Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 26, 2016

Anticalins directed against vascular endothelial growth factor receptor 3 (VEGFR-3) with picomolar affinities show potential for medical therapy and in vivo imaging

  • Antonia Richter and Arne Skerra EMAIL logo
From the journal Biological Chemistry

Abstract

Members of the vascular endothelial growth factor receptor (VEGFR) family play a central role in angiogenesis as well as lymphangiogenesis and are crucial for tumor growth and metastasis. In particular, VEGFR-3 expression is induced in endothelial cells during tumor angiogenesis. We report the design of anticalins that specifically recognize the ligand-binding domains 1 and 2 of VEGFR-3. To this end, a library of the lipocalin 2 scaffold with 20 randomized positions distributed across its binding site was subjected to phage display selection and enzyme linked immunosorbent assay (ELISA) screening using the VEGF-C binding fragment (D1-2) or the entire extracellular region (D1-7) of VEGFR-3 as target proteins. Promising anticalin candidates were produced in Escherichia coli and biochemically characterized. Three variants with different receptor binding modes were identified, and two of them were optimized with regard to target affinity as well as folding efficiency. The resulting anticalins show dissociation constants down to the single-digit picomolar range. Specific recognition of VEGFR-3 on cells was demonstrated by immunofluorescence microscopy. Competitive binding versus VEGF-C was demonstrated for two of the anticalins with Ki values in the low nanomolar range. Based on these data, VEGFR-3 specific anticalins provide promising reagents for the diagnosis and/or therapeutic intervention of tumor-associated vessel growth.

Acknowledgments

This study was funded by the Deutsche Forschungsgemeinschaft (DFG) under Collaborative Research Grant SFB 824. The authors wish to thank J.C. Tonn (LMU Munich) for stimulating discussions and R. Glass (LMU) and B. Küster (TUM), respectively, for providing U-251 MG and MCF-7 cell lines. The authors are grateful to W. Stelzer and A. Reichert (both at TUM) for ESI-MS measurements, to A. Jarasch (TUM) for bioinformatic support and discussions and to Andreas Senftl (TUM) for experimental support during solubility engineering of one anticalin.

References

Baker, N.A., Sept, D., Joseph, S., Holst, M.J., and McCammon, J.A. (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041.10.1073/pnas.181342398Search in Google Scholar

Bergers, G. and Hanahan, D. (2008). Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 8, 592–603.10.1038/nrc2442Search in Google Scholar

Bullock, W.O., Fernandes, J.M., and Short, J.M. (1987). XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. BioTechniques 5, 376–378.Search in Google Scholar

Cheng, Y. and Prusoff, W.H. (1973). Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108.10.1016/0006-2952(73)90196-2Search in Google Scholar

Crawford, Y. and Ferrara, N. (2009). VEGF inhibition: insights from preclinical and clinical studies. Cell Tissue Res. 335, 261–269.10.1007/s00441-008-0675-8Search in Google Scholar PubMed

DuBridge, R.B., Tang, P., Hsia, H.C., Leong, P.M., Miller, J.H., and Calos, M.P. (1987). Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol. Cell Biol. 7, 379–387.Search in Google Scholar

Dumont, D.J., Jussila, L., Taipale, J., Lymboussaki, A., Mustonen, T., Pajusola, K., Breitman, M., and Alitalo, K. (1998). Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282, 946–949.10.1126/science.282.5390.946Search in Google Scholar PubMed

Eggenstein, E., Eichinger, A., Kim, H.J., and Skerra, A. (2014). Structure-guided engineering of anticalins with improved binding behavior and biochemical characteristics for application in radio-immuno imaging and/or therapy. J. Struct. Biol. 185, 203–214.10.1016/j.jsb.2013.03.009Search in Google Scholar PubMed

Ferrara, N. (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581–611.10.1210/er.2003-0027Search in Google Scholar PubMed

