Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 19, 2016

Identification of protein phosphatase 2A as an interacting protein of leucine-rich repeat kinase 2

  • Panagiotis S. Athanasopoulos , Wright Jacob , Sebastian Neumann , Miriam Kutsch , Dirk Wolters , Eng K. Tan , Zoë Bichler , Christian Herrmann and Rolf Heumann EMAIL logo
From the journal Biological Chemistry

Abstract

Mutations in the gene coding for the multi-domain protein leucine-rich repeat kinase 2 (LRRK2) are the leading cause of genetically inherited Parkinson’s disease (PD). Two of the common found mutations are the R1441C and G2019S. In this study we identified protein phosphatase 2A (PP2A) as an interacting partner of LRRK2. We were able to demonstrate that the Ras of complex protein (ROC) domain is sufficient to interact with the three subunits of PP2A in human neuroblastoma SH-SY5Y cells and in HeLa cells. The alpha subunit of PP2A is interacting with LRRK2 in the perinuclear region of HeLa cells. Silencing the catalytic subunit of PP2A by shRNA aggravated cellular degeneration induced by the pathogenic R1441C-LRRK2 mutant expressed in neuroblastoma SH-SY5Y cells. A similar enhancement of apoptotic nuclei was observed by downregulation of the catalytic subunit of PP2A in cultured cortical cells derived from neurons overexpressing the pathogenic mutant G2019S-LRRK2. Conversely, pharmacological activation of PP2A by sodium selenate showed a partial neuroprotection from R1441C-LRRK2-induced cellular degeneration. All these data suggest that PP2A is a new interacting partner of LRRK2 and reveal the importance of PP2A as a potential therapeutic target in PD.

Acknowledgments

The research leading to these results has received funding from the European Community’s Framework Programme (FP7/2007–2013) under grant agreement number TRANSPOL – 264399 and by FP6 ITN INTCHEM. We would like to thank Sabine Laerbusch, Dini Nurul Binte Abdul Rahim and Sally Dong Qianying for the technical help, and Dr. Nadine Ackermann, Dr. Daniela Damen, Dr. Koushik Chakrabarty, Dr. Anja Ehrkamp and Dr. Veena Nambiar Potheraveedu for the inspiring discussions. We would also like to thank Prof. Dr. Bernhard Hovemann and Dr. Christoph Goemanns for providing us with the LRRK2 and H2B-RFP plasmids, respectively. We would also like to thank Prof. Steve Finkbeiner (Gladstone Institutes, US), for providing us with the pGW1-Venus and pGW1-Venus WT LRRK2 plasmids. Furthermore we would like to thank Dr. Arjan Kortholt (University of Groningen, The Netherlands) for providing us with the GFP-ROC-COR plasmid (human sequence). Finally we would like to thank Dr. Benjamin Franzel for his help in establishing the mass spectrometric data and Mrs Semra Ince and Mr. Sergii Shydlovskyi for their help and suggestions regarding the GTP binding assay. We thank RUBION for providing facilities. Finally, we would like to acknowledge Dr. Jian Zhong and Dr. Dianna Willis for their helpful suggestions. The authors declare that they have no conflict of interest. All persons gave their informed consent prior to their inclusion in the study. All animal studies have been approved by the appropriate Ethics Committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

References

Ahn, J.H., McAvoy, T., Rakhilin, S.V., Nishi, A., Greengard, P., and Nairn A.C. (2007). Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56delta subunit. Proc. Natl. Acad. Sci. USA 104, 2979–2984.10.1073/pnas.0611532104Search in Google Scholar PubMed PubMed Central

Alegre-Abarrategui, J., Ansorge, O., Esiri, M., and Wade-Martins, R. (2008). LRRK2 is a component of granular α-synuclein pathology in the brainstem of Parkinson’s disease. Neuropathol. Appl. Neurobiol. 34, 272–283.10.1111/j.1365-2990.2007.00888.xSearch in Google Scholar PubMed PubMed Central

