Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 6, 2014

Mining for single nucleotide variants (SNVs) at the kallikrein locus with predicted functional consequences

  • Niron Sukumar , Erika Scott , Apostolos Dimitromanolakis , Alexandra Misiak , Ioannis Prassas , Eleftherios P. Diamandis and Ana Konvalinka EMAIL logo
From the journal Biological Chemistry

Abstract

Kallikreins (KLKs) are a group of 15 serine proteases encoded by the KLK locus on chromosome 19. Certain single nucleotide variants (SNVs) within the KLK locus have been linked to human disease. Next-generation sequencing of large human cohorts enables reexamination of genomic variation at the KLK locus. We aimed to identify all KLK-related SNVs and examine their impact on gene regulation and function. To this end, we mined KLK SNVs across Ensembl and Exome Variant Server, with exome-sequencing data from 6503 individuals. PolyPhen-2-based prediction of damaging SNVs and population frequencies of these SNVs were examined. Damaging SNVs were plotted on protein sequence and structure. We identified 4866 SNVs, the largest number of KLK-related SNVs reported. Fourteen percent of noncoding SNVs overlapped with transcription factor binding sites. We identified 602 missense coding SNVs, among which 148 were predicted to be damaging. Nine missense SNVs were common (>1% frequency) and displayed significantly different frequencies between European-American and African-American populations. SNVs predicted to be damaging appeared to alter tertiary structure of KLK1 and KLK6. Similarly, these missense SNVs may affect KLK function, resulting in disease phenotypes. Our study represents a mine of information for those studying KLK-related SNVs and their associations with diseases.


Corresponding author: Ana Konvalinka, Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, 8N – 859, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada, e-mail:
aThese authors contributed equally to this manuscript.

Acknowledgments

The authors would like to thank the NHLBI GO Exome Sequencing Project and its ongoing studies, which produced and provided exome variant calls for comparison: the Lung GO Sequencing Project (HL-102923), the WHI Sequencing Project (HL-102924), the Broad GO Sequencing Project (HL-102925), the Seattle GO Sequencing Project (HL-102926), and the Heart GO Sequencing Project (HL-103010).

References

Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A., Bork, P., Kondrashov, A.S., and Sunyaev, S.R. (2010). A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249.10.1038/nmeth0410-248Search in Google Scholar PubMed PubMed Central

Ahn, J., Berndt, S.I., Wacholder, S., Kraft, P., Kibel, A.S., Yeager, M., Albanes, D., Giovannucci, E., Stampfer, M.J., Virtamo, J., et al. (2008). Variation in KLK genes, prostate-specific antigen and risk of prostate cancer. Nat. Genet. 40, 1032–1034; author reply 1035–1036.10.1038/ng0908-1032Search in Google Scholar PubMed PubMed Central

Antoniou, A.C., Beesley, J., McGuffog, L., Sinilnikova, O.M., Healey, S., Neuhausen, S.L., Ding, Y.C., Rebbeck, T.R., Weitzel, J.N., Lynch, H.T., et al. (2010). Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction. Cancer Res. 70, 9742–9754.10.1158/0008-5472.CAN-10-1907Search in Google Scholar PubMed PubMed Central

Batra, J., Nagle, C.M., O’Mara, T., Higgins, M., Dong, Y., Tan, O.L., Lose, F., Skeie, L.M., Srinivasan, S., Bolton, K.L., et al. (2011). A Kallikrein 15 (KLK15) single nucleotide polymorphism located close to a novel exon shows evidence of association with poor ovarian cancer survival. BMC Cancer 11, 119.10.1186/1471-2407-11-119Search in Google Scholar PubMed PubMed Central

Batra, J., O’Mara, T., Patnala, R., Lose, F., and Clements, J.A. (2012). Genetic polymorphisms in the human tissue kallikrein (KLK) locus and their implication in various malignant and non-malignant diseases. Biol. Chem. 393, 1365–1390.10.1515/hsz-2012-0211Search in Google Scholar PubMed

Bayani, J. and Diamandis, E.P. (2012). The physiology and pathobiology of human kallikrein-related peptidase 6 (KLK6). Clin. Chem. Lab. Med. 50, 211–233.10.1515/cclm.2011.750Search in Google Scholar

Bensen, J.T., Xu, Z., Smith, G.J., Mohler, J.L., Fontham, E.T., and Taylor, J.A. (2013). Genetic polymorphism and prostate cancer aggressiveness: a case-only study of 1,536 GWAS and candidate SNPs in African-Americans and European-Americans. Prostate 73, 11–22.10.1002/pros.22532Search in Google Scholar PubMed PubMed Central

