Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 2, 2014

Cathepsin B-deficient mice as source of monoclonal anti-cathepsin B antibodies

  • Ekkehard Weber EMAIL logo , Elena Barbulescu , Rita Medek , Thomas Reinheckel , Mansoureh Sameni , Arulselvi Anbalagan , Kamiar Moin and Bonnie F. Sloane
From the journal Biological Chemistry

Abstract

Cathepsin B has been demonstrated to be involved in several proteolytic processes that support tumor progression and metastasis and neurodegeneration. To further clarify its role, defined monoclonal antibodies are needed. As the primary structure of human cathepsin B is almost identical to that of the mouse, cathepsin B-deficient mice were used in a novel approach for generating such antibodies, providing the chance of an increased immune response to the antigen, human cathepsin B. Thirty clones were found to produce cathepsin B-specific antibodies. Seven of these antibodies were used to detect cathepsin B in MCF10-DCIS human breast cancer cells by immunocytochemistry and immunoblotting. Five different binding sites were identified by epitope mapping giving the opportunity to combine these antibodies in oligoclonal antibody mixtures for an improved detection of cathepsin B.


Corresponding author: Ekkehard Weber, Institute of Physiological Chemistry Medical Faculty, Martin Luther University Halle-Wittenberg, Hollystrasse 1, D-06097 Halle, Germany, e-mail:

References

Andl, C.D., McCowan, K.M., Allison, G.L., and Rustgi, A.K. (2010). Cathepsin B is the driving force of esophageal cell invasion in a fibroblast-dependent manner. Neoplasia 12, 485–498.10.1593/neo.10216Search in Google Scholar

Bell-McGuinn, K.M., Garfall, A.L., Bogyo, M., Hanahan, D., and Joyce, J.A. (2007). Inhibition of cysteine cathepsin protease activity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer. Cancer Res. 67, 7378–7385.10.1158/0008-5472.CAN-07-0602Search in Google Scholar

Bengsch, F., Buck, A., Günther, S.C., Seiz, J.R., Tacke, M., Pfeifer, D., von Elverfeldt, D., Sevenich, L., Hillebrand, L.E., Kern, U., et al. (2013). Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression. Oncogene, DOI: 10.1038/onc.2013.395.10.1038/onc.2013.395Search in Google Scholar

Bervar, A., Zajc, I., Sever, N., Katunuma, N., Sloane, B.F., and Lah, T.T. (2003). Invasiveness of transformed human breast epithelial cell lines is related to cathepsin B and inhibited by cysteine proteinase inhibitors. Biol. Chem. 384, 447–455.10.1515/BC.2003.050Search in Google Scholar

Fehrenbacher, N. and Jäättelä, M. (2005). Lysosomes as targets for cancer therapy. Cancer Res. 65, 2993–2995.10.1158/0008-5472.CAN-05-0476Search in Google Scholar

Fehrenbacher, N., Bastholm, L., Kirkegaard-Soerensen, T., Weber, E., Shirasawa, S., Kalulunki, T., and Jäättelä, M. (2008). Sensitization to lysosomal cell death by oncogene-induced down-regulation of LAMP-1 and -2. Cancer Res. 68, 6623–6633.10.1158/0008-5472.CAN-08-0463Search in Google Scholar

Gocheva, V., Zeng, W., Ke, D., Klimstra, D., Reinheckel, T., Peters, C., Hanahan, D., and Joyce, J.A. (2006). Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev. 20, 543–556.10.1101/gad.1407406Search in Google Scholar

Gopinath, S., Malla, R.R., Gondi, C.S., Alapati, K., Fassett, D., Klopfenstein, J.D., Dinh, D.H., Gujrati, M., and Rao, J.S. (2010). Co-depletion of cathepsin B and uPAR induces G0/G1 arrest in glioma via FOXO3a mediated p27 upregulation. PLoS One 5, e11668.10.1371/journal.pone.0011668Search in Google Scholar

