Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 18, 2016

Human CYP27A1 catalyzes hydroxylation of β-sitosterol and ergosterol

  • Maximilian Ehrhardt , Adrian Gerber , Josef Zapp , Frank Hannemann and Rita Bernhardt EMAIL logo
From the journal Biological Chemistry

Abstract

β-Sitosterol and ergosterol are the equivalents of cholesterol in plants and fungi, respectively, and common sterols in the human diet. In the current work, both were identified as novel CYP27A1 substrates by in vitro experiments applying purified human CYP27A1 and its redox partners adrenodoxin (Adx) and adrenodoxin reductase (AdR). A Bacillus megaterium based biocatalyst recombinantly expressing the same proteins was utilized for the conversion of the substrates to obtain sufficient amounts of the novel products for a structural NMR analysis. β-Sitosterol was found to be converted into 26-hydroxy-β-sitosterol and 29-hydroxy-β-sitosterol, whereas ergosterol was converted into 24-hydroxyergosterol, 26-hydroxyergosterol and 28-hydroxyergosterol.

Acknowledgments

We thank Birgit Heider-Lips for the purification and preparation of bovine Adx and AdR.

Conflict of interest statement: The authors declare that no competing financial interest exists.

References

Aringer, L., Eneroth, P., and Nordström, L. (1976). Side chain hydroxylation of cholesterol, campesterol and b-sitosterol in rat liver mitochondria. J. Lipid Res. 17, 263–272.10.1016/S0022-2275(20)36983-2Search in Google Scholar

Awad, A.B., Chinnam, M., Fink, C.S., and Bradford, P.G. (2007). β-Sitosterol activates Fas signaling in human breast cancer cells. Phytomedicine 14, 747–754.10.1016/j.phymed.2007.01.003Search in Google Scholar PubMed

Bernhardt, R. (2006). Cytochromes P450 as versatile biocatalysts. J. Biotechnol. 124, 128–145.10.1016/j.jbiotec.2006.01.026Search in Google Scholar PubMed

Bernhardt, R. and Urlacher, V.B. (2014). Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl. Microbiol. Biotech. 98, 6185–6203.10.1007/s00253-014-5767-7Search in Google Scholar PubMed

Bishop, C.W., Horst, R.L., Jones, G., Koszewski, N.J., Knutson, J.C., Moriarty, R.M., Reinhardt, T.A., Penmasta, R., Strugnell, S., and Guo, L. (1994). 1α,24(S)-dihydroxy vitamin D2, its formation and use, Google Patents.Search in Google Scholar

Brauner, R., Johannes, C., Ploessl, F., Bracher, F., and Lorenz, R.L. (2012). Phytosterols reduce cholesterol absorption by inhibition of 27-hydroxycholesterol generation, liver X receptor activation, and expression of the basolateral sterol exporter ATP-binding cassette A1 in Caco-2 enterocytes. J. Nutr. 142, 981–989.10.3945/jn.111.157198Search in Google Scholar PubMed

DuSell, C.D., Nelson, E.R., Wang, X., Abdo, J., Mödder, U.I., Umetani, M., Gesty-Palmer, D., Javitt, N.B., Khosla, S., and Mc Donnell, D.P. (2010). The endogenous selective estrogen receptor modulator 27-hydroxycholesterol is a negative regulator of bone homeostasis. Endocrinology 151, 3675–3685.10.1210/en.2010-0080Search in Google Scholar PubMed PubMed Central

Ehrhardt, M., Gerber, A., Hannemann, F., and Bernhardt, R. (2016). Expression of human CYP27A1 in B. megaterium for the efficient hydroxylation of cholesterol, vitamin D3 and 7-dehydrocholesterol. J. Biotechnol. 218, 34–40.10.1016/j.jbiotec.2015.11.021Search in Google Scholar PubMed

Endo-Umeda, K., Yasuda, K., Sugita, K., Honda, A., Ohta, M., Ishikawa, M., Hashimoto, Y., Sakaki, T., and Makishima, M. (2014). 7-Dehydrocholesterol metabolites produced by sterol 27-hydroxylase (CYP27A1) modulate liver X receptor activity. J. Steroid Biochem. 140, 7–16.10.1016/j.jsbmb.2013.11.010Search in Google Scholar PubMed