Bergaya, S., Hilgers, R.H., Meneton, P., Dong, Y., Bloch-Faure, M., Inagami, T., Alhenc-Gelas, F., Levy, B.I., and Boulanger, C.M. (2004a). Flow-dependent dilation mediated by endogenous kinins requires angiotensin AT2 receptors. Circ. Res. 94, 1623–1629.10.1161/01.RES.0000131497.73744.1aSearch in Google Scholar PubMed

Bergaya, S., Matrougui, K., Meneton, P., Henrion, D., and Boulanger, C.M. (2004b). Role of tissue kallikrein in response to flow in mouse resistance arteries. J. Hypertens. 22, 745–750.10.1097/00004872-200404000-00017Search in Google Scholar PubMed

Bernard, D., Pourtier-Manzanedo, A., Gil, J., and Beach, D.H. (2003). Myc confers androgen-independent prostate cancer cell growth. J. Clin. Invest. 112, 1724–1731.10.1172/JCI200319035Search in Google Scholar

Bharaj, B.B., Luo, L.Y., Jung, K., Stephan, C., and Diamandis, E.P. (2002). Identification of single nucleotide polymorphisms in the human kallikrein 10 (KLK10) gene and their association with prostate, breast, testicular, and ovarian cancers. Prostate 51, 35–41.10.1002/pros.10076Search in Google Scholar PubMed

Borgono, C.A. and Diamandis, E.P. (2004). The emerging roles of human tissue kallikreins in cancer. Nat. Rev. Cancer 4, 876–890.10.1038/nrc1474Search in Google Scholar PubMed

Collins, F.S., Brooks, L.D., and Chakravarti, A. (1998). A DNA polymorphism discovery resource for research on human genetic variation. Genome Res. 8, 1229–1231.10.1101/gr.8.12.1229Search in Google Scholar PubMed

Consortium, E.P., Bernstein, B.E., Birney, E., Dunham, I., Green, E.D., Gunter, C., and Snyder, M. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74.10.1038/nature11247Search in Google Scholar PubMed PubMed Central

Cruchaga, C., Karch, C.M., Jin, S.C., Benitez, B.A., Cai, Y., Guerreiro, R., Harari, O., Norton, J., Budde, J., Bertelsen, S., et al. (2014). Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature 505, 550–554.10.1038/nature12825Search in Google Scholar PubMed PubMed Central

Deng, Z., Wan, M., Cao, P., Rao, A., Cramer, S.D., and Sui, G. (2009). Yin Yang 1 regulates the transcriptional activity of androgen receptor. Oncogene 28, 3746–3757.10.1038/onc.2009.231Search in Google Scholar PubMed PubMed Central

Eissa, A. and Diamandis, E.P. (2008). Human tissue kallikreins as promiscuous modulators of homeostatic skin barrier functions. Biol. Chem. 389, 669–680.10.1515/BC.2008.079Search in Google Scholar PubMed

Euskirchen, G.M., Rozowsky, J.S., Wei, C.L., Lee, W.H., Zhang, Z.D., Hartman, S., Emanuelsson, O., Stolc, V., Weissman, S., Gerstein, M.B., et al. (2007). Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies. Genome Res. 17, 898–909.10.1101/gr.5583007Search in Google Scholar PubMed PubMed Central

Genovese, G., Friedman, D.J., Ross, M.D., Lecordier, L., Uzureau, P., Freedman, B.I., Bowden, D.W., Langefeld, C.D., Oleksyk, T.K., Uscinski Knob, A.L., et al. (2010). Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845.10.1126/science.1193032Search in Google Scholar PubMed PubMed Central

Gerstein, M.B., Kundaje, A., Hariharan, M., Landt, S.G., Yan, K.K., Cheng, C., Mu, X.J., Khurana, E., Rozowsky, J., Alexander, R., et al. (2012). Architecture of the human regulatory network derived from ENCODE data. Nature 489, 91–100.10.1038/nature11245Search in Google Scholar PubMed PubMed Central

Goard, C.A., Bromberg, I.L., Elliott, M.B., and Diamandis, E.P. (2007). A consolidated catalogue and graphical annotation of dbSNP polymorphisms in the human tissue kallikrein (KLK) locus. Mol. Oncol. 1, 303–312.10.1016/j.molonc.2007.09.001Search in Google Scholar PubMed PubMed Central

Helgason, H., Sulem, P., Duvvari, M.R., Luo, H., Thorleifsson, G., Stefansson, H., Jonsdottir, I., Masson, G., Gudbjartsson, D.F., Walters, G.B., et al. (2013). A rare nonsynonymous sequence variant in C3 is associated with high risk of age-related macular degeneration. Nat. Genet. 45, 1371–1374.10.1038/ng.2740Search in Google Scholar PubMed