Ferrara, N. (2005). VEGF as a therapeutic target in cancer. Oncology 69(Suppl. 3), 11–16.10.1159/000088479Search in Google Scholar PubMed

Ferrara, N. and Kerbel, R.S. (2005). Angiogenesis as a therapeutic target. Nature 438, 967–974.10.1038/nature04483Search in Google Scholar PubMed

Ferrara, N. and Adamis, A.P. (2016). Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug. Discov. 15, 385–403.10.1038/nrd.2015.17Search in Google Scholar PubMed

Folkman, J. (1986). How is blood vessel growth regulated in normal and neoplastic tissue? Cancer Res. 46, 467–473.Search in Google Scholar

Fontanella, C., Ongaro, E., Bolzonello, S., Guardascione, M., Fasola, G., and Aprile, G. (2014). Clinical advances in the development of novel VEGFR2 inhibitors. Ann. Transl. Med. 2, 1–12.Search in Google Scholar

Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D., and Bairoch, A. (2003). ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788.10.1093/nar/gkg563Search in Google Scholar

Gebauer, M. and Skerra, A. (2012). Anticalins. Methods Enzymol. 503, 157–188.10.1016/B978-0-12-396962-0.00007-0Search in Google Scholar

Gebauer, M. and Skerra, A. (2015). Alternative protein scaffolds as novel biotherapeutics. In: Biobetters: Protein Engineering to Approach the Curative, A. Rosenberg and B. Demeule, eds. (New York, NY: Springer).Search in Google Scholar

Gebauer, M., Schiefner, A., Matschiner, G., and Skerra, A. (2013). Combinatorial design of an anticalin directed against the extra-domain B for the specific targeting of oncofetal fibronectin. J. Mol. Biol. 425, 780–802.10.1016/j.jmb.2012.12.004Search in Google Scholar

Gibson, T.J. (1984). Studies on the Epstein-Barr virus genome. PhD Thesis, University of Cambridge.Search in Google Scholar

Gille, H., Hülsmeyer, M., Trentmann, S., Matschiner, G., Christian, H.J., Meyer, T., Amirkhosravi, A., Audoly, L.P., Hohlbaum, A.M., and Skerra, A. (2015). Functional characterization of a VEGF-A-targeting anticalin, prototype of a novel therapeutic human protein class. Angiogenesis 19, 79–84.10.1007/s10456-015-9490-5Search in Google Scholar

Goetz, D.H., Holmes, M.A., Borregaard, N., Bluhm, M.E., Raymond, K.N., and Strong, R.K. (2002). The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10, 1033–1043.10.1016/S1097-2765(02)00708-6Search in Google Scholar

Grau, S.J., Trillsch, F., Herms, J., Thon, N., Nelson, P.J., Tonn, J.-C., and Goldbrunner, R. (2007). Expression of VEGFR3 in glioma endothelium correlates with tumor grade. J. Neurooncol. 82, 141–150.10.1007/s11060-006-9272-4Search in Google Scholar PubMed

Grau, S., Thorsteinsdottir, J., von Baumgarten, L., Winkler, F., Tonn, J.C., and Schichor, C. (2011). Bevacizumab can induce reactivity to VEGF-C and -D in human brain and tumour derived endothelial cells. J. Neurooncol. 104, 103–112.10.1007/s11060-010-0480-6Search in Google Scholar PubMed

Green, N.M. (1965). A spectrophotometric assay for avidin and biotin based on binding of dyes by avidin. Biochem. J. 94, 23C–24C.10.1042/bj0940023CSearch in Google Scholar PubMed

Hirakawa, S., Brown, L.F., Kodama, S., Paavonen, K., Alitalo, K., and Detmar, M. (2007). VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109, 1010–1017.10.1182/blood-2006-05-021758Search in Google Scholar PubMed PubMed Central

Jeltsch, M. (2006). Vascular endothelial growth factor (VEGF)/VEGF-C mosaic molecules reveal specificity determinants and feature novel receptor binding patterns. J. Biol. Chem. 281, 12187–12195.10.1074/jbc.M511593200Search in Google Scholar PubMed

