Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 6, 2019

LncRNA TINCR/microRNA-107/CD36 regulates cell proliferation and apoptosis in colorectal cancer via PPAR signaling pathway based on bioinformatics analysis

  • Xuexiu Zhang , Jianning Yao , Haoling Shi , Bing Gao and Lianfeng Zhang EMAIL logo
From the journal Biological Chemistry

Abstract

The present study aims to determine the potential biomarkers and uncover the regulatory mechanisms of the long-noncoding RNA (lncRNA) TINCR/miR-107/CD36 axis in colorectal cancer (CRC). Aberrantly-expressed lncRNAs and differential-expressed genes were identified by analyzing the dataset GSE40967. Gene set enrichment analysis was employed, and Cytoscape software helped in establishing the co-expression network between lncRNAs and genes. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis contributes to examining the expression levels of lncRNA TINCR, miR-107 and CD36. The dual luciferase assay was used to validate the association between miR-107 and lncRNA TINCR or CD36. The EdU incorporation assay was employed, and flow cytometry was employed to detect cell apoptosis with the tumor xenograft model being utilized. Significantly dysregulated lncRNAs and mRNAs were identified. The peroxisome proliferator-activated receptor (PPAR) signaling pathway in CRC tissues was down-regulated. The loss of TINCR expression was associated with CRC progression. The expression levels of the TINCR and CD36 were down-regulated. We identified miR-107 as an inhibitory target of TINCR and CD36. Overexpression of TINCR could inhibit cell proliferation and promote apoptosis. MiR-107 overexpression in CRC cells induced proliferation and impeded apoptosis. A regulatory function of the lncRNA TINCR/miR-107/CD36 axis in CRC was revealed. LncRNA TINCR overexpression exerted suppressive influence on CRC progression through modulating the PPAR signaling pathway via the miR-107/CD36 axis.

References

Ayremlou, N., Mozdarani, H., Mowla, S.J., and Delavari, A. (2015). Increased levels of serum and tissue miR-107 in human gastric cancer: correlation with tumor hypoxia. Cancer Biomark. 15, 851–860.10.3233/CBM-150529Search in Google Scholar PubMed

Benderska, N. and Schneider-Stock, R. (2014). Transcription control of DAPK. Apoptosis 19, 298–305.10.1007/s10495-013-0931-6Search in Google Scholar PubMed

Borland, M.G., Kehres, E.M., Lee, C., Wagner, A.L., Shannon, B.E., Albrecht, P.P., Zhu, B., Gonzalez, F.J., Peters, J.M. (2018). Inhibition of tumorigenesis by peroxisome proliferator-activated receptor (PPAR)-dependent cell cycle blocks in human skin carcinoma cells. Toxicology 404405, 25–32.10.1016/j.tox.2018.05.003Search in Google Scholar PubMed PubMed Central

Bye, W.A., Ma, C., Nguyen, T.M., Parker, C.E., Jairath, V., and East, J.E. (2018). Strategies for detecting colorectal cancer in patients with inflammatory bowel disease: a cochrane systematic review and meta-analysis. Am. J. Gastroenterol. 113, 1801–1809.10.1038/s41395-018-0354-7Search in Google Scholar PubMed PubMed Central

Chen, H.Y., Lin, Y.M., Chung, H.C., Lang, Y.D., Lin, C.J., Huang, J., Wang, W.C., Lin, F.M., Chen, Z., Huang, H.D., et al. (2012). miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res. 72, 3631–3641.10.1158/0008-5472.CAN-12-0667Search in Google Scholar PubMed

Chen, Z., Liu, H., Yang, H., Gao, Y., Zhang, G., and Hu, J. (2017). The long noncoding RNA, TINCR, functions as a competing endogenous RNA to regulate PDK1 expression by sponging miR-375 in gastric cancer. Onco Targets. Ther. 10, 3353–3362.10.2147/OTT.S137726Search in Google Scholar PubMed PubMed Central