Fakheri, R.J. and Javitt, N.B. (2012). 27-Hydroxycholesterol, does it exist? On the nomenclature and stereochemistry of 26-hydroxylated sterols. Steroids 77, 575–577.10.1016/j.steroids.2012.02.006Search in Google Scholar PubMed

Gerber, A., Kleser, M., Biedendieck, R., Bernhardt, R., and Hannemann, F. (2015). Functionalized PHB granules provide the basis for the efficient side-chain cleavage of cholesterol and analogs in recombinant Bacillus megaterium. Microb. Cell Fact. 14, 107.10.1186/s12934-015-0300-ySearch in Google Scholar PubMed PubMed Central

Guo, Y.D., Strugnell, S., Back, D.W., and Jones, G. (1993). Transfected human liver cytochrome P-450 hydroxylates vitamin D analogs at different side-chain positions. Proc. Natl. Acad. Sci. USA 90, 8668–8672.10.1073/pnas.90.18.8668Search in Google Scholar

Gupta, M.B., Nath, R., Srivastava, N., Shanker, K., Kishor, K., and Bhargava, K.P. (1980). Anti-inflammatory and antipyretic activities of b-sitosterol. Planta Med. 39, 157–163.10.1055/s-2008-1074919Search in Google Scholar

Hannemann, F., Bichet, A., Ewen, K.M., and Bernhardt, R. (2007). Cytochrome P450 systems – biological variations of electron transport chains. Biochim. Biophys. Acta Gen. Subj. 1770, 330–344.10.1016/j.bbagen.2006.07.017Search in Google Scholar

Hasler, J.A., Estabrook, R., Murray, M., Pikuleva, I., Waterman, M., Capdevila, J., Holla, V., Helvig, C., Falck, J.R., Farrell, G., et al. (1999). Human cytochromes P450. Mol. Aspects Med. 20, 1–137.10.1016/S0098-2997(99)00005-9Search in Google Scholar

Li, X., Wu, Q., Xie, Y., Ding, Y., Du, W.W., Sdiri, M., and Yang, B.B. (2015). Ergosterol purified from medicinal mushroom Amauroderma rude inhibits cancer growth in vitro and in vivo by up-regulating multiple tumor suppressors. Oncotarget 6, 17832–17846.10.18632/oncotarget.4026Search in Google Scholar PubMed PubMed Central

Nelson, E.R., Wardell, S.E., Jasper, J.S., Park, S., Suchindran, S., Howe, M.K., Carver, N.J., Pillai, R.V., Sullivan, P.M., Sondhi, V., et al. (2013). 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342, 1094–1098.10.1126/science.1241908Search in Google Scholar PubMed PubMed Central

Ostlund, R.E. (2002). Phytosterols in human nutrition. Annu. Rev. Nutr. 22, 533–549.10.1146/annurev.nutr.22.020702.075220Search in Google Scholar PubMed

Park, C., Moon, D.O., Rhu, C.H., Choi, B.T., Lee, W.H., Kim, G.Y., and Choi, Y.H. (2007). Beta-sitosterol induces anti-proliferation and apoptosis in human leukemic U937 cells through activation of caspase-3 and induction of Bax/Bcl-2 ratio. Biol. Pharm. Bull. 30, 1317–1323.10.1248/bpb.30.1317Search in Google Scholar PubMed

Pikuleva, I.A. (2006). Cholesterol-metabolizing cytochromes P450. Drug Metab. Dispos. 34, 513–520.10.1124/dmd.105.008789Search in Google Scholar PubMed

Roy, U., Joshua, R., Stark, R.L., and Balazy, M. (2005). Cytochrome P450/NADPH-dependent biosynthesis of 5,6-trans-epoxyeicosatrienoic acid from 5,6-trans-arachidonic acid. Biochem. J. 390, 719.10.1042/BJ20050681Search in Google Scholar PubMed PubMed Central

Shyadehi, A.Z., Lamb, D.C., Kelly, S.L., Kelly, D.E., Schunck, W.-H., Wright, J.N., Corina, D., and Akhtar, M. (1996). The Mechanism of the acyl-carbon bond cleavage reaction catalyzed by recombinant sterol 14-demethylase of Candida albicans (other names are: lanosterol 14 -demethylase, P-45014DM, and CYP51). J. Biol. Chem. 271, 12445–12450.10.1074/jbc.271.21.12445Search in Google Scholar PubMed

