Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 21, 2015

The role of Bni5 in the regulation of septin higher-order structure formation

  • Csilla Patasi , Jana Godočíková , Soňa Michlíková , Yan Nie , Radka Káčeriková , Katarína Kválová , Stefan Raunser and Marian Farkašovský EMAIL logo
From the journal Biological Chemistry

Abstract

Septins are a family of conserved cytoskeletal proteins playing an essential role in cytokinesis and in many other cellular processes in fungi and animals. In budding yeast Saccharomyces cerevisiae, septins form filaments and higher-order structures at the mother-bud neck depending on the particular stage of the cell cycle. Septin structures at the division plane serve as a scaffold to recruit the proteins required for particular cellular processes. The formation and localization of septin structures at particular stages of the cell cycle also determine functionality of these proteins. Many different proteins participate in regulating septin assembly. Despite recent developments, we are only beginning to understand how specific protein-protein interactions lead to changes in the polymerization of septin filaments or assembly of higher-order structures. Here, using fluorescence and electron microscopy, we found that Bni5 crosslinks septin filaments into networks by bridging pairs or multiple filaments, forming structures that resemble railways. Furthermore, Bni5 appears to be a substrate of the Elm1 protein kinase in vitro. Moreover, Elm1 induces in the presence of Bni5 disassembly of long septin filaments, suggesting that these proteins may participate in the hourglass to double ring transition. This work gives new insight into the regulatory role of Bni5 in the structural changes of septins.


Corresponding author: Marian Farkašovský, Institute of Molecular Biology SAS, Department of Microbiology, SK-84551 Bratislava, Slovak Republic, e-mail:

Acknowledgments

We thank Sven A. H. Müller and Johann Jarzombek from the Max Planck Institute of Molecular Physiology for kind advice on fluorescence microscopy and Yashar Sadian from EMBL for valuable help with electron microscopy. We thank Roger Y. Tsien for mCherry plasmid. We gratefully acknowledge financial support from the VEGA (Vedecká Grantová Agentúra, Ministerstvo Školstva Slovenskej Republiky) Grant 2/0002/15. The authors declare no competing financial interests.

References

Asano, S., Park, J.E., Yu, L.R., Zhou, M., Sakchaisri, K., Park, C.J., Kang, Y.H., Thorner, J., Veenstra, T.D., and Lee, K.S. (2006). Direct phosphorylation and activation of a Nim1-related kinase Gin4 by Elm1 in budding yeast. J. Biol. Chem. 281, 27090–27098.10.1074/jbc.M601483200Search in Google Scholar

Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (1995). Current Protocols in Molecular Biology (New York, USA: John Wiley and Sons).Search in Google Scholar

Barral, Y., Mermall, V., Mooseker, M.S., and Snyder, M. (2000). Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol. Cell. 5, 841–851.10.1016/S1097-2765(00)80324-XSearch in Google Scholar

Bouquin, N., Barral, Y., Courbeyrette, R., Blondel, M., Snyder, M., and Mann, C. (2000). Regulation of cytokinesis by the Elm1 protein kinase in Saccharomyces cerevisiae. J. Cell Sci. 113, 1435–1445.10.1242/jcs.113.8.1435Search in Google Scholar PubMed

Bridges, A.A., Zhang, H., Mehta, S.B., Occhipinti, P., Tani, T., and Gladfelter, A.S. (2014). Septin assemblies form by diffusion-driven annealing on membranes. Proc. Natl. Acad. Sci. USA 111, 2146–2151.10.1073/pnas.1314138111Search in Google Scholar PubMed PubMed Central

Brown, J.L., Jaquenoud, M., Gulli, M.P., Chant, J., and Peter, M. (1997). Novel Cdc42-binding proteins Gic1 and Gic2 control cell polarity in yeast. Genes Dev. 11, 2972–2982.10.1101/gad.11.22.2972Search in Google Scholar PubMed PubMed Central

Byers, B. and Goetsch, L. (1976). A highly ordered ring of membrane-associated filaments in budding yeast. J. Cell Biol. 69, 717–721.10.1083/jcb.69.3.717Search in Google Scholar PubMed PubMed Central

Caydasi, A.K., Kurtulmus, B., Orrico, M.I., Hofmann, A., Ibrahim, B., and Pereira, G. (2010). Elm1 kinase activates the spindle position checkpoint kinase Kin4. J. Cell Biol. 190, 975–989.10.1083/jcb.201006151Search in Google Scholar PubMed PubMed Central

Chen, G.C., Kim, Y.J., and Chan, C.S. (1997). The Cdc42 GTPase-associated proteins Gic1 and Gic2 are required for polarized cell growth in Saccharomyces cerevisiae. Genes Dev. 11, 2958–2971.10.1101/gad.11.22.2958Search in Google Scholar PubMed PubMed Central

Chen, H., Kuo, C.C., Kang, H., Howell, A.S., Zyla, T.R., Jin, M., and Lew, D.J. (2012). Cdc42p regulation of the yeast formin Bni1p mediated by the effector Gic2p. Mol. Biol. Cell 23, 3814–3826.10.1091/mbc.e12-05-0400Search in Google Scholar PubMed PubMed Central

Cvrckova, F., De, V.C., Manser, E., Pringle, J.R., and Nasmyth, K. (1995). Ste20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeast. Genes Dev. 9, 1817–1830.10.1101/gad.9.15.1817Search in Google Scholar PubMed

DeMay, B.S., Noda, N., Gladfelter, A.S., and Oldenbourg, R. (2011). Rapid and quantitative imaging of excitation polarized fluorescence reveals ordered septin dynamics in live yeast. Biophys. J. 101, 985–994.10.1016/j.bpj.2011.07.008Search in Google Scholar

Dobbelaere, J., Gentry, M.S., Hallberg, R.L., and Barral, Y. (2003). Phosphorylation-dependent regulation of septin dynamics during the cell cycle. Dev. Cell 4, 345–357.10.1016/S1534-5807(03)00061-3Search in Google Scholar

Dolat, L., Hu, Q., and Spiliotis, E.T. (2014). Septin functions in organ system physiology and pathology. Biol. Chem. 395, 123–141.10.1515/hsz-2013-0233Search in Google Scholar

Fang, X., Luo, J., Nishihama, R., Wloka, C., Dravis, C., Travaglia, M., Iwase, M., Vallen, E.A., and Bi, E. (2010). Biphasic targeting and cleavage furrow ingression directed by the tail of a myosin II. J. Cell Biol. 191, 1333–1350.10.1083/jcb.201005134Search in Google Scholar

Farkasovsky, M., Herter, P., Voss, B., and Wittinghofer, A. (2005). Nucleotide binding and filament assembly of recombinant yeast septin complexes. Biol. Chem. 386, 643–656.10.1515/BC.2005.075Search in Google Scholar

Finnigan, G.C., Booth, E.A., Duvalyan, A., Liao, E.N., and Thorner, J. (2015). The carboxy-terminal tails of septins Cdc11 and Shs1 recruit myosin-II binding factor Bni5 to the Bud Neck in Saccharomyces cerevisiae. Genetics 200, 821–840.10.1534/genetics.115.176495Search in Google Scholar

Frazier, J.A., Wong, M.L., Longtine, M.S., Pringle, J.R., Mann, M., Mitchison, T.J., and Field, C. (1998). Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function. J. Cell Biol. 143, 737–749.10.1083/jcb.143.3.737Search in Google Scholar

Garcia, G., III, Bertin, A., Li, Z., Song, Y., McMurray, M.A., Thorner, J., and Nogales, E. (2011). Subunit-dependent modulation of septin assembly: budding yeast septin Shs1 promotes ring and gauze formation. J. Cell Biol. 195, 993–1004.10.1083/jcb.201107123Search in Google Scholar

Gietz, R.D. and Woods, R.A. (2002). Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350, 87–96.10.1016/S0076-6879(02)50957-5Search in Google Scholar

Gladfelter, A.S., Pringle, J.R., and Lew, D.J. (2001). The septin cortex at the yeast mother-bud neck. Curr. Opin. Microbiol. 4, 681–689.10.1016/S1369-5274(01)00269-7Search in Google Scholar

Golemis, E.A., Serebriiskii, I., Finley, R.L., Jr., Kolonin, M.G., Gyuris, J., and Brent, R. (2011). Interaction trap/two-hybrid system to identify interacting proteins. Curr. Protoc. Cell Biol. 53, 17.3.1–17.3.35.Search in Google Scholar