Anderson, J.P., Walker, D.E., Goldstein, J.M., De Laat, R., Banducci, K., Caccavello, R.J., Barbour, R., Huang, J., Kling, K., Lee, M., et al., (2006). Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J. Biol. Chem. 281, 29739–29752.10.1074/jbc.M600933200Search in Google Scholar PubMed

Arendt, T., Gärtner, U., Seeger, G., Barmashenko, G., Palm, K., Mittmann, T., Yan, L., Hümmeke, M., Behrbohm, J., Brückner, M.K., et al., (2004). Neuronal activation of Ras regulates synaptic connectivity. Eur. J. Neurosci. 19, 2953–2966.10.1111/j.0953-816X.2004.03409.xSearch in Google Scholar PubMed

Biskup, S., Moore, D.J., Rea, A., Lorenz-Deperieux, B., Coombes, C.E., Dawson, V.L., Dawson, T.M., and West, A.B. (2007). Dynamic and redundant regulation of LRRK2 and LRRK1 expression. BMC Neurosci. 8, 102.10.1186/1471-2202-8-102Search in Google Scholar PubMed PubMed Central

Carlessi, R., Levin-Salomon, V., Ciprut, S., Bialik, S., Berissi, H., Albeck, S., Peleg, Y., and Kimchi, A. (2011). GTP binding to the ROC domain of DAP-kinase regulates its function through intramolecular signaling. EMBO Rep. 12, 917–923.10.1038/embor.2011.126Search in Google Scholar PubMed PubMed Central

Chan, D., Citro, A., Cordy, J.M., Shen, G.C., and Wolozin, B. (2011). Rac1 protein rescues neurite retraction caused by G2019S leucine-rich repeat kinase2 (LRRK2). J. Biol. Chem. 286, 16140–16149.10.1074/jbc.M111.234005Search in Google Scholar PubMed PubMed Central

Chia, R., Haddock, S., Beilina, A., Rudenko, I.N., Mamais, A., Kaganovich, A., Li, Y., Kumaran, R., Nalls, M.A., and Cookson, M.R. (2014). Phosphorylation of LRRK2 by casein kinase 1α regulates trans-Golgi clustering via differential interaction with ARHGEF7. Nat. Commun. 5, 5827.10.1038/ncomms6827Search in Google Scholar PubMed PubMed Central

Corcoran, N.M., Martin, D., Hutter-Paier, B., Windisch, M., Nguyen, T., Nheu, L., Sundstrom, L.E., Costello, A.J., and Hovens, C.M. (2010). Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer’s disease model. J. Clin. Neurosci. 17, 1025–1033.10.1016/j.jocn.2010.04.020Search in Google Scholar PubMed

Cullis, J., Meiri, D., Sandi, M.J., Radulovich, N., Kent, O.A., Medrano, M., Mokady, D., Normand, J., Larose, J., Marcotte, R., et al., (2014). The RhoGEF GEF-H1 is required for oncogenic RAS signaling via KSR-1. Cancer Cell 25, 181–195.10.1016/j.ccr.2014.01.025Search in Google Scholar PubMed

Estrada, A.A. and Sweeney, Z.K. (2015). Chemical biology of leucine-rich repeat kinase 2 (LRRK2) inhibitors. J. Med. Chem. 17, 6733–6746.10.1021/acs.jmedchem.5b00261Search in Google Scholar PubMed

Fränzel, B. and Wolters, D.A. (2011). Advanced MudPIT as a next step toward high proteome coverage. Proteomics 11, 3651–3656.10.1002/pmic.201100056Search in Google Scholar PubMed

Fujiwara, H., Hasegawa, M., Dohmae, N., Kawashima, A., Masliah, E., Goldberg, M.S., Shen, J., Takio, K., and Iwatsubo, T. (2002). α-Synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol. 4, 160–164.10.1038/ncb748Search in Google Scholar PubMed