Cui, J., Mo, J., Luo, M., Yu, Q., Zhou, S., Li, T., Zhang, Y., and Luo, W. (2015). c-Myc-activated long non-coding RNA H19 downregulates miR-107 and promotes cell cycle progression of non-small cell lung cancer. Int. J. Clin. Exp. Pathol. 8, 12400–12409.Search in Google Scholar

Gao, T., Wang, M., Xu, L., Wen, T., Liu, J., and An, G. (2016). DCLK1 is up-regulated and associated with metastasis and prognosis in colorectal cancer. J. Cancer Res. Clin. Oncol. 142, 2131–2140.10.1007/s00432-016-2218-0Search in Google Scholar PubMed

Johnstone, C.N., Smith, Y.E., Cao, Y., Burrows, A.D., Cross, R.S., Ling, X., Redvers, R.P., Doherty, J.P., Eckhardt, B.L., Natoli, A.L., et al. (2015). Functional and molecular characterisation of EO771.LMB tumours, a new C57BL/6-mouse-derived model of spontaneously metastatic mammary cancer. Dis. Model Mech. 8, 237–251.10.1242/dmm.017830Search in Google Scholar PubMed PubMed Central

Lee, J.J., Drakaki, A., Iliopoulos, D., and Struhl, K. (2012). MiR-27b targets PPARgamma to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells. Oncogene 31, 3818–3825.10.1038/onc.2011.543Search in Google Scholar PubMed PubMed Central

Lee, S., Eguchi, A., Sakamoto, K., Matsumura, S., Tsuzuki, S., Inoue, K., Masuda, D., Yamashita, S., and Fushiki, T. (2015). A role of CD36 in the perception of an oxidised phospholipid species in mice. Biomed. Res. 36, 303–311.10.2220/biomedres.36.303Search in Google Scholar PubMed

Li, B.R., Xia, L.Q., Liu, J., Liao, L.L., Zhang, Y., Deng, M., Zhong, H.J., Feng, T.T., He, P.P., and Ouyang, X.P. (2017). miR-758-5p regulates cholesterol uptake via targeting the CD36 3′UTR. Biochem. Biophys. Res. Commun. 494, 384–389.10.1016/j.bbrc.2017.09.150Search in Google Scholar PubMed

Liu, F., Liu, S., Ai, F., Zhang, D., Xiao, Z., Nie, X., and Fu, Y. (2017). miR-107 promotes proliferation and inhibits apoptosis of colon cancer cells by targeting prostate apoptosis response-4 (Par4). Oncol. Res. 25, 967–974.10.3727/096504016X14803476672380Search in Google Scholar PubMed PubMed Central

Milone, M.R., Pucci, B., Colangelo, T., Lombardi, R., Iannelli, F., Colantuoni, V., Sabatino, L., and Budillon, A. (2016). Proteomic characterization of peroxisome proliferator-activated receptor-gamma (PPARgamma) overexpressing or silenced colorectal cancer cells unveils a novel protein network associated with an aggressive phenotype. Mol. Oncol. 10, 1344–1362.10.1016/j.molonc.2016.07.006Search in Google Scholar PubMed PubMed Central

Molina-Pinelo, S., Carnero, A., Rivera, F., Estevez-Garcia, P., Bozada, J.M., Limon, M.L., Benavent, M., Gomez, J., Pastor, M.D., Chaves, M., et al. (2014). MiR-107 and miR-99a-3p predict chemotherapy response in patients with advanced colorectal cancer. BMC Cancer 14, 656.10.1186/1471-2407-14-656Search in Google Scholar PubMed PubMed Central

Nath, A., Li, I., Roberts, L.R., and Chan, C. (2015). Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci. Rep. 5, 14752.10.1038/srep14752Search in Google Scholar PubMed PubMed Central

Orido, T., Fujino, H., Kawashima, T., and Murayama, T. (2005). A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437, 759–763.10.1038/nature03988Search in Google Scholar PubMed PubMed Central