Hudson, M.E. and Snyder, M. (2006). High-throughput methods of regulatory element discovery. BioTechniques 41, 673, 675, 677 passim.10.2144/000112322Search in Google Scholar PubMed

International HapMap, C., Frazer, K.A., Ballinger, D.G., Cox, D.R., Hinds, D.A., Stuve, L.L., Gibbs, R.A., Belmont, J.W., Boudreau, A., Hardenbol, P., et al. (2007). A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861.10.1038/nature06258Search in Google Scholar PubMed PubMed Central

Katz, B.A., Liu, B., Barnes, M., and Springman, E.B. (1998). Crystal structure of recombinant human tissue kallikrein at 2.0 A resolution. Protein Sci. 7, 875–885.10.1002/pro.5560070405Search in Google Scholar PubMed PubMed Central

Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., and Haussler, D. (2002). The human genome browser at UCSC. Genome Res. 12, 996–1006.10.1101/gr.229102Search in Google Scholar PubMed PubMed Central

Kote-Jarai, Z., Amin Al Olama, A., Leongamornlert, D., Tymrakiewicz, M., Saunders, E., Guy, M., Giles, G.G., Severi, G., Southey, M., Hopper, J.L., et al. (2011). Identification of a novel prostate cancer susceptibility variant in the KLK3 gene transcript. Hum. Genet. 129, 687–694.10.1007/s00439-011-0981-1Search in Google Scholar PubMed PubMed Central

Kruglyak, L. and Nickerson, D.A. (2001). Variation is the spice of life. Nat. Genet. 27, 234–236.10.1038/85776Search in Google Scholar PubMed

Ladiges, W., Kemp, C., Packenham, J., and Velazquez, J. (2004). Human gene variation: from SNPs to phenotypes. Mutat. Res. 545, 131–139.10.1016/j.mrfmmm.2003.08.003Search in Google Scholar PubMed

Laxmikanthan, G., Blaber, S.I., Bernett, M.J., Scarisbrick, I.A., Juliano, M.A., and Blaber, M. (2005). 1.70 A X-ray structure of human apo kallikrein 1: structural changes upon peptide inhibitor/substrate binding. Proteins 58, 802–814.10.1002/prot.20368Search in Google Scholar PubMed

Liang, G., Chen, X., Aldous, S., Pu, S.F., Mehdi, S., Powers, E., Xia, T., and Wang, R. (2012). Human kallikrein 6 inhibitors with a para-amidobenzylanmine P1 group identified through virtual screening. Bioorg. Med. Chem. Lett. 22, 2450–2455.10.1016/j.bmcl.2012.02.014Search in Google Scholar

Lohmueller, K.E., Indap, A.R., Schmidt, S., Boyko, A.R., Hernandez, R.D., Hubisz, M.J., Sninsky, J.J., White, T.J., Sunyaev, S.R., Nielsen, R., et al. (2008). Proportionally more deleterious genetic variation in European than in African populations. Nature 451, 994–997.10.1038/nature06611Search in Google Scholar

Margolius, H.S., Horwitz, D., Pisano, J.J., and Keiser, H.R. (1976). Relationships among urinary kallikrein, mineralocorticoids and human hypertensive disease. Fed. Proc. 35, 203–206.Search in Google Scholar

Menez, R., Michel, S., Muller, B.H., Bossus, M., Ducancel, F., Jolivet-Reynaud, C., and Stura, E.A. (2008). Crystal structure of a ternary complex between human prostate-specific antigen, its substrate acyl intermediate and an activating antibody. J. Mol. Biol. 376, 1021–1033.10.1016/j.jmb.2007.11.052Search in Google Scholar

Ng, P.C. and Henikoff, S. (2001). Predicting deleterious amino acid substitutions. Genome Res. 11, 863–874.10.1101/gr.176601Search in Google Scholar

Paliouras, M. and Diamandis, E.P. (2006). The kallikrein world: an update on the human tissue kallikreins. Biol. Chem. 387, 643–652.10.1515/BC.2006.083Search in Google Scholar

Parikh, H., Wang, Z., Pettigrew, K.A., Jia, J., Daugherty, S., Yeager, M., Jacobs, K.B., Hutchinson, A., Burdett, L., Cullen, M., et al. (2011). Fine mapping the KLK3 locus on chromosome 19q13.33 associated with prostate cancer susceptibility and PSA levels. Hum. Genet. 129, 675–685.10.1007/s00439-011-0953-5Search in Google Scholar