Gandhi, P.N., Wang, X.Y., Zhu, X.W., Chen, S.G., and Wilson-Delfosse, A.L. (2008). The Roc domain of leucine-rich repeat kinase 2 is sufficient for interaction with microtubules. J. Neurosci. Res. 86, 1711–1720.10.1002/jnr.21622Search in Google Scholar PubMed PubMed Central

Gillardon, F., Kremmer, E., Froehlich, T., Ueffing, M., Hengerer, B., and Gloeckner, C.J. (2013). ATP-competitive LRRK2 inhibitors interfere with monoclonal antibody binding to the kinase domain of LRRK2 under native conditions. A method to directly monitor the active conformation of LRRK2. J. Neurosci. Methods 214, 62–68.10.1016/j.jneumeth.2012.12.015Search in Google Scholar PubMed

Gilsbach, B.K., Ho, F.Y., Vetter, I.R., van Haastert, P.J., Wittinghofer, A., and Kortholt, A. (2012). Roco kinase structures give insights into the mechanism of Parkinson disease-related leucine-rich-repeat kinase 2 mutations. Proc. Natl. Acad. Sci. USA 109, 10322–10327.10.1073/pnas.1203223109Search in Google Scholar PubMed PubMed Central

Gloeckner, C.J., Boldt, K., von Zweydorf, F., Helm, S., Wiesent, L., Sarioglu, H., and Ueffing, M. (2010). Phosphopeptide analysis reveals two discrete clusters of phosphorylation in the N-terminus and the Roc domain of the Parkinson-disease associated protein kinase LRRK2. J. Proteome Res. 9, 1738–1745.10.1021/pr9008578Search in Google Scholar PubMed

Gotthardt, K., Weyand, M., Kortholt, A., Van Haastert, P.J.M., and Wittinghofer, A. (2008). Structure of the Roc–COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase. EMBO J. 27, 2239–2249.10.1038/emboj.2008.150Search in Google Scholar PubMed PubMed Central

Greene, I.D., Mastaglia, F., Meloni, B.P., West, K.A., Chieng, J., Mitchell, C.J., Gai, W.P., and Boulos, S. (2014). Evidence that the LRRK2 ROC domain Parkinson’s disease-associated mutants A1442P and R1441C exhibit increased intracellular degradation. J. Neurosci. Res. 92, 506–516.10.1002/jnr.23331Search in Google Scholar PubMed

Greggio, E. and Cookson, M.R. (2009). Leucine-rich repeat kinase 2 mutations and Parkinson’s disease: three questions. ASN Neuro. 1, e00002.10.1042/AN20090007Search in Google Scholar PubMed PubMed Central

Greggio, E., Taymans, J.M., Zhen, E.Y., Ryder, J., Vancraenenbroeck, R., Beilina, A., Sun, P., Deng, J.P., Jaffe, H., Baekelandt, V., et al., (2009). The Parkinson’s disease kinase LRRK2 autophosphorylates its GTPase domain at multiple sites. Biochem. Biophys. Res. Commun. 389, 449–454.10.1016/j.bbrc.2009.08.163Search in Google Scholar PubMed PubMed Central

Heumann, R., Goemans, C., Bartsch, D., Lingenhöhl, K., Waldmeier, P.C., Hengerer, B., Allegrini, P.R., Schellander, K., Wagner, E.F., Arendt, T., et al., (2000). Transgenic activation of Ras in neurons promotes hypertrophy and protects from lesion-induced degeneration. J. Cell. Biol. 151, 1537–1548.10.1083/jcb.151.7.1537Search in Google Scholar PubMed PubMed Central

Janssens, V. and Goris, J. (2001). Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 353, 417–439.10.1042/bj3530417Search in Google Scholar

Kamikawaji, S., Ito, G., and Iwatsubo, T. (2009). Identification of the autophosphorylation sites of LRRK2. Biochemistry 48, 10963–10975.10.1021/bi9011379Search in Google Scholar PubMed

Karassek, S., Berghaus, C., Schwarten, M., Goemans, C.G., Ohse, N., Kock, G., Jockers, K., Neumann, S., Gottfried, S., Herrmann, C. et al., (2010). Ras homolog enriched in brain (Rheb) enhances apoptotic signaling. J. Biol. Chem. 285, 33979–33991.10.1074/jbc.M109.095968Search in Google Scholar PubMed PubMed Central