Orido, T., Fujino, H., Kawashima, T., and Murayama, T. (2010). Decrease in uptake of arachidonic acid by indomethacin in LS174T human colon cancer cells; a novel cyclooxygenase-2-inhibition-independent effect. Arch. Biochem. Biophys. 494, 78–85.10.1016/j.abb.2009.11.025Search in Google Scholar PubMed

Peng, X.P., Huang, L., and Liu, Z.H. (2016). miRNA-133a attenuates lipid accumulation via TR4-CD36 pathway in macrophages. Biochimie 127, 79–85.10.1016/j.biochi.2016.04.012Search in Google Scholar PubMed

Peters, J.M., Foreman, J.E., and Gonzalez, F.J. (2011). Dissecting the role of peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) in colon, breast, and lung carcinogenesis. Cancer Metastasis. Rev. 30, 619–640.10.1007/s10555-011-9320-1Search in Google Scholar PubMed PubMed Central

Peters, J.M., Shah, Y.M., and Gonzalez, F.J. (2012). The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat. Rev. Cancer 12, 181–195.10.1038/nrc3214Search in Google Scholar PubMed PubMed Central

Qin, S.B., Peng, D.Y., Lu, J.M., and Ke, Z.P. (2017). MiR-182-5p inhibited oxidative stress and apoptosis triggered by oxidized low-density lipoprotein via targeting toll-like receptor 4. J. Cell Physiol. 233, 6630–6637.10.1002/jcp.26389Search in Google Scholar PubMed

Rachidi, S.M., Qin, T., Sun, S., Zheng, W.J., and Li, Z. (2013). Molecular profiling of multiple human cancers defines an inflammatory cancer-associated molecular pattern and uncovers KPNA2 as a uniform poor prognostic cancer marker. PLoS One 8, e57911.10.1371/journal.pone.0057911Search in Google Scholar PubMed PubMed Central

Reka, A.K., Kurapati, H., Narala, V.R., Bommer, G., Chen, J., Standiford, T.J., and Keshamouni, V.G. (2010). Peroxisome proliferator-activated receptor-gamma activation inhibits tumor metastasis by antagonizing Smad3-mediated epithelial-mesenchymal transition. Mol. Cancer Ther. 9, 3221–3232.10.1158/1535-7163.MCT-10-0570Search in Google Scholar PubMed PubMed Central

Ren, B., Best, B., Ramakrishnan, D.P., Walcott, B.P., Storz, P., and Silverstein, R.L. (2016). LPA/PKD-1-FoxO1 signaling axis mediates endothelial cell CD36 transcriptional repression and proangiogenic and proarteriogenic reprogramming. Arterioscler. Thromb. Vasc. Biol. 36, 1197–1208.10.1161/ATVBAHA.116.307421Search in Google Scholar PubMed PubMed Central

Santhanam, S., Alvarado, D.M., and Ciorba, M.A. (2016). Therapeutic targeting of inflammation and tryptophan metabolism in colon and gastrointestinal cancer. Transl. Res. 167, 67–79.10.1016/j.trsl.2015.07.003Search in Google Scholar PubMed PubMed Central

Schmoll, H.J., Arnold, D., de Gramont, A., Ducreux, M., Grothey, A., O’Dwyer, P.J., Van Cutsem, E., Hermann, F., Bosanac, I., Bendahmane, B., et al. (2018). MODUL-a multicenter randomized clinical trial of biomarker-driven maintenance therapy following first-line standard induction treatment of metastatic colorectal cancer: an adaptable signal-seeking approach. J. Cancer Res. Clin. Oncol. 144, 1197–1204.10.1007/s00432-018-2632-6Search in Google Scholar PubMed

Tian, F., Xu, J., Xue, F., Guan, E., and Xu, X. (2017). TINCR expression is associated with unfavorable prognosis in patients with hepatocellular carcinoma. Biosci. Rep. 37. PMID 28546230.10.1042/BSR20170301Search in Google Scholar PubMed PubMed Central

Wang, J.X., Zhang, X.J., Li, Q., Wang, K., Wang, Y., Jiao, J.Q., Feng, C., Teng, S., Zhou, L.Y., Gong, Y., et al. (2015). MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD. Circ. Res. 117, 352–363.10.1161/CIRCRESAHA.117.305781Search in Google Scholar PubMed