Parsa, A., Kao, W.H., Xie, D., Astor, B.C., Li, M., Hsu, C.Y., Feldman, H.I., Parekh, R.S., Kusek, J.W., Greene, T.H., et al. (2013). APOL1 risk variants, race, and progression of chronic kidney disease. N. Engl. J. Med. 369, 2183–2196.10.1056/NEJMoa1310345Search in Google Scholar

Pathak, M., Wong, S.S., Dreveny, I., and Emsley, J. (2013). Structure of plasma and tissue kallikreins. Thromb. Haemost. 110, 423–433.10.1160/TH12-11-0840Search in Google Scholar

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612.10.1002/jcc.20084Search in Google Scholar

Riegman, P.H., Vlietstra, R.J., Klaassen, P., van der Korput, J.A., Geurts van Kessel, A., Romijn, J.C., and Trapman, J. (1989). The prostate-specific antigen gene and the human glandular kallikrein-1 gene are tandemly located on chromosome 19. FEBS Lett. 247, 123–126.10.1016/0014-5793(89)81253-0Search in Google Scholar

Rosenbloom, K.R., Sloan, C.A., Malladi, V.S., Dreszer, T.R., Learned, K., Kirkup, V.M., Wong, M.C., Maddren, M., Fang, R., Heitner, S.G., et al. (2013). ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res. 41, D56–63.Search in Google Scholar

Schaub, M.A., Boyle, A.P., Kundaje, A., Batzoglou, S., and Snyder, M. (2012). Linking disease associations with regulatory information in the human genome. Genome Res. 22, 1748–1759.10.1101/gr.136127.111Search in Google Scholar PubMed PubMed Central

Slim, R., Torremocha, F., Moreau, T., Pizard, A., Hunt, S.C., Vuagnat, A., Williams, G.H., Gauthier, F., Jeunemaitre, X., and Alhenc-Gelas, F. (2002). Loss-of-function polymorphism of the human kallikrein gene with reduced urinary kallikrein activity. J. Am. Soc. Nephrol. 13, 968–976.10.1681/ASN.V134968Search in Google Scholar PubMed

Sucheston, L.E., Bensen, J.T., Xu, Z., Singh, P.K., Preus, L., Mohler, J.L., Su, L.J., Fontham, E.T., Ruiz, B., Smith, G.J., et al. (2012). Genetic ancestry, self-reported race and ethnicity in African Americans and European Americans in the PCaP cohort. PLoS One 7, e30950.10.1371/journal.pone.0030950Search in Google Scholar PubMed PubMed Central

Tennessen, J.A., Bigham, A.W., O’Connor, T.D., Fu, W., Kenny, E.E., Gravel, S., McGee, S., Do, R., Liu, X., Jun, G., et al. (2012). Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337, 64–69.10.1126/science.1219240Search in Google Scholar PubMed PubMed Central

Tsui, K.H., Lin, Y.F., Chen, Y.H., Chang, P.L., and Juang, H.H. (2011). Mechanisms by which interleukin-6 regulates prostate-specific antigen gene expression in prostate LNCaP carcinoma cells. J. Androl. 32, 383–393.10.2164/jandrol.109.009878Search in Google Scholar PubMed

Waeckel, L., Potier, L., Richer, C., Roussel, R., Bouby, N., and Alhenc-Gelas, F. (2013). Pathophysiology of genetic deficiency in tissue kallikrein activity in mouse and man. Thromb. Haemost 110, 476–483.10.1160/TH12-12-0937Search in Google Scholar PubMed

Wang, J., Schmitt, E.S., Landsverk, M.L., Zhang, V.W., Li, F.Y., Graham, B.H., Craigen, W.J., and Wong, L.J. (2012). An integrated approach for classifying mitochondrial DNA variants: one clinical diagnostic laboratory’s experience. Genet. Med. 14, 620–626.10.1038/gim.2012.4Search in Google Scholar PubMed

Yang, S.Z. and Abdulkadir, S.A. (2003). Early growth response gene 1 modulates androgen receptor signaling in prostate carcinoma cells. J. Biol. Chem. 278, 39906–39911.10.1074/jbc.M307250200Search in Google Scholar PubMed

Yousef, G.M., Borgono, C.A., White, N.M., Robb, J.D., Michael, I.P., Oikonomopoulou, K., Khan, S., and Diamandis, E.P. (2004). In silico analysis of the human kallikrein gene 6. Tumour Biol. 25, 282–289.10.1159/000081393Search in Google Scholar PubMed


Supplemental Material

The online version of this article (DOI: 10.1515/hsz-2014-0136) offers supplementary material, available to authorized users.


Received: 2014-2-14
Accepted: 2014-7-3
Published Online: 2014-8-6
Published in Print: 2014-9-1

©2014 by De Gruyter

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2014-0136/html
Scroll to top button