Jenny, B., Harrison, J.A., Baetens, D., Tille, J.-C., Burkhardt, K., Mottaz, H., Kiss, J.Z., Dietrich, P.-Y., De Tribolet, N., Pizzolato, G.P., et al. (2006). Expression and localization of VEGF-C and VEGFR-3 in glioblastomas and haemangioblastomas. J. Pathol. 209, 34–43.10.1002/path.1943Search in Google Scholar PubMed

Jimenez, X., Lu, D., Brennan, L., Persaud, K., Liu, M., Miao, H., Witte, L., and Zhu, Z. (2005). A recombinant, fully human, bispecific antibody neutralizes the biological activities mediated by both vascular endothelial growth factor receptors 2 and 3. Mol. Cancer Ther. 4, 427–434.10.1158/1535-7163.MCT-04-0261Search in Google Scholar PubMed

Kaipainen, A., Korhonen, J., Mustonen, T., van Hinsbergh, V.W., Fang, G.H., Dumont, D., Breitman, M., and Alitalo, K. (1995). Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl. Acad. Sci. USA 92, 3566–3570.10.1073/pnas.92.8.3566Search in Google Scholar PubMed PubMed Central

Karpanen, T., Egeblad, M., Karkkainen, M.J., Kubo, H., Ylä-Herttuala, S., Jäättelä, M., and Alitalo, K. (2001). Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res. 61, 1786–1790.Search in Google Scholar

Kaur, S., Venktaraman, G., Jain, M., Senapati, S., Garg, P.K., and Batra, S.K. (2012). Recent trends in antibody-based oncologic imaging. Cancer Lett. 315, 97–111.10.1016/j.canlet.2011.10.017Search in Google Scholar PubMed PubMed Central

Kim, H.J., Eichinger, A., and Skerra, A. (2009). High-affinity recognition of lanthanide(III) chelate complexes by a reprogrammed human lipocalin 2. J. Am. Chem. Soc. 131, 3565–3576.10.1021/ja806857rSearch in Google Scholar PubMed

Koch, S., Tugues, S., Li, X., Gualandi, L., and Claesson-Welsh, L. (2011). Signal transduction by vascular endothelial growth factor receptors. Biochem. J. 437, 169–183.10.1042/BJ20110301Search in Google Scholar PubMed

Kurenova, E.V., Hunt, D.L., He, D., Fu, A.D., Massoll, N.A., Golubovskaya, V.M., Garces, C.A., and Cance, W.G. (2009). Vascular endothelial growth factor receptor-3 promotes breast cancer cell proliferation, motility and survival in vitro and tumor formation in vivo. Cell Cycle 8, 2266–2280.10.4161/cc.8.14.9101Search in Google Scholar PubMed PubMed Central

Lee, J., Gray, A., Yuan, J., Luoh, S.M., Avraham, H., and Wood, W.I. (1996). Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4. Proc. Natl. Acad. Sci. USA 93, 1988–1992.10.1073/pnas.93.5.1988Search in Google Scholar PubMed PubMed Central

Leppänen, V.M., Tvorogov, D., Kisko, K., Prota, A.E., Jeltsch, M., Anisimov, A., Markovic-Mueller, S., Stuttfeld, E., Goldie, K.N., Ballmer-Hofer, K., et al. (2013). Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation. Proc. Natl. Acad. Sci. USA 110, 12960–12965.10.1073/pnas.1301415110Search in Google Scholar PubMed PubMed Central

Lohela, M., Bry, M., Tammela, T., and Alitalo, K. (2009). VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr. Opin. Cell Biol. 21, 154–165.10.1016/j.ceb.2008.12.012Search in Google Scholar PubMed