Wang, S., Ma, G., Zhu, H., Lv, C., Chu, H., Tong, N., Wu, D., Qiang, F., Gong, W., Zhao, Q., et al. (2016). miR-107 regulates tumor progression by targeting NF1 in gastric cancer. Sci. Rep. 6, 36531.10.1038/srep36531Search in Google Scholar PubMed PubMed Central

Xu, S., Kong, D., Chen, Q., Ping, Y., and Pang, D. (2017a). Oncogenic long noncoding RNA landscape in breast cancer. Mol. Cancer 16, 129.10.1186/s12943-017-0696-6Search in Google Scholar PubMed PubMed Central

Xu, T.P., Wang, Y.F., Xiong, W.L., Ma, P., Wang, W.Y., Chen, W.M., Huang, M.D., Xia, R., Wang, R., Zhang, E.B., et al. (2017b). E2F1 induces TINCR transcriptional activity and accelerates gastric cancer progression via activation of TINCR/STAU1/CDKN2B signaling axis. Cell Death Dis. 8, e2837.10.1038/cddis.2017.205Search in Google Scholar PubMed PubMed Central

Yang, K., Xia, B., Wang, W., Cheng, J., Yin, M., Xie, H., Li, J., Ma, L., Yang, C., Li, A., et al. (2017a). A comprehensive analysis of metabolomics and transcriptomics in cervical cancer. Sci. Rep. 7, 43353.10.1038/srep43353Search in Google Scholar PubMed PubMed Central

Yang, X., Xiao, Z., Du, X., Huang, L., and Du, G. (2017b). Silencing of the long non-coding RNA NEAT1 suppresses glioma stem-like properties through modulation of the miR-107/CDK6 pathway. Oncol. Rep. 37, 555–562.10.3892/or.2016.5266Search in Google Scholar PubMed

Zhang, M., Wang, X., Li, W., and Cui, Y. (2015). miR-107 and miR-25 simultaneously target LATS2 and regulate proliferation and invasion of gastric adenocarcinoma (GAC) cells. Biochem. Biophys. Res. Commun. 460, 806–812.10.1016/j.bbrc.2015.03.110Search in Google Scholar PubMed

Zhang, Z.Y., Lu, Y.X., Zhang, Z.Y., Chang, Y.Y., Zheng, L., Yuan, L., Zhang, F., Hu, Y.H., Zhang, W.J., and Li, X.N. (2016). Loss of TINCR expression promotes proliferation, metastasis through activating EpCAM cleavage in colorectal cancer. Oncotarget 7, 22639–22649.10.18632/oncotarget.8141Search in Google Scholar PubMed PubMed Central

Zhang, J., Jiang, Y., Zhu, J., Wu, T., Ma, J., Du, C., Chen, S., Li, T., Han, J., and Wang, X. (2017a). Overexpression of long non-coding RNA colon cancer-associated transcript 2 is associated with advanced tumor progression and poor prognosis in patients with colorectal cancer. Oncol. Lett. 14, 6907–6914.10.3892/ol.2017.7049Search in Google Scholar PubMed PubMed Central

Zhang, W., Yuan, W., Song, J., Wang, S., and Gu, X. (2017b). LncRna CPS1-IT1 suppresses cell proliferation, invasion and metastasis in colorectal cancer. Cell Physiol. Biochem. 44, 567–580.10.1159/000485091Search in Google Scholar PubMed

Zheng, Y., Yang, C., Zheng, Y., Yang, C., Tong, S., Ding, Y., Deng, W., Song, D., and Xiao, K. (2017). Genetic variation of long non-coding RNA TINCR contribute to the susceptibility and progression of colorectal cancer. Oncotarget 8, 33536–33543.10.18632/oncotarget.16538Search in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0236).


Received: 2018-04-28
Accepted: 2018-11-23
Published Online: 2019-01-06
Published in Print: 2019-05-27

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2018-0236/html
Scroll to top button