.D., and James, K.E. (2002). Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 102, 4639–4750.10.1021/cr010182vSearch in Google Scholar PubMed

Rather, P.N., Ding, X., Baca-DeLancey, R.R., and Siddiqui, S. (1999). Providencia stuartii genes activated by cell-to-cell signaling and identification of a gene required for production or activity of an extracellular factor. J. Bacteriol. 181, 7185–7191.10.1128/JB.181.23.7185-7191.1999Search in Google Scholar PubMed PubMed Central

Rawson, R.B. (2013). The site-2 protease. Biochim. Biophys. Acta 1828, 2801–2807.10.1016/j.bbamem.2013.03.031Search in Google Scholar PubMed

Russell, C.W., Richards, A.C., Chang, A.S., and Mulvey, M.A. (2017). The rhomboid protease GlpG promotes the persistence of extraintestinal pathogenic Escherichia coli within the gut. Infect. Immun. 85, 1–15.10.1128/IAI.00866-16Search in Google Scholar PubMed PubMed Central

Salisbury, C.M. and Ellman, J.A. (2006). Rapid identification of potent nonpeptidic serine protease inhibitors. Chem. Biochem. 7, 1034–1037.10.1002/cbic.200600081Search in Google Scholar PubMed

Sherratt, A.R., Braganza, M.V., Nguyen, E., Ducat, T., and Goto, N.K. (2009). Insights into the effect of detergents on the full-length rhomboid protease from Pseudomonas aeruginosa and its cytosolic domain. Biochim. Biophys. Acta 1788, 2444–2453.10.1016/j.bbamem.2009.09.003Search in Google Scholar PubMed

Stevenson, L.G., Strisovsky, K., Clemmer, K.M., Bhatt, S., Freeman, M., and Rather, P.N. (2007). Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase. Proc. Natl. Acad. Sci. USA 104, 1003–1008.10.1073/pnas.0608140104Search in Google Scholar PubMed PubMed Central

Strisovsky, K. (2013). Structural and mechanistic principles of intramembrane proteolysis – lessons from rhomboids. FEBS J. 280, 1579–1603.10.1111/febs.12199Search in Google Scholar PubMed

Strisovsky, K., Sharpe, H.J., and Freeman, M. (2009). Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates. Mol. Cell. 36, 1048–1059.10.1016/j.molcel.2009.11.006Search in Google Scholar PubMed PubMed Central

Ticha, A., Stanchev, S., Skerle, J., Began, J., Ingr, M., Svehlova, K., Polovinkin, L., Ruzicka, M., Bednarova, L., Hadravova, R., et al. (2017). Sensitive versatile fluorogenic transmembrane peptide substrates for rhomboid intramembrane proteases. J. Biol. Chem. 292, 2703–2713.10.1074/jbc.M116.762849Search in Google Scholar PubMed PubMed Central

Urban, S. and Dickey, S.W. (2011). The rhomboid protease family: a decade of progress on function and mechanism. Genome Biol. 12, 231.10.1186/gb-2011-12-10-231Search in Google Scholar PubMed PubMed Central

Urban, S., Lee, J.R., and Freeman, M. (2001). Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173–182.10.1016/S0092-8674(01)00525-6Search in Google Scholar

Urban, S., Schlieper, D., and Freeman, M. (2002). Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr. Biol. 12, 1507–1512.10.1016/S0960-9822(02)01092-8Search in Google Scholar PubMed

Vinothkumar, K.R. (2011). Structure of rhomboid protease in a lipid environment. J. Mol. Biol. 407, 232–247.10.1016/j.jmb.2011.01.029Search in Google Scholar PubMed PubMed Central

Wang, Y. and Ha, Y. (2007). Open-cap conformation of intramembrane protease GlpG. Proc. Natl. Acad. Sci. USA 104, 2098–2102.10.1073/pnas.0611080104Search in Google Scholar PubMed PubMed Central

Wang, Y., Zhang, Y., and Ha, Y. (2006). Crystal structure of a rhomboid family intramembrane protease. Nature 444, 1–5.10.1038/nature05255Search in Google Scholar PubMed

Wolfe, M.S. (2009). Intramembrane-cleaving proteases. J. Biol. Chem. 284, 13969–13973.10.1074/jbc.R800039200Search in Google Scholar PubMed PubMed Central

Xue, Y. and Ha, Y. (2012). Catalytic mechanism of rhomboid protease GlpG probed by 3,4-dichloroisocoumarin and diisopropyl fluorophosphonate. J. Biol. Chem. 287, 3099–3107.10.1074/jbc.M111.310482Search in Google Scholar PubMed PubMed Central

Yang, J., Barniol-Xicota, M., Nguyen, M.T.N., Ticha, A., Strisovsky, K., and Verhelst, S.H.L. (2018). Benzoxazin-4-ones as novel, easily accessible inhibitors for rhomboid proteases. Bioorg. Med. Chem. Lett. 28, 1423–1427.10.1016/j.bmcl.2017.12.056Search in Google Scholar PubMed

Zoll, S., Stanchev, S., Began, J., Skerle, J., Lepsik, M., Peclinovska, L., Majer, P., and Strisovsky, K. (2014). Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures. EMBO J. 33, 2408–2421.10.15252/embj.201489367Search in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0255).


Received: 2018-05-17
Accepted: 2018-07-09
Published Online: 2018-11-13
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.5.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2018-0255/html
Scroll to top button