Mäkinen, T., Jussila, L., Veikkola, T., Karpanen, T., Kettunen, M.I., Pulkkanen, K.J., Kauppinen, R., Jackson, D.G., Kubo, H., Nishikawa, S., et al. (2001). Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat. Med. 7, 199–205.10.1038/84651Search in Google Scholar

Mandriota, S.J., Jussila, L., Jeltsch, M., Compagni, A., Baetens, D., Prevo, R., Banerji, S., Huarte, J., Montesano, R., Jackson, D.G., et al. (2001). Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J. 20, 672–682.10.1093/emboj/20.4.672Search in Google Scholar

McDonald, D.M. (2010). New antibody to stop tumor angiogenesis and lymphatic spread by blocking receptor partnering. Cancer Cell 18, 541–543.10.1016/j.ccr.2010.11.030Search in Google Scholar

Meerman, H.J. and Georgiou, G. (1994). Construction and characterization of a set of E. coli strains deficient in all known loci affecting the proteolytic stability of secreted recombinant proteins. Bio/Technology 12, 1107–1110.10.1038/nbt1194-1107Search in Google Scholar

Mross, K., Richly, H., Fischer, R., Scharr, D., Büchert, M., Stern, A., Gille, H., Audoly, L.P., and Scheulen, M.E. (2013). First-in-human phase I study of PRS-050 (Angiocal), an anticalin targeting and antagonizing VEGF-A, in patients with advanced solid tumors. PLoS One 8, e83232.10.1371/journal.pone.0083232Search in Google Scholar

Myszka, D.G. (1999). Improving biosensor analysis. J. Mol. Recognit. 12, 279–284.10.1002/(SICI)1099-1352(199909/10)12:5<279::AID-JMR473>3.0.CO;2-3Search in Google Scholar

Nasreen, A., Vogt, M., Kim, H., Eichinger, A., and Skerra, A. (2006). Solubility engineering and crystallization of human apolipoprotein D. Protein Sci. 15, 190–199.10.1110/ps.051775606Search in Google Scholar

Paavonen, K., Puolakkainen, P., Jussila, L., Jahkola, T., and Alitalo, K. (2000). Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am. J. Pathol. 156, 1499–1504.10.1016/S0002-9440(10)65021-3Search in Google Scholar

Persaud, K., Tille, J., Liu, M., Zhu, Z., Jimenez, X., Pereira, D., Miao, H., Brennan, L., Witte, L., and Pepper, M. (2004). Involvement of the VEGF receptor 3 in tubular morphogenesis demonstrated with a human anti-human VEGFR-3 monoclonal antibody that antagonizes receptor activation by VEGF-C. J. Cell Sci. 117, 2745–2756.10.1242/jcs.01138Search in Google Scholar

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612.10.1002/jcc.20084Search in Google Scholar

Pontén, J. and Macintyre, E.H. (1968). Long term culture of normal and neoplastic human glia. Acta Pathol. Microbiol. Scand. 74, 465–486.10.1111/j.1699-0463.1968.tb03502.xSearch in Google Scholar

Richter, A., Eggenstein, E., and Skerra, A. (2014). Anticalins: exploiting a non-Ig scaffold with hypervariable loops for the engineering of binding proteins. FEBS Lett. 588, 213–218.10.1016/j.febslet.2013.11.006Search in Google Scholar

Rinderknecht, M., Villa, A., Ballmer-Hofer, K., Neri, D., and Detmar, M. (2010). Phage-derived fully human monoclonal antibody fragments to human vascular endothelial growth factor-C block its interaction with VEGF receptor-2 and 3. PLoS One 5, e11941.10.1371/journal.pone.0011941Search in Google Scholar

Schiweck, W. and Skerra, A. (1995). Fermenter production of an artificial Fab fragment, rationally designed for the antigen cystatin, and its optimized crystallization through constant domain shuffling. Proteins. 23, 561–565.10.1002/prot.340230411Search in Google Scholar