Kawakami, F., Yabata, T., Ohta, E., Maekawa, T., Shimada, N., Suzuki, M., Maruyama, H., Ichikawa, T., and Obata, F. (2012). LRRK2 phosphorylates tubulin-associated tau but not the free molecule: LRRK2-mediated regulation of the tau-tubulin association and neurite outgrowth. PLoS One 7, e30834.10.1371/journal.pone.0030834Search in Google Scholar PubMed PubMed Central

King, M.A., Goemans, C.G., Hafiz, F., Prehn, J.H.M., Wyttenbach, A., and Tolkovsky, A.M. (2008). Cytoplasmic inclusions of Htt exon1 containing an expanded polyglutamine tract suppress execution of apoptosis in sympathetic neurons. J. Neurosci. 28, 14401–14415.10.1523/JNEUROSCI.4751-08.2008Search in Google Scholar PubMed PubMed Central

Kirchhefer, U., Heinick, A., König, S., Kristensen, T., Müller, F.U., Seidl, M.D., and Boknik, P. (2014). Protein phosphatase 2A is regulated by protein kinase Cα (PKCα)-dependent phosphorylation of its targeting subunit B56α at Ser41. J. Biol. Chem. 289, 163–176.10.1074/jbc.M113.507996Search in Google Scholar PubMed PubMed Central

Law, B.M., Spain, V.A., Leinster, V.H., Chia, R., Beilina, A., Cho, H.J., Taymans, J.M., Urban, M.K., Sancho R.M., Ramírez, M.B., et al., (2014). A direct interaction between leucine-rich repeat kinase 2 and specific β-tubulin isoforms regulates tubulin acetylation. J. Biol. Chem. 289, 895–908.10.1074/jbc.M113.507913Search in Google Scholar PubMed PubMed Central

Lee, K.W., Chen, W., Junn, E., Im, J.Y., Grosso, H., Sonsalla, P.K., Feng, X., Ray, N., Fernandez, J.R., Chao, Y., et al., (2011). Enhanced phosphatase activity attenuates α-synucleinopathy in a mouse model. J. Neurosci. 31, 6963–6971.10.1523/JNEUROSCI.6513-10.2011Search in Google Scholar PubMed PubMed Central

Li, X.T., Patel, J.C., Wang, J., Avshalumov, M.V., Nicholson, C., Buxbaum, J.D., Elder, G.A., Rice, M.E., and Yue, Z.Y. (2010). Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson’s disease mutation G2019S. J. Neurosci. 30, 1788–1797.10.1523/JNEUROSCI.5604-09.2010Search in Google Scholar PubMed PubMed Central

Link, A.J., Eng, J., Schieltz, D.M., Carmack, E., Mize, G.J., Morris, D.R., Garvik, B.M., and Yates, J.R. (1999). Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17, 676–682.10.1038/10890Search in Google Scholar PubMed

Lobbestael, E., Baekelandt, V., and Taymans, J.M. (2012). Phosphorylation of LRRK2: from kinase to substrate. Biochem. Soc. Trans. 40, 1102–1110.10.1042/BST20120128Search in Google Scholar PubMed

Lobbestael, E., Zhao, J., Rudenko, L.N., Beylina, A., Gao, F.Y., Wetter, J., Beullens, M., Bollen, M., Cookson, M.R., Baekelandt, V., et al., (2013). Identification of protein phosphatase 1 as a regulator of the LRRK2 phosphorylation cycle. Biochem. J. 456, 119–128.10.1042/BJ20121772Search in Google Scholar PubMed PubMed Central

Mamais, A., Chia, R., Beilina, A., Hauser, D.N., Hall, C., Lewis, P.A., Cookson, M.R., and Bandopadhyay, R. (2014). Arsenite stress down-regulates phosphorylation and 14-3-3 binding of leucine-rich repeat kinase 2 (LRRK2), promoting self-association and cellular redistribution. J. Biol. Chem. 289, 21386–21400.10.1074/jbc.M113.528463Search in Google Scholar PubMed PubMed Central