Gopinathan, A., Denicola, G.M., Frese, K.K., Cook, N., Karreth, F.A., Mayerle, J., Lerch, M.M., Reinheckel, T., and Tuveson, D.A. (2012). Cathepsin B promotes the progression of pancreatic ductal adenocarcinoma in mice. Gut 61, 877–884.10.1136/gutjnl-2011-300850Search in Google Scholar

Hook, G., Yu, J., Toneff, T., Kindy, M, and Hook, V. (2014). Brain pyroglutamate amyloid-beta is produced by cathepsin B and is reduced by the cysteine protease inhibitor E64d, representing a potential Alzheimer’s Disease therapeutic. J. Alzheimer’s Dis. 41: 129–149.Search in Google Scholar

Joyce, J.A., Baruch, A., Chehade, K., Meyer-Morse, N., Giraudo, E., Tsai, F.Y., Greenbaum, D.C., Hager, J.H., Bogyo, M., and Hanahan, D. (2004). Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5, 443–453.10.1016/S1535-6108(04)00111-4Search in Google Scholar

Köhler, G. and Milstein, C. (1975). Continuous culture of fused cells secreting antibodies of predefined specificity. Nature 256, 495–497.10.1038/256495a0Search in Google Scholar

Malla, R.R., Gopinath, S., Gondi, C.S., Alapati, K., Dinh, D.H., Gujrati, M., and Rao, J.S. (2011). Cathepsin B and uPAR knockdown inhibits tumor-induced angiogenesis by modulating VEGF expression in glioma. Cancer Gene Ther. 18, 419–434.10.1038/cgt.2011.9Search in Google Scholar

Mohamed, M.M. and Sloane, B.F. (2006). Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer 6, 764–775.10.1038/nrc1949Search in Google Scholar

Mohanam, S., Jasti, S.L., Kondraganti, S.R., Chandrasekar, N., Lakka, S.S, Kin, Y., Fuller, G.N., Yung, A.W., Kyritsis, A.P., Dinh, D.H., et al. (2001). Down-regulation of cathepsin B expression impairs the invasive and tumorigenic potential of human glioblastoma cells. Oncogene 20, 3665–3673.10.1038/sj.onc.1204480Search in Google Scholar

Mullins, S.R., Sameni, M., Blum, G., Bogyo, M., Sloane, B.F., and Moin, K. (2012). Three-dimensional cultures modeling premalignant progression of human breast epithelial cells: role of cysteine cathepsins. Biol. Chem. 393, 1405–1416.10.1515/hsz-2012-0252Search in Google Scholar

Murata, M., Miyashita, S., Yokoo, C., Tamai, M., Hanada, K., Hatayama, K., Towatari, T., Nikawa, T., and Katanuma, N. (1991). Novel epoxysuccinyl peptides. Selective inhibitors of cathepsin B invitro. FEBS Lett. 280, 307–310.10.1016/0014-5793(91)80318-WSearch in Google Scholar

Nagaraj, N.S., Vigneswaran, N., and Zacharias, W. (2006). Cathepsin B mediates TRAIL-induced apoptosis in oral cancer cells. J. Cancer Res. Clin. Oncol. 132, 171–183.10.1007/s00432-005-0053-9Search in Google Scholar PubMed PubMed Central

Podgorski, I. and Sloane, B.F. (2003). Cathepsin B and its role(s) in cancer progression. Biochem. Soc. Symp. 70, 263–276.10.1042/bss0700263Search in Google Scholar PubMed

Rafn, B. and Kallunki, T. (2012). A way to invade: a story of ErbB2 and lysosomes. Cell Cycle 11, 2415–2416.10.4161/cc.20860Search in Google Scholar PubMed PubMed Central

Rafn, B., Nielsen, C.F., Andersen, S.H., Szyniarowski, P., Corcelle-Termeau, E., Valo, E., Fehrenbacher, N., Olsen, C.J., Daugaard, M., Egebjerg, C., et al. (2012). ErbB2-driven breast cancer cell invasion depends on a complex signaling network activating myeloid zinc finger-1-dependent cathepsin B expression. Mol. Cell. 45, 764–776.10.1016/j.molcel.2012.01.029Search in Google Scholar PubMed

Reinheckel, T., Peters, C., Krüger, A., Turk, B., and Vasiljeva, O. (2012). Differential impact of cysteine cathepsins on genetic mouse models of de novo carcinogenesis: cathepsin B as emerging therapeutic target. Front. Pharmacol. 3, 133.10.3389/fphar.2012.00133Search in Google Scholar PubMed PubMed Central

Reiser, J., Adair, B., and Reinheckel, T. (2010). Specialized roles for cysteine cathepsins in health and disease. J. Clin. Invest. 120, 3421–3431.10.1172/JCI42918Search in Google Scholar PubMed PubMed Central

Rothberg, J.M, Bailey, K.M., Wojtkowiak, J.W., Ben-Nun, Y., Bogyo, M., Weber, E., Moin, K., Blum, G., Mattingly, R.R., Gillies, R.J., et al. (2013). Acid-mediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia 15, 1125–1137.10.1593/neo.13946Search in Google Scholar PubMed PubMed Central

Sevenich, L., Werner, F., Gajda, M., Schurigt, U., Sieber, C., Müller, S., Follo, M., Peters, C., and Reinheckel, T. (2011). Transgenic expression of human cathepsin B promotes progression and metastasis of polyoma-middle-T-induced breast cancer in mice. Oncogene 30, 54–64.10.1038/onc.2010.387Search in Google Scholar PubMed

Sloane, B.F., Yan, S., Podgorski, I., Linebaugh, B.E., Cher, M.-L, Mai, J., Cavallo-Medved, D., Sameni, M., Dosescu, J., and Moin, K. (2005). Cathepsin B and tumor proteolysis: contribution of the tumor microenvironment. Semin. Cancer Biol. 15, 149–157.10.1016/j.semcancer.2004.08.001Search in Google Scholar PubMed

Vasiljeva, O., Papazoglou, A., Kruger, A., Brodoefel, H., Korovin, M., Deussing, J., Augustin, N., Nielsen, B.S., Almholt, K., Bogyo, M., et al. (2006). Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 66, 5242–5250.10.1158/0008-5472.CAN-05-4463Search in Google Scholar PubMed

Vasiljeva, O., Korovin, M., Gajda, M., Brodoefel, H., Bojic, L., Kruger, A., Schurigt, U., Sevenich, L., Turk, B., Peters, C., et al. (2008). Reduced tumour cell proliferation and delayed development of high-grade mammary carcinomas in cathepsin B-deficient mice. Oncogene 27, 4191–4199.10.1038/onc.2008.59Search in Google Scholar PubMed

Victor, B.C., Anbalagan, A., Mohamed, M.M., Sloane, B.F., and Cavallo-Medved, D. (2011). Inhibition of cathepsin B activity attenuates extracellular matrix degradation and inflammatory breast cancer invasion. Breast Cancer Res. 13, R115.10.1186/bcr3058Search in Google Scholar PubMed PubMed Central

Watson, C.J. and Kreuzaler, P.A. (2009). The role of cathepsins in involution and breast cancer. J. Mammary Gland Biol. Neoplasia 14, 171–179.10.1007/s10911-009-9126-8Search in Google Scholar PubMed

Withana, N.P., Blum, G., Sameni, M., Slaney, C., Anbalagan, A., Olive, M.B., Bidwell, B.N., Edgington, L., Wang, L., Moin, K., et al. (2012). Cathepsin B inhibition limits bone metastasis in breast cancer. Cancer Res. 72, 1199–1209.10.1158/0008-5472.CAN-11-2759Search in Google Scholar PubMed PubMed Central

Received: 2014-4-24
Accepted: 2014-7-16
Published Online: 2014-9-2
Published in Print: 2015-3-1

©2015 by De Gruyter

Downloaded on 20.5.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2014-0191/html
Scroll to top button