Schlapschy, M., Binder, U., Börger, C., Theobald, I., Wachinger, K., Kisling, S., Haller, D., and Skerra, A. (2013). PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Eng. Des. Sel. 26, 489–501.10.1093/protein/gzt023Search in Google Scholar

Schlapschy, M., Grimm, S., and Skerra, A. (2006). A system for concomitant overexpression of four periplasmic folding catalysts to improve secretory protein production in Escherichia coli. Protein Eng. Des. Sel. 19, 385–390.10.1093/protein/gzl018Search in Google Scholar

Schmidt, T.G. and Skerra, A. (1994). One-step affinity purification of bacterially produced proteins by means of the “Strep tag” and immobilized recombinant core streptavidin. J. Chromatogr. A 676, 337–345.10.1016/0021-9673(94)80434-6Search in Google Scholar

Schmidt, T.G. and Skerra, A. (2007). The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat. Protoc. 2, 1528–1535.10.1038/nprot.2007.209Search in Google Scholar

Skerra, A. (1994). Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene 151, 131–135.10.1016/0378-1119(94)90643-2Search in Google Scholar

Skobe, M., Hawighorst, T., Jackson, D.G., Prevo, R., Janes, L., Velasco, P., Riccardi, L., Alitalo, K., Claffey, K., and Detmar, M. (2001). Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med. 7, 192–198.10.1038/84643Search in Google Scholar PubMed

Soule, H.D., Vazguez, J., Long, A., Albert, S., and Brennan, M. (1973). A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer Inst. 51, 1409–1416.10.1093/jnci/51.5.1409Search in Google Scholar

Su, J.L., Chen, P.S., Chien, M.H., Chen, P.B., Chen, Y.H., Lai, C.C., Hung, M.C., and Kuo, M.L. (2008). Further evidence for expression and function of the VEGF-C/VEGFR-3 axis in cancer cells. Cancer Cell 13, 557–560.10.1016/j.ccr.2008.04.021Search in Google Scholar

Tammela, T. and Alitalo, K. (2010). Lymphangiogenesis: molecular mechanisms and future promise. Cell 140, 460–476.10.1016/j.cell.2010.01.045Search in Google Scholar

Tammela, T., Zarkada, G., Wallgard, E., Murtomäki, A., Suchting, S., Wirzenius, M., Waltari, M., Hellström, M., Schomber, T., Peltonen, R., et al. (2008). Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656–660.10.1038/nature07083Search in Google Scholar

Tvorogov, D., Anisimov, A., Zheng, W., Leppänen, V.-M., Tammela, T., Laurinavicius, S., Holnthoner, W., Heloterä, H., Holopainen, T., Jeltsch, M., et al. (2010). Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization. Cancer Cell 18, 630–640.10.1016/j.ccr.2010.11.001Search in Google Scholar

Valtola, R., Salven, P., Heikkilä, P., Taipale, J., Joensuu, H., Rehn, M., Pihlajaniemi, T., Weich, H., deWaal, R., and Alitalo, K. (1999). VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am. J. Pathol. 154, 1381–1390.10.1016/S0002-9440(10)65392-8Search in Google Scholar

Yanisch-Perron, C., Vieira, J., and Messing, J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.10.1016/0378-1119(85)90120-9Search in Google Scholar

Zhang, D., Li, B., Shi, J., Zhao, L., Zhang, X., Wang, C., Hou, S., Qian, W., Kou, G., and Wang, H. (2010). Suppression of tumor growth and metastasis by simultaneously blocking vascular endothelial growth factor (VEGF)-A and VEGF-C with a receptor-immunoglobulin fusion protein. Cancer Res. 70, 2495–2503.10.1158/0008-5472.CAN-09-3488Search in Google Scholar PubMed


Supplemental Material:

The online version of this article (DOI: 10.1515/hsz-2016-0195) offers supplementary material, available to authorized users.


Received: 2016-5-1
Accepted: 2016-7-19
Published Online: 2016-7-26
Published in Print: 2017-1-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2016-0195/html
Scroll to top button