Slominski, A., Semak, I., Zjawiony, J., Wortsman, J., Gandy, M.N., Li, J., Zbytek, B., Li, W., and Tuckey, R.C. (2005). Enzymatic metabolism of ergosterol by cytochrome P450scc to biologically active 17α,24-dihydroxyergosterol. Chem. Biol. 12, 931–939.10.1016/j.chembiol.2005.06.010Search in Google Scholar PubMed

Takaku, T., Kimura, Y., and Okuda, H. (2001). Isolation of an antitumor compound from Agaricus blazei Murill and its mechanism of action. J. Nutr. 131, 1409–1413.10.1093/jn/131.5.1409Search in Google Scholar PubMed

Tuckey, R.C., Nguyen, M.N., Chen, J., Slominski, A.T., Baldisseri, D.M., Tieu, E.W., Zjawiony, J.K. and Li, W. (2012). Human cytochrome P450scc (CYP11A1) catalyzes epoxide formation with ergosterol. Drug Metab. Dispos. 40, 436–444.10.1124/dmd.111.042515Search in Google Scholar PubMed PubMed Central

Uhlen, M., Fagerberg, L., Hallstrom, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, A., Kampf, C., Sjostedt, E., Asplund, A., et al. (2015). Proteomics. tissue-based map of the human proteome. Science 347, 1260419.10.1126/science.1260419Search in Google Scholar PubMed

Umetani, M., Domoto, H., Gormley, A.K., Yuhanna, I.S., Cummins, C.L., Javitt, N.B., Korach, K.S., Shaul, P.W., and Mangelsdorf, D.J. (2007). 27-Hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen. Nat. Med. 13, 1185–1192.10.1038/nm1641Search in Google Scholar PubMed

Umetani, M., Ghosh, P., Ishikawa, T., Umetani, J., Ahmed, M., Mineo, C., and Shaul, P.W. (2014). The cholesterol metabolite 27-hydroxycholesterol promotes atherosclerosis via proinflammatory processes mediated by estrogen receptor a. Cell Metab. 20, 172–182.10.1016/j.cmet.2014.05.013Search in Google Scholar PubMed PubMed Central

Urlacher, V.B., Lutz-Wahl, S., and Schmid, R.D. (2004). Microbial P450 enzymes in biotechnology. Appl. Microbiol. Biotechnol. 64, 317–325.10.1007/s00253-003-1514-1Search in Google Scholar PubMed

Vary, P.S., Biedendieck, R., Fuerch, T., Meinhardt, F., Rohde, M., Deckwer, W.D., and Jahn, D. (2007). Bacillus megaterium – from simple soil bacterium to industrial protein production host. Appl. Microbiol. Biotechnol. 76, 957–967.10.1007/s00253-007-1089-3Search in Google Scholar PubMed

Villasenor, I.M., Angelada, J., Canlas, A.P., and Echegoyen, D. (2002). Bioactivity studies on b-sitosterol and its glucoside. Phytother. Res. 16, 417–421.10.1002/ptr.910Search in Google Scholar PubMed

Vivancos, M. and Moreno, J.J. (2005). β-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radic. Biol. Med. 39, 91–97.10.1016/j.freeradbiomed.2005.02.025Search in Google Scholar PubMed

Weingärtner, O., Böhm, M., and Laufs, U. (2008). Controversial role of plant sterol esters in the management of hypercholesterolaemia. Eur. Heart J. 30, 404–409.10.1093/eurheartj/ehn580Search in Google Scholar PubMed PubMed Central

Woyengo, T.A., Ramprasath, V.R., and Jones, P.J. (2009). Anticancer effects of phytosterols. Eur. J. Clin. Nutr. 63, 813–820.10.1038/ejcn.2009.29Search in Google Scholar PubMed


Supplemental Material:

The online version of this article (DOI: 10.1515/hsz-2016-0111) offers supplementary material, available to authorized users.


Received: 2016-1-13
Accepted: 2016-2-15
Published Online: 2016-2-18
Published in Print: 2016-6-1

©2016 by De Gruyter

Downloaded on 8.6.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2016-0111/html
Scroll to top button