Mata, I.F., Wedemeyer, W.J., Farrer, M.J., Taylor, J.P., and Gallo, K.A. (2006). LRRK2 in Parkinson’s disease: protein domains and functional insights. Trends Neurosci. 29, 286–293.10.1016/j.tins.2006.03.006Search in Google Scholar PubMed

McCright, B., Rivers, A.M., Audlin, S., and Virshup, D.M. (1996). The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J. Biol. Chem. 271, 22081–22089.10.1074/jbc.271.36.22081Search in Google Scholar PubMed

Muda, K., Bertinetti, D., Gesellchen, F., Hermann, J.S., von Zweydorf, F., Geerlof, A., Jacob, A., Ueffing, M., Gloeckner, C.J., and Herberg, F.W. (2014). Parkinson-related LRRK2 mutation R1441C/G/H impairs PKA phosphorylation of LRRK2 and disrupts its interaction with 14-3-3. Proc. Natl. Acad. Sci. USA 111, E34–E43.10.1073/pnas.1312701111Search in Google Scholar PubMed PubMed Central

Nichols, R.J., Dzamko, N., Morrice, N.A., Campbell, D.G., Deak, M., Ordureau, A., Macartney, T., Tong, Y., Shen, J., Prescott, A.R. et al. (2010). 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson’s disease-associated mutations and regulates cytoplasmic localization. Biochem. J. 430, 393–404.10.1042/BJ20100483Search in Google Scholar PubMed PubMed Central

Ory, S., Zhou, M., Conrads, T.P., Veenstra, T.D., and Morrison, D.K. (2003). Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr Biol. 13, 1356–1364.10.1016/S0960-9822(03)00535-9Search in Google Scholar PubMed

Parisiadou, L., Yu, J., Sgobio, C., Xie, C., Liu, G., Sun, L., Gu, X.L., Lin, X., Crowley, N.A., Lovinger, D.M., et al. (2014). LRRK2 regulates synaptogenesis and dopamine receptor activation through modulation of PKA activity. Nat. Neurosci. 17, 367–376.10.1038/nn.3636Search in Google Scholar PubMed PubMed Central

Pungaliya, P.P., Bai, Y.C., Lipinski, K., Anand, V.S., Sen, S., Brown, E.L., Bates, B., Reinhart, P.H., West, A.B., Hirst, W.D., et al. (2010). Identification and characterization of a leucine-rich repeat kinase 2 (LRRK2) consensus phosphorylation motif. PLoS One 5, e13672.10.1371/journal.pone.0013672Search in Google Scholar PubMed PubMed Central

Reynolds, A., Doggett, E.A., Riddle, S.M., Lebakken, C.S., and Nichols, R.J. (2014). LRRK2 kinase activity and biology are not uniformly predicted by its autophosphorylation and cellular phosphorylation site status. Front. Mol. Neurosci. 24, 54.10.3389/fnmol.2014.00054Search in Google Scholar PubMed PubMed Central

Sancho, R.M., Law, B.M.H., and Harvey, K. (2009). Mutations in the LRRK2 Roc-COR tandem domain link Parkinson’s disease to Wnt signalling pathways. Hum. Mol. Genet. 18, 3955–3968.10.1093/hmg/ddp337Search in Google Scholar PubMed PubMed Central

Sheng Z., Zhang, S., Bustos, D., Kleinheinz, T., Le Pichon, C.E., Dominguez, S.L, Solanoy, H.O., Drummond, J., Zhang, X., Ding, X., et al. (2012). Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations. Sci. Transl. Med. 4, 164ra161.10.1126/scitranslmed.3004485Search in Google Scholar PubMed

Smith, W.L.W., Pei, Z., Jiang, H.B., Dawson, V.L., Dawson, T.M., and Ross, C.A. (2006). Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat. Neurosci. 9, 1231–1233.10.1038/nn1776Search in Google Scholar PubMed

