Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 25, 2018

Changes in sorption and electrical properties of wood caused by fungal decay

  • Christian Brischke EMAIL logo , Simon Stricker , Linda Meyer-Veltrup and Lukas Emmerich
From the journal Holzforschung

Abstract

As wet wood is prone to degradation by wood-destroying fungi, the monitoring of the moisture content (MC) of wood can be used to quantify the risk of fungal infestation. Fungal decay alters the sorption and electrical conductivity of wood, and thus the goal of the present study was to measure the electrical resistance (R) of wood after fungal decay as a function of MC. Scots pine sapwood (Pinus sylvestris L.) and European beech wood (Fagus sylvatica L.) were submitted to decay by Coniophora puteana (a brown rot fungus, BR) and Trametes versicolor (a white rot fungus, WR) and the mass loss (ML) due to the fungal metabolism was measured. The sorption isotherms were determined by dynamic vapor sorption (DVS), and comparative gravimetric- and R-based MC measurements were conducted. BR and WR reduced the sorption of wood and lowered its R in the hygroscopic range, where the decay led to an overestimation of wood MC, while wood MC was dramatically underestimated above fiber saturation (FS). Specimens showed an MC well above FS if measured directly after harvesting and an increased R compared to undecayed wood at a given MC. BR-decayed specimens were dried and rewetted, and such specimens showed an elevated R beyond FS. In the case of WR-decayed wood, the R was reduced at a given MC.

Acknowledgments

The authors gratefully acknowledge Dr. Gry Alfredsen, Prof. Dr. Barry Goodell, Dr. Grant T. Kirker, Prof. Dr. Holger Militz, Dr. Jeff D. Lloyd and Dr. Samuel L. Zelinka for their valuable contributions to a scientific discourse about the electrical and sorption properties of wood.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

References

Ammer, U. (1963) Untersuchungen über die Sorption pilzbefallenen Holzes. Holz Roh-Werkst. 12:465–470.10.1007/BF02608818Search in Google Scholar

Anagnost, S.E., Smith, W.B. (2007) Hygroscopicity of decayed wood: implications for weight loss determinations. Wood Fiber Sci. 29:299–305.Search in Google Scholar

Bavendamm, W., Reichelt, H. (1938) Die Abhängigkeit des Wachstums holzzersetzender Pilze vom Wassergehalt des Nährsubstrates. Arch. Mikrobiol. 9:486–544.10.1007/BF00407374Search in Google Scholar

Björngrim, N., Hagman, O., Wang, X.A. (2016) Moisture content monitoring of a timber footbridge. BioResources 11:3904–3913.10.15376/biores.11.2.3904-3913Search in Google Scholar

Boardman, C.R., Glass, S.V., Carll, C.G. (2011) Moisture meter calibrations for untreated and ACQ-treated southern yellow pine lumber and plywood. J. Test. Eval. 40:184–193.10.1520/JTE103895Search in Google Scholar

Brischke, C., Lampen, S.C. (2014) Resistance based moisture content measurements on native, modified, and preservative treated wood. Eur. J. Wood Prod. 72:289–292.10.1007/s00107-013-0775-3Search in Google Scholar

Brischke, C., Meyer-Veltrup, L., Soetbeer, A. (2018) Moisture requirements of wood decay fungi – review on methods, thresholds, and experimental limitations. Holztechnol. 59:36–42.Search in Google Scholar

Brischke, C., Rapp, A.O., Bayerbach, R. (2008a) Measurement system for long-term recording of wood moisture content with internal conductively glued electrodes. Build. Environ. 43:1566–1574.10.1016/j.buildenv.2007.10.002Search in Google Scholar

Brischke, C., Welzbacher, C.R., Huckfeldt, T. (2008b). Influence of fungal decay by different basidiomycetes on the structural integrity of Norway spruce wood. Holz Roh-Werkst. 66:433–438.10.1007/s00107-008-0257-1Search in Google Scholar

Brischke, C., Sachse, K.A., Welzbacher, C.R. (2014) Modeling the influence of thermal modification on the electrical conductivity of wood. Holzforschung 68:185–193.10.1515/hf-2013-0041Search in Google Scholar

Buro, A. (1954) Untersuchungen über den Abbau von Kiefern: und Buchenholz durch holzzerstörende Pilze und deren Einfluß auf einige physikalische Eigenschaften des Holzes. Holz Roh- Werkst. 12:258–267.10.1007/BF02607789Search in Google Scholar

Chauhan, S.S., Nagaveni, H.C. (2009) Moisture adsorption behaviour of decayed rubber wood. J. Inst. Wood Sci. 19:1–6.10.1179/002032009X12536100261953Search in Google Scholar

Christensen, G.N., Kelsey, K.E. (1959) Die Sorption von Wasserdampf durch die chemischen Bestandteile des Holzes. Holz Roh-Werkst. 17:189–203.10.1007/BF02608811Search in Google Scholar

Connolly, J.H., Jellison, J. (1997) Two-way translocation of cations by the brown rot fungus Gloeophyllum trabeum. Inter. Biodeter. Biodegrad. 39:181–188.10.1016/S0964-8305(97)00019-XSearch in Google Scholar

Cowling, E.B. (1961) Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi (No. 1258). US Dept. of Agriculture.Search in Google Scholar

Curling, S.F., Clausen, C.A., Winandy, J.E. (2002) Experimental method to quantify progressive stages of decay of wood by basidiomycete fungi. Int. Biodeter. Biodegrad. 49:13–19.10.1016/S0964-8305(01)00101-9Search in Google Scholar

Dai, G., Ahmet, K. (2001) Long-term monitoring of timber moisture content below the fiber saturation point using wood resistance sensors. For. Prod. J. 51:52–58.Search in Google Scholar

Du, Q.P. (1991) Einfluss holzartenspezifischer Eigenschaften auf die elektrische Leitfähigkeit wichtiger Handelshölzer. Doctoral thesis. University Hamburg, Department Biology, Hamburg.Search in Google Scholar

Fernández-Golfín, J.I., Conde, M., Fernandez-Golfin, J.J., Calvo, R., Baonza, M.V., y Palacios, P.D.P. (2012) Curves for the estimation of the moisture content of ten hardwoods by means of electrical resistance measurements. Forest Systems 21:121–127.10.5424/fs/2112211-11429Search in Google Scholar

Flournoy, D.S., Kirk, T.K., Highley, T.L. (1991) Wood decay by brown-rot fungi: changes in pore structure and cell wall volume. Holzforschung 45:383–388.10.1515/hfsg.1991.45.5.383Search in Google Scholar

Fortino, S., Genoese, A., Genoese, A., Nunes, L., Palma, P. (2013) Numerical modelling of the hygro-thermal response of timber bridges during their service life: a monitoring case-study. Constr. Build. Mat. 47:1225–1234.10.1016/j.conbuildmat.2013.06.009Search in Google Scholar

Fredriksson, M., Thybring, E.E. (2018) Scanning or desorption isotherms? Characterising sorption hysteresis of wood. Cellulose 25:4477–4485.10.1007/s10570-018-1898-9Search in Google Scholar

Fredriksson, M., Wadsö, L., Johansson, P. (2013) Small resistive wood moisture sensors: a method for moisture content determination in wood structures. Eur. J. Wood Wood Prod. 71:515–524.10.1007/s00107-013-0709-0Search in Google Scholar

Glass, S.V., Zelinka, S.L. (2010) Moisture relations and physical properties of wood. In: Wood Handbook. Wood as an Engineering Material. Ed. Ross, R.J. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.Search in Google Scholar

González-Peña, M.M., Curling, S.F., Hale, M.D. (2009) On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polym. Degr. Stab. 94:2184–2193.10.1016/j.polymdegradstab.2009.09.003Search in Google Scholar

Gradeci, K., Baravalle, M., Time, B., Köhler, J. (2017) Cost-optimisation for Timber Façades Exposed to Rot Decay. In 12th International Conference on Structural Safety & Reliability Vienna.Search in Google Scholar

Green III, F., Clausen, C.A. (2003) Copper tolerance of brown-rot fungi: time course of oxalic acid production. Int. Biodeter. Biodegr. 51:145–149.10.1016/S0964-8305(02)00099-9Search in Google Scholar

Höpken, M. (2015) Untersuchungen zu Wachstum und Feuchtetransport von Hausfäulepilzen anhand gestapelter Holzklötzchen. Master thesis. University Hamburg, Hamburg, Germany.Search in Google Scholar

Huckfeldt, T., Schmidt, O. (2006) Hausfäule- und Bauholzpilze. Diagnose und Sanierung. Müller, Cologne.Search in Google Scholar

Huckfeldt, T., Schmidt, O., Quader, H. (2005) Ökologische Untersuchungen am Echten Hausschwamm und weiteren Hausfäulepilzen. Holz Roh- Werkst. 63:209–219.10.1007/s00107-004-0559-xSearch in Google Scholar

Jakes, J.E., Plaza, N., Stone, D.S., Hunt, C.G., Glass, S.V., Zelinka, S.L. (2013) Mechanism of transport through wood cell wall polymers. J. For. Prod. Ind. 2:10–13.Search in Google Scholar

James, W.L. (1963) Electric moisture meters for wood. U.S. Forest Service Research Note FPL-08. Madison, WI: US Forest Service Forest Products Laboratory.10.2737/FPL-GTR-6Search in Google Scholar

James, W.L. (1988) Electric moisture meters for wood. Forest Products Laboratory General Technical Report FPL-GTR-6. Madison, WI: US Forest Service Forest Products Laboratory.10.2737/FPL-GTR-6Search in Google Scholar

Jones, H.L., Worrall, J.J. (1995) Fungal biomass in decayed wood. Mycologia 87:459–466.10.1080/00275514.1995.12026555Search in Google Scholar

Karppanen, O., Venäläinen, M., Harju, A.M., Laakso, T. (2008) The effect of brown-rot decay on water adsorption and chemical composition of Scots pine heartwood. Ann. For. Sci. 65:610.10.1051/forest:2008035Search in Google Scholar

Kirk, T.K., Highley, T.L. (1973) Quantitative changes in structural components of conifer woods during decay by white-and brown-rot fungi. Phytopathology 63:1338–1342.10.1094/Phyto-63-1338Search in Google Scholar

Kirker, G.T., Bishell, A.B., Zelinka, S.L. (2016) Electrical properties of wood colonized by Gloeophyllum trabeum. Int. Biodeter Biodegr 114:110–115.10.1016/j.ibiod.2016.06.004Search in Google Scholar

Kirker, G.T., Zelinka, S.L., Gleber, S.-C., Vine, D., Finney, L., Chen, S., Hong, Y.P., Uyarte, O., Vogt, S., Jellison, J., Goodell, B., Jakes, J.E. (2017) Synchrotron-based X-ray fluorescence microscopy enables multiscale spatial visualization of ions involved in fungal lignocellulose deconstruction. Scientific reports 7:41798.10.1038/srep41798Search in Google Scholar

Kržišnik, D., Brischke, C., Lesar, B., Thaler, N., Humar, M. (2018) Performance of wood in the Franja partisan hospital. Wood Mat. Sci. Eng. 14:24–32.10.1080/17480272.2018.1438512Search in Google Scholar

Lebow, S., Lebow, P. (2015) Use of resistance-type moisture meter above the fiber saturation point. In: Proceedings 111th Annual Meeting of the American Wood Protection Association. Ed. McCown, C. Asheville, NC, April 12–14. pp. 43–48.Search in Google Scholar

Mäkelä, M., Galkin, S., Hatakka, A., Lundell, T. (2002) Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enz. Microb. Technol. 30:542–549.10.1016/S0141-0229(02)00012-1Search in Google Scholar

Meyer, L., Brischke, C. (2015) Fungal decay at different moisture levels of selected European-grown wood species. Int. Biodeter. Biodegr. 103:23–29.10.1016/j.ibiod.2015.04.009Search in Google Scholar

Meyer, L., Brischke, C., Kasselmann, M. (2015) Holzfeuchte-Monitoring im Rahmen von Dauerhaftigkeitsprüfungen – Praktische Erfahrungen aus Freilandversuchen. Holztechnologie 56:11–19.Search in Google Scholar

Morrell, J.J., Winandy, J.E. (1993) Relationship between incipient decay, strength, and chemical composition of Douglas-fir heartwood. Wood Fiber Sci. 25:278–288.Search in Google Scholar

Morris, P.I., Dickinson, D.J. (1984) The effect of moisture content on the electrical resistance of timber as detected by a pulsed current resistance meter (Shigometer). In: Proceedings of the International Research Group on Wood Preservation, IRG-WP 84-2212. International Research Group on Wood Preservation, Stockholm, Sweden.Search in Google Scholar

Ostrofsky, A., Jellison, J., Smith, