Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 7, 2016

Ingestion of a natural mineral-rich water in an animal model of metabolic syndrome: effects in insulin signalling and endoplasmic reticulum stress

  • Cidália D. Pereira EMAIL logo , Emanuel Passos , Milton Severo , Isabel Vitó , Xiaogang Wen , Fátima Carneiro , Pedro Gomes , Rosário Monteiro and Maria J. Martins ORCID logo

Abstract

Background: High-fructose and/or low-mineral diets are relevant in metabolic syndrome (MS) development. Insulin resistance (IR) represents a central mechanism in MS development. Glucocorticoid signalling dysfunction and endoplasmic reticulum (ER) and oxidative stresses strongly contribute to IR and associate with MS. We have described that natural mineral-rich water ingestion delays fructose-induced MS development, modulates fructose effects on the redox state and glucocorticoid signalling and increases sirtuin 1 expression. Here, we investigated mineral-rich water ingestion effects on insulin signalling and ER homeostasis of fructose-fed rats.

Materials and methods: Adult male Sprague-Dawley rats had free access to standard-chow diet and different drinking solutions (8 weeks): tap water (CONT), 10%-fructose/tap water (FRUCT) or 10%-fructose/mineral-rich water (FRUCTMIN). Hepatic and adipose (visceral, VAT) insulin signalling and hepatic ER homeostasis (Western blot or PCR) as well as hepatic lipid accumulation were evaluated.

Results: Hepatic p-IRS1Ser307/IRS1 (tendency), p-IRS1Ser307, total JNK and (activated IRE1α)/(activated JNK) decreased with fructose ingestion, while p-JNK tended to increase; mineral-rich water ingestion, totally or partially, reverted all these effects. Total PERK, p-eIF2α (tendency) and total IRS1 (tendency) decreased in both fructose-fed groups. p-ERK/ERK and total IRE1α increasing tendencies in FRUCT became significant in FRUCTMIN (similar pattern for lipid area). Additionally, unspliced-XBP1 increased with mineral-rich water. In VAT, total ERK fructose-induced increase was partially prevented in FRUCTMIN.

Conclusions: Mineral-rich water modulation of fructose-induced effects on insulin signalling and ER homeostasis matches the better metabolic profile previously reported. Increased p-ERK/ERK, adding to decreased IRE1α activation, and increased unspliced-XBP1 and lipid area may protect against oxidative stress and IR development in FRUCTMIN.


Corresponding author: Cidália D. Pereira, Escola Superior de Saúde, Instituto Politécnico de Leiria, Campus 2 – Morro de Lena – Alto do Vieiro, Apartado 4137, 2411-901 Leiria, Portugal, E-mail: ; Faculty of Medicine, Department of Biochemistry, University of Porto, Porto, Portugal; and Escola Superior de Saúde, Instituto Politécnico de Leiria, Leiria, Portugal

Acknowledgments

We thank Unicer Bebidas, S.A., Portugal, for kindly providing Pedras Salgadas®, the hypersaline sodium-rich naturally sparkling mineral water used in this study. This work was supported by FCT (Fundação para a Ciência e Tecnologia, PEst-OE/SAU/UI0038/2014) through the Centro de Farmacologia e Biopatologia Química (U38/FCT), Faculty of Medicine, University of Porto, which integrated (until 31 December 2014) the Department of Biochemistry, Faculty of Medicine, University of Porto. Additional funding was provided by FCT (SFRH/BDE/33798/2009 and PTDC/DES/113580/2009) and by Unicer Bebidas, S.A., Portugal. We thank Sónia Norberto (from the Faculty of Medicine, Department of Biochemistry, University of Porto, Porto, Portugal) for the help with the micrographs of hepatic tissue stained with Oil Red O.

Competing interests: When considering the partial funding by Unicer Bebidas, S.A., it should be mentioned that the study here presented was developed, in its full extent, both in scientific terms and research equipment conditions, independently of the beverage company.

Author’s contribution: CDP performed western blot and PCR analysis, discussed and interpreted data and wrote the manuscript. EP performed PCR analysis. MS contributed to statistical analysis. IV and WX performed the hepatic histological evaluation; FC and PG revised critically the manuscript; RM and MJM designed and coordinated the study, discussed and interpreted data and wrote the manuscript. All authors read and approved the final manuscript.