Haarer, B.K. and Pringle, J.R. (1987). Immunofluorescence localization of the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the 10-nm filaments in the mother-bud neck. Mol. Cell. Biol. 7, 3678–3687.Search in Google Scholar

Hartwell, L.H. and Smith, D. (1985). Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae. Genetics 110, 381–395.10.1093/genetics/110.3.381Search in Google Scholar PubMed PubMed Central

Iwase, M., Luo, J., Nagaraj, S., Longtine, M., Kim, H.B., Haarer, B.K., Caruso, C., Tong, Z., Pringle, J.R., and Bi, E. (2006). Role of a Cdc42p effector pathway in recruitment of the yeast septins to the presumptive bud site. Mol. Biol. Cell 17, 1110–1125.10.1091/mbc.e05-08-0793Search in Google Scholar PubMed PubMed Central

Iwase, M., Luo, J., Bi, E., and Toh-e, A. (2007). Shs1 plays separable roles in septin organization and cytokinesis in Saccharomyces cerevisiae. Genetics 177, 215–229.10.1534/genetics.107.073007Search in Google Scholar PubMed PubMed Central

Janke, C., Magiera, M.M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno-Borchart, A., Doenges, G., Schwob, E., Schiebel, E., et al. (2004). A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962.10.1002/yea.1142Search in Google Scholar PubMed

Jaquenoud, M. and Peter, M. (2000). Gic2p may link activated Cdc42p to components involved in actin polarization, including Bni1p and Bud6p (Aip3p). Mol. Cell. Biol. 20, 6244–6258.10.1128/MCB.20.17.6244-6258.2000Search in Google Scholar PubMed PubMed Central

Joberty, G., Perlungher, R.R., Sheffield, P.J., Kinoshita, M., Noda, M., Haystead, T., and Macara, I.G. (2001). Borg proteins control septin organization and are negatively regulated by Cdc42. Nat. Cell Biol. 3, 861–866.10.1038/ncb1001-861Search in Google Scholar PubMed

John, C.M., Hite, R.K., Weirich, C.S., Fitzgerald, D.J., Jawhari, H., Faty, M., Schlapfer, D., Kroschewski, R., Winkler, F.K., Walz, T., et al. (2007). The Caenorhabditis elegans septin complex is nonpolar. EMBO J. 26, 3296–3307.10.1038/sj.emboj.7601775Search in Google Scholar PubMed PubMed Central

Kawasaki, R., Fujimura-Kamada, K., Toi, H., Kato, H., and Tanaka, K. (2003). The upstream regulator, Rsr1p, and downstream effectors, Gic1p and Gic2p, of the Cdc42p small GTPase coordinately regulate initiation of budding in Saccharomyces cerevisiae. Genes Cells 8, 235–250.10.1046/j.1365-2443.2003.00629.xSearch in Google Scholar PubMed

Lee, P.R., Song, S., Ro, H.S., Park, C.J., Lippincott, J., Li, R., Pringle, J.R., De, V.C., Longtine, M.S., and Lee, K.S. (2002). Bni5p, a septin-interacting protein, is required for normal septin function and cytokinesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 22, 6906–6920.10.1128/MCB.22.19.6906-6920.2002Search in Google Scholar PubMed PubMed Central

Mortensen, E.M., McDonald, H., Yates, J., III, and Kellogg, D.R. (2002). Cell cycle-dependent assembly of a Gin4-septin complex. Mol. Biol. Cell 13, 2091–2105.10.1091/mbc.01-10-0500Search in Google Scholar PubMed PubMed Central

Nam, S.C., Sung, H., Chung, Y.B., Lee, C.K., Lee, D.H., and Song, S. (2007a). Requirement of Bni5 phosphorylation for bud morphogenesis in Saccharomyces cerevisiae. J. Microbiol. 45, 34–40.Search in Google Scholar

Nam, S.C., Sung, H., Kang, S.H., Joo, J.Y., Lee, S.J., Chung, Y.B., Lee, C.K., and Song, S. (2007b). Phosphorylation-dependent septin interaction of Bni5 is important for cytokinesis. J. Microbiol. 45, 227–233.Search in Google Scholar