Tan, E.K. and Schapira, A.H. (2011). LRRK2 as a therapeutic target in Parkinson’s disease. Eur. J. Neurol. 18, 545–546.10.1111/j.1468-1331.2010.03305.xSearch in Google Scholar PubMed

Taymans, J.M. and Baekelandt, V. (2014). Phosphatases of α-synuclein, LRRK2, and tau: important players in the phosphorylation-dependent pathology of Parkinsonism. Front Genet. 5, 382.10.3389/fgene.2014.00382Search in Google Scholar PubMed PubMed Central

Terheyden, S., Ho, F.Y., Gilsbach, B.K., Wittinghofer, A., and Kortholt, A. (2015). Revisiting the Roco G-protein cycle. Biochem. J. 465, 139–147.10.1042/BJ20141095Search in Google Scholar PubMed

Turowski, P., Fernandez, A., Favre, B., Lamb, N.J.C., and Hemmings, B.A. (1995). Differential methylation and altered conformation of cytoplasmic and nuclear forms of protein phosphatase 2A during cell cycle progression. J. Cell. Biol. 129, 397–410.10.1083/jcb.129.2.397Search in Google Scholar PubMed PubMed Central

van Eersel, J., Ke, Y.D., Liu, X., Delerue, F., Kril, J.J., Götz, J., and Ittner, L.M. (2010). Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc. Natl. Acad. Sci. USA 31, 13888–13893.10.1073/pnas.1009038107Search in Google Scholar PubMed PubMed Central

Washburn, M.P., Wolters, D., and Yates, J.R. (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247.10.1038/85686Search in Google Scholar PubMed

Webber, P.J., Smith, A.D., Sen, S., Renfrow, M.B., Mobley, J.A., and West, A.B. (2011). Autophosphorylation in the leucine-rich repeat kinase 2 (LRRK2) GTPase domain modifies kinase and GTP-binding activities. J. Mol. Biol. 412, 94–110.10.1016/j.jmb.2011.07.033Search in Google Scholar PubMed PubMed Central

West, A.B., Moore, D.J., Biskup, S., Bugayenko, A., Smith, W.W., Ross, C.A., Dawson, V.L., and Dawson, T.M. (2005). Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl. Acad. Sci. USA 102, 16842–16847.10.1073/pnas.0507360102Search in Google Scholar PubMed PubMed Central

Wolters, D.A., Washburn, M.P., and Yates, J.R. III (2001). An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73, 5683–5690.10.1021/ac010617eSearch in Google Scholar PubMed

Xiong, Y.L., Yuan, C.Q., Chen, R., Dawson, T.M., and Dawson, V.L. (2012). ArfGAP1 is a GTPase activating protein for LRRK2: reciprocal regulation of ArfGAP1 by LRRK2. J. Neurosci. 32, 3877–3886.10.1523/JNEUROSCI.4566-11.2012Search in Google Scholar PubMed PubMed Central

Zhao, J., Molitor, T.P., Langston, J.W., and Nichols, R.J. (2015). LRRK2 Dephosphorylation increases its ubiquitination. Biochem J. 469, 107–120.10.1042/BJ20141305Search in Google Scholar PubMed PubMed Central

Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., Kachergus, J., Hulihan, M., Uitti, R.J., Calne, D.B., et al. (2004). Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 44, 601–607.10.1016/j.neuron.2004.11.005Search in Google Scholar PubMed


Article note:

This article was submitted for the Highlight Issue ‘Perspectives of Molecular Neuroscience in Health and Disease’, published in issue 3 (2016) of Biological Chemistry.



Supplemental Material:

The online version of this article (DOI: 10.1515/hsz-2015-0189) offers supplementary material, available to authorized users.


Received: 2015-6-3
Accepted: 2016-2-17
Published Online: 2016-2-19
Published in Print: 2016-6-1

©2016 by De Gruyter

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2015-0189/html
Scroll to top button