References

1. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC, Jr. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009;120:1640–5.10.1161/CIRCULATIONAHA.109.192644Search in Google Scholar PubMed

2. Aydin S, Aksoy A, Aydin S, Kalayci M, Yilmaz M, Kuloglu T, Citil C, Catak Z. Today’s and yesterday’s of pathophysiology: biochemistry of metabolic syndrome and animal models. Nutrition 2014;30: 1–9.10.1016/j.nut.2013.05.013Search in Google Scholar PubMed

3. Canale MP, Manca di Villahermosa S, Martino G, Rovella V, Noce A, De Lorenzo A, Di Daniele N. Obesity-related metabolic syndrome: mechanisms of sympathetic overactivity. Int J Endocrinol 2013;2013:865965.10.1155/2013/865965Search in Google Scholar PubMed PubMed Central

4. Meshkani R, Adeli K. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. Clin Biochem 2009;42:1331–46.10.1016/j.clinbiochem.2009.05.018Search in Google Scholar PubMed

5. Ratziu V, Bellentani S, Cortez-Pinto H, Day C, Marchesini G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J Hepatol 2010;53:372–84.10.1016/j.jhep.2010.04.008Search in Google Scholar PubMed

6. Yilmaz Y. Is nonalcoholic fatty liver disease the hepatic expression of the metabolic syndrome? World J Hepatol 2012;4:332–4.10.4254/wjh.v4.i12.332Search in Google Scholar PubMed PubMed Central

7. Azzam H, Malnick S. Non-alcoholic fatty liver disease – the heart of the matter. World J Hepatol 2015;7:1369–76.10.4254/wjh.v7.i10.1369Search in Google Scholar PubMed PubMed Central

8. Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science 2011;332:1519–23.10.1126/science.1204265Search in Google Scholar PubMed PubMed Central

9. Sesti G, Fiorentino TV, Hribal ML, Sciacqua A, Perticone F. Association of hepatic insulin resistance indexes to nonalcoholic fatty liver disease and related biomarkers. Nutr Metab Cardiovasc Dis 2013;23:1182–7.10.1016/j.numecd.2013.01.006Search in Google Scholar PubMed

10. Gariani K, Philippe J, Jornayvaz FR. Non-alcoholic fatty liver disease and insulin resistance: from bench to bedside. Diabetes Metab 2013;39:16–26.10.1016/j.diabet.2012.11.002Search in Google Scholar PubMed

11. Avogaro A, de Kreutzenberg SV, Fadini GP. Insulin signaling and life span. Pflugers Arch 2010;459:301–14.10.1007/s00424-009-0721-8Search in Google Scholar PubMed

12. Fulop T, Tessier D, Carpentier A. The metabolic syndrome. Pathol Biol (Paris) 2006;54:375–86.10.1016/j.patbio.2006.07.002Search in Google Scholar PubMed

13. Pansuria M, Xi H, Li L, Yang XF, Wang H. Insulin resistance, metabolic stress, and atherosclerosis. Front Biosci (Schol Ed) 2012;4:916–31.10.2741/s308Search in Google Scholar

14. Passos E, Ascensao A, Martins MJ, Magalhaes J. Endoplasmic reticulum stress response in non-alcoholic steatohepatitis: the possible role of physical exercise. Metabolism 2015;64:780–92.10.1016/j.metabol.2015.02.003Search in Google Scholar PubMed

15. Pereira CD, Azevedo I, Monteiro R, Martins MJ. 11beta-Hydroxysteroid dehydrogenase type 1: relevance of its modulation in the pathophysiology of obesity, the metabolic syndrome and type 2 diabetes mellitus. Diabetes Obes Metab 2012;14:869–881.10.1111/j.1463-1326.2012.01582.xSearch in Google Scholar PubMed

16. Pereira CD, Martins MJ, Azevedo I, Monteiro R. 11β-Hydroxysteroid dehydrogenase type 1 and the metabolic syndrome, steroids – clinical aspect. In: Abduljabbar H, editor. InTech. 2011: DOI: 10.5772/28641, ISBN: 978-953-307-705-5. Available from: http://www.intechopen.com/books/steroids-clinical-aspect/11-hydroxysteroid-dehydrogenase-type-1-and-the-metabolic-syndrome.10.5772/28641Search in Google Scholar

17. Rose AJ, Herzig S. Metabolic control through glucocorticoid hormones: an update. Mol Cell Endocrinol 2013;380:65–78.10.1016/j.mce.2013.03.007Search in Google Scholar PubMed

18. Hopps E, Noto D, Caimi G, Averna MR. A novel component of the metabolic syndrome: the oxidative stress. Nutr Metab Cardiovasc Dis 2010;20:72–7.10.1016/j.numecd.2009.06.002Search in Google Scholar PubMed

19. Tsatsoulis A, Mantzaris MD, Bellou S, Andrikoula M. Insulin resistance: an adaptive mechanism becomes maladaptive in the current environment – an evolutionary perspective. Metabolism 2013;62:622–33.10.1016/j.metabol.2012.11.004Search in Google Scholar PubMed

20. Lee YH, White MF. Insulin receptor substrate proteins and diabetes. Arch Pharm Res 2004;27:361–70.10.1007/BF02980074Search in Google Scholar PubMed

21. Wei Y, Wang D, Topczewski F, Pagliassotti MJ. Fructose-mediated stress signaling in the liver: implications for hepatic insulin resistance. J Nutr Biochem 2007;18:1–9.10.1016/j.jnutbio.2006.03.013Search in Google Scholar PubMed

22. Bagul PK, Middela H, Matapally S, Padiya R, Bastia T, Madhusudana K, Reddy BR, Chakravarty S, Banerjee SK. Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats. Pharmacol Res 2012;66:260–8.10.1016/j.phrs.2012.05.003Search in Google Scholar PubMed

23. Feinman RD, Fine EJ. Fructose in perspective. Nutr Metab (Lond) 2013;10:45.10.1186/1743-7075-10-45Search in Google Scholar PubMed PubMed Central

24. Zhang C, Chen X, Zhu RM, Zhang Y, Yu T, Wang H, Zhao H, Zhao M, Ji YL, Chen YH, Meng XH, Wei W, Xu DX. Endoplasmic reticulum stress is involved in hepatic SREBP-1c activation and lipid accumulation in fructose-fed mice. Toxicol Lett 2012;212:229–40.10.1016/j.toxlet.2012.06.002Search in Google Scholar PubMed

25. Rutledge AC, Adeli K. Fructose and the metabolic syndrome: pathophysiology and molecular mechanisms. Nutr Rev 2007;65(6 Pt 2):S13–23.10.1111/j.1753-4887.2007.tb00322.xSearch in Google Scholar PubMed

26. Alegret M, Laguna JC. Opposite fates of fructose in the development of metabolic syndrome. World J Gastroenterol 2012;18:4478–4480.10.3748/wjg.v18.i33.4478Search in Google Scholar PubMed PubMed Central

27. Collino M. High dietary fructose intake: sweet or bitter life? World J Diabetes 2011;2:77–81.10.4239/wjd.v2.i6.77Search in Google Scholar PubMed PubMed Central

28. Kelley GL, Allan G, Azhar S. High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulation. Endocrinology 2004;145:548–55.10.1210/en.2003-1167Search in Google Scholar PubMed

29. Tappy L, Le KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 2010;90:23–46.10.1152/physrev.00019.2009Search in Google Scholar PubMed

30. Odegaard JI, Chawla A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 2013;339:172–7.10.1126/science.1230721Search in Google Scholar PubMed PubMed Central

31. Tanti JF, Jager J. Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr Opin Pharmacol 2009;9:753–62.10.1016/j.coph.2009.07.004Search in Google Scholar PubMed

32. Wei Y, Pagliassotti MJ. Hepatospecific effects of fructose on c-jun NH2-terminal kinase: implications for hepatic insulin resistance. Am J Physiol Endocrinol Metab 2004;287:E926–33.10.1152/ajpendo.00185.2004Search in Google Scholar PubMed

33. Li JM, Li YC, Kong LD, Hu QH. Curcumin inhibits hepatic protein-tyrosine phosphatase 1B and prevents hypertriglyceridemia and hepatic steatosis in fructose-fed rats. Hepatology 2010;51:1555–66.10.1002/hep.23524Search in Google Scholar PubMed

34. Botvineva LA, Nikitin EN, Mel’nikova LN, Akaeva EA. [The use of drinking mineral waters and the fiber-enriched diet for the treatment of patients with type 2 diabetes mellitus]. Vopr Kurortol Fizioter Lech Fiz Kult 2010:13–16.Search in Google Scholar

35. Costantino M, Giampaolo C, Filippelli A. [Effects of drinking spa therapy on oxidative stress]. Clin Ter 2012;163:e13–7.Search in Google Scholar

36. El-Seweidy MM, Sadik NA, Shaker OG. Role of sulfurous mineral water and sodium hydrosulfide as potent inhibitors of fibrosis in the heart of diabetic rats. Arch Biochem Biophys 2011;506:48–57.10.1016/j.abb.2010.10.014Search in Google Scholar PubMed

37. Simunic S, Pintac L. [Use of the Varazdinske Toplice mineral water in the treatment of diabetes mellitus]. Reumatizam 1990;37:71–4.Search in Google Scholar

38. Pereira CD, Severo M, Araújo JR, Guimarães JT, Pestana D, Santos A, Ferreira R, Ascensão A, Magalhães J, Azevedo I, Monteiro R, Martins MJ. Relevance of a hypersaline sodium-rich naturally sparkling mineral water to the protection against metabolic syndrome induction in fructose-fed sprague-dawley rats: a biochemical, metabolic, and redox approach. Int J Endocrinol 2014; 2014 (Article ID 384583).10.1155/2014/384583Search in Google Scholar PubMed PubMed Central

39. Pereira CD, Severo M, Rafael L, Martins MJ, Neves D. Effects of natural mineral-rich water consumption on the expression of Sirtuin 1, vascular endothelial growth factor, angiopoietins, and receptors in the erectile tissue of rats with fructose-induced Metabolic Syndrome. Asian J Androl 2014;16:631–8.10.4103/1008-682X.122869Search in Google Scholar PubMed PubMed Central

40. Pereira CD, Collado MC, Passos E, Azevedo I, Monteiro R, Martins MJ. Comment to: Luo et al. (2013) Int J Cardiol. 168(4):4454-6. Int J Cardiol 2014;172:512–4.10.1016/j.ijcard.2014.01.044Search in Google Scholar PubMed

41. Pereira CD, Monteiro R, Martins MJ. Further insights into the metabolically healthy obese phenotype: the role of magnesium. Eur J Intern Med 2014;25:e105–6.10.1016/j.ejim.2014.06.003Search in Google Scholar PubMed

42. Pereira CD, Severo M, Neves D, Ascensao A, Magalhaes J, Guimaraes JT, Monteiro R, Martins MJ. Natural mineral-rich water ingestion improves hepatic and fat glucocorticoid-signaling and increases sirtuin 1 in an animal model of metabolic syndrome. Horm Mol Biol Clin Investig 2015;21:149–57.10.1515/hmbci-2014-0032Search in Google Scholar PubMed

43. Schoppen S, Sanchez-Muniz FJ, Perez-Granados M, Gomez-Gerique JA, Sarria B, Navas-Carretero S, Pilar Vaquero M. Does bicarbonated mineral water rich in sodium change insulin sensitivity of postmenopausal women? Nutr Hosp 2007;22:538–44.Search in Google Scholar

44. Perez-Granados AM, Navas-Carretero S, Schoppen S, Vaquero MP. Reduction in cardiovascular risk by sodium-bicarbonated mineral water in moderately hypercholesterolemic young adults. J Nutr Biochem 2010;21:948–53.10.1016/j.jnutbio.2009.07.010Search in Google Scholar PubMed

45. Rui L. Energy metabolism in the liver. Compr Physiol 2014;4:177–97.10.1002/cphy.c130024Search in Google Scholar PubMed PubMed Central

46. Flamment M, Hajduch E, Ferre P, Foufelle F. New insights into ER stress-induced insulin resistance. Trends Endocrinol Metab 2012;23:381–90.10.1016/j.tem.2012.06.003Search in Google Scholar PubMed

47. Sparks JD, Sparks CE, Adeli K. Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia. Arterioscler Thromb Vasc Biol 2012;32:2104–112.10.1161/ATVBAHA.111.241463Search in Google Scholar PubMed

48. Prakash P, Khanna V, Singh V, Jyoti A, Jain M, Keshari RS, Barthwal MK, Dikshit M. Atorvastatin protects against ischemia-reperfusion injury in fructose-induced insulin resistant rats. Cardiovasc Drugs Ther 2011;25:285–97.10.1007/s10557-011-6312-xSearch in Google Scholar PubMed

49. Meeprom A, Sompong W, Suwannaphet W, Yibchok-anun S, Adisakwattana S. Grape seed extract supplementation prevents high-fructose diet-induced insulin resistance in rats by improving insulin and adiponectin signalling pathways. Br J Nutr 2011;106:1173–81.10.1017/S0007114511001589Search in Google Scholar PubMed

50. Xu X, Tu L, Wang L, Fang X, Wang DW. CYP2J3 gene delivery reduces insulin resistance via upregulation of eNOS in fructose-treated rats. Cardiovasc Diabetol 2011;10:114.10.1186/1475-2840-10-114Search in Google Scholar PubMed PubMed Central

51. Liu HY, Hong T, Wen GB, Han J, Zuo D, Liu Z, Cao W. Increased basal level of Akt-dependent insulin signaling may be responsible for the development of insulin resistance. Am J Physiol Endocrinol Metab 2009;297:E898–906.10.1152/ajpendo.00374.2009Search in Google Scholar PubMed PubMed Central

52. Ogihara T, Asano T, Ando K, Chiba Y, Sekine N, Sakoda H, Anai M, Onishi Y, Fujishiro M, Ono H, Shojima N, Inukai K, Fukushima Y, Kikuchi M, Fujita T. Insulin resistance with enhanced insulin signaling in high-salt diet-fed rats. Diabetes 2001;50:573–83.10.2337/diabetes.50.3.573Search in Google Scholar PubMed

53. Bhanot S, Salh BS, Verma S, McNeill JH, Pelech SL. In vivo regulation of protein-serine kinases by insulin in skeletal muscle of fructose-hypertensive rats. Am J Physiol 1999;277(2 Pt 1):E299–307.10.1152/ajpendo.1999.277.2.E299Search in Google Scholar PubMed

54. Sabio G, Davis RJ. cJun NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance. Trends Biochem Sci 2010;35:490–6.10.1016/j.tibs.2010.04.004Search in Google Scholar PubMed PubMed Central

55. Morgan SA, Sherlock M, Gathercole LL, Lavery GG, Lenaghan C, Bujalska IJ, Laber D, Yu A, Convey G, Mayers R, Hegyi K, Sethi JK, Stewart PM, Smith DM, Tomlinson JW. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle. Diabetes 2009;58:2506–15.10.2337/db09-0525Search in Google Scholar PubMed PubMed Central

56. Chapagain A, Caton PW, Kieswich J, Andrikopoulos P, Nayuni N, Long JH, Harwood SM, Webster SP, Raftery MJ, Thiemermann C, Walker BR, Seckl JR, Corder R, Yaqoob MM. Elevated hepatic 11β-hydroxysteroid dehydrogenase type 1 induces insulin resistance in uremia. Proc Natl Acad Sci USA 2014;111:3817–22.10.1073/pnas.1312436111Search in Google Scholar PubMed PubMed Central

57. Cnop M, Foufelle F, Velloso LA. Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med 2012;18:59–68.10.1016/j.molmed.2011.07.010Search in Google Scholar PubMed

58. Mounir Z, Krishnamoorthy JL, Wang S, Papadopoulou B, Campbell S, Muller WJ, Hatzoglou M, Koromilas AE. Akt determines cell fate through inhibition of the PERK-eIF2alpha phosphorylation pathway. Sci Signal 2011;4:ra62.10.1126/scisignal.2001630Search in Google Scholar PubMed PubMed Central

59. Zhang W, Hietakangas V, Wee S, Lim SC, Gunaratne J, Cohen SM. ER stress potentiates insulin resistance through PERK-mediated FOXO phosphorylation. Genes Dev 2013;27:441–9.10.1101/gad.201731.112Search in Google Scholar PubMed PubMed Central

60. Agouni A, Mody N, Owen C, Czopek A, Zimmer D, Bentires-Alj M, Bence KK, Delibegovic M. Liver-specific deletion of protein tyrosine phosphatase (PTP) 1B improves obesity- and pharmacologically induced endoplasmic reticulum stress. Biochem J 2011;438:369–78.10.1042/BJ20110373Search in Google Scholar PubMed PubMed Central

61. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006;7:85–96.10.1038/nrm1837Search in Google Scholar PubMed

62. Becatti M, Taddei N, Cecchi C, Nassi N, Nassi PA, Fiorillo C. SIRT1 modulates MAPK pathways in ischemic-reperfused cardiomyocytes. Cell Mol Life Sci 2012;69:2245–60.10.1007/s00018-012-0925-5Search in Google Scholar PubMed

63. Frojdo S, Durand C, Molin L, Carey AL, El-Osta A, Kingwell BA, Febbraio MA, Solari F, Vidal H, Pirola L. Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Mol Cell Endocrinol 2011;335:166–76.10.1016/j.mce.2011.01.008Search in Google Scholar PubMed

64. Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C, Permutt MA, Imai S. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005;2:105–17.10.1016/j.cmet.2005.07.001Search in Google Scholar PubMed

65. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004;429:771–6.10.1038/nature02583Search in Google Scholar PubMed PubMed Central

66. Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, Zhai Q. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 2007;6:307–19.10.1016/j.cmet.2007.08.014Search in Google Scholar PubMed

67. Liang F, Kume S, Koya D. SIRT1 and insulin resistance. Nat Rev Endocrinol 2009;5:367–73.10.1038/nrendo.2009.101Search in Google Scholar PubMed

68. Armutcu F, Coskun O, Gurel A, Kanter M, Can M, Ucar F, Unalacak M. Thymosin alpha 1 attenuates lipid peroxidation and improves fructose-induced steatohepatitis in rats. Clin Biochem 2005;38:540–7.10.1016/j.clinbiochem.2005.01.013Search in Google Scholar PubMed

69. Gaggini M, Morelli M, Buzzigoli E, Defronzo RA, Bugianesi E, Gastaldelli A. Non-alcoholic fatty liver disease (nafld) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients 2013;5:1544–60.10.3390/nu5051544Search in Google Scholar PubMed PubMed Central

70. Zámbó V, Simon-Szabó L, Szelényi P, Kereszturi E, Banhegyi G, Csala M. Lipotoxicity in the liver. World J Hepatol 2013;5:550–7.10.4254/wjh.v5.i10.550Search in Google Scholar PubMed PubMed Central

71. Oyadomari S, Harding HP, Zhang Y, Oyadomari M, Ron D. Dephosphorylation of translation initiation factor 2alpha enhances glucose tolerance and attenuates hepatosteatosis in mice. Cell Metab 2008;7:520–32.10.1016/j.cmet.2008.04.011Search in Google Scholar PubMed PubMed Central

72. Lee SJ, Zhang J, Choi AM, Kim HP. Mitochondrial dysfunction induces formation of lipid droplets as a generalized response to stress. Oxid Med Cell Longev 2013;2013:327167.10.1155/2013/327167Search in Google Scholar PubMed PubMed Central

73. Schaffer JE. Lipotoxicity: when tissues overeat. Curr Opin Lipidol 2003;14:281–7.10.1097/00041433-200306000-00008Search in Google Scholar PubMed

74. Lonardo A, Ballestri S, Marchesini G, Angulo P, Loria P. Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig Liver Dis 2015;47:181–90.10.1016/j.dld.2014.09.020Search in Google Scholar PubMed

75. Liu Y, Adachi M, Zhao S, Hareyama M, Koong AC, Luo D, Rando TA, Imai K, Shinomura Y. Preventing oxidative stress: a new role for XBP1. Cell Death Differ 2009;16:847–57.10.1038/cdd.2009.14Search in Google Scholar PubMed PubMed Central

76. Liu Y, Zhang X, Liang Y, Yu H, Chen X, Zheng T, Zheng B, Wang L, Zhao L, Shi C, Zhao S. Targeting X box-binding protein-1 (XBP1) enhances sensitivity of glioma cells to oxidative stress. Neuropathol Appl Neurobiol 2011;37:395–405.10.1111/j.1365-2990.2010.01155.xSearch in Google Scholar PubMed

77. Zhong Y, Li J, Wang JJ, Chen C, Tran JT, Saadi A, Yu Q, Le YZ, Mandal MN, Anderson RE, Zhang SX. X-box binding protein 1 is essential for the anti-oxidant defense and cell survival in the retinal pigment epithelium. PLoS One 2012;7:e38616.10.1371/journal.pone.0038616Search in Google Scholar PubMed PubMed Central

78. Pierre N, Deldicque L, Barbé C, Naslain D, Cani PD, Francaux M. Toll-like receptor 4 knockout mice are protected against endoplasmic reticulum stress induced by a high-fat diet. PLoS One 2013;8:e65061.10.1371/journal.pone.0065061Search in Google Scholar PubMed PubMed Central

79. Darling NJ, Cook SJ. The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. Biochim Biophys Acta 2014;1843:2150–63.10.1016/j.bbamcr.2014.01.009Search in Google Scholar PubMed

Received: 2015-7-25
Accepted: 2015-11-18
Published Online: 2016-1-7
Published in Print: 2016-5-1

©2016 by De Gruyter

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/hmbci-2015-0033/html
Scroll to top button