Ohi, M., Li, Y., Cheng, Y., and Walz, T. (2004). Negative Staining and image classification – powerful tools in modern electron microscopy. Biol. Proced. Online 6, 23–34.10.1251/bpo70Search in Google Scholar PubMed PubMed Central

Okada, S., Leda, M., Hanna, J., Savage, N.S., Bi, E., and Goryachev, A.B. (2013). Daughter cell identity emerges from the interplay of Cdc42, septins, and exocytosis. Dev. Cell 26, 148–161.10.1016/j.devcel.2013.06.015Search in Google Scholar PubMed PubMed Central

Ong, K., Wloka, C., Okada, S., Svitkina, T., and Bi, E. (2014). Architecture and dynamic remodelling of the septin cytoskeleton during the cell cycle. Nat. Commun. 5, 5698.10.1038/ncomms6698Search in Google Scholar PubMed PubMed Central

Saarikangas, J. and Barral, Y. (2011). The emerging functions of septins in metazoans. EMBO Rep. 12, 1118–1126.10.1038/embor.2011.193Search in Google Scholar PubMed PubMed Central

Sadian, Y., Gatsogiannis, C., Patasi, C., Hofnagel, O., Goody, R.S., Farkasovsky, M., and Raunser, S. (2013). The role of Cdc42 and Gic1 in the regulation of septin filament formation and dissociation. eLife 2, e01085.10.7554/eLife.01085.030Search in Google Scholar

Schneider, S., Buchert, M., and Hovens, C.M. (1996). An in vitro assay of β-galactosidase from yeast. Biotechniques 20, 960–962.10.2144/96206bm03Search in Google Scholar PubMed

Schneider, C., Grois, J., Renz, C., Gronemeyer, T., and Johnsson, N. (2013). Septin rings act as a template for myosin higher-order structures and inhibit redundant polarity establishment. J. Cell Sci. 126, 3390–3400.10.1242/jcs.125302Search in Google Scholar PubMed

Sen, T.Z., Jernigan, R.L., Garnier, J., and Kloczkowski, A. (2005). GOR V server for protein secondary structure prediction. Bioinformatics 21, 2787–2788.10.1093/bioinformatics/bti408Search in Google Scholar PubMed PubMed Central

Sirajuddin, M., Farkasovsky, M., Hauer, F., Kuhlmann, D., Macara, I.G., Weyand, M., Stark, H., and Wittinghofer, A. (2007). Structural insight into filament formation by mammalian septins. Nature 449, 311–315.10.1038/nature06052Search in Google Scholar PubMed

Sirajuddin, M., Farkasovsky, M., Zent, E., and Wittinghofer, A. (2009). GTP-induced conformational changes in septins and implications for function. Proc. Natl. Acad. Sci. USA 106, 16592–16597.10.1073/pnas.0902858106Search in Google Scholar PubMed PubMed Central

Sreenivasan, A. and Kellogg, D. (1999). The elm1 kinase functions in a mitotic signaling network in budding yeast. Mol. Cell. Biol. 19, 7983–7994.10.1128/MCB.19.12.7983Search in Google Scholar

Sreenivasan, A., Bishop, A.C., Shokat, K.M., and Kellogg, D.R. (2003). Specific inhibition of Elm1 kinase activity reveals functions required for early G1 events. Mol. Cell. Biol. 23, 6327–6337.10.1128/MCB.23.17.6327-6337.2003Search in Google Scholar

Sutherland, C.M., Hawley, S.A., McCartney, R.R., Leech, A., Stark, M.J., Schmidt, M.C., and Hardie, D.G. (2003). Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr. Biol. 13, 1299–1305.10.1016/S0960-9822(03)00459-7Search in Google Scholar

Vrabioiu, A.M. and Mitchison, T.J. (2006). Structural insights into yeast septin organization from polarized fluorescence microscopy. Nature 443, 466–469.10.1038/nature05109Search in Google Scholar PubMed

Received: 2015-4-22
Accepted: 2015-7-17
Published Online: 2015-7-21
Published in Print: 2015-12-1

©2015 by De Gruyter

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2015-0165/html
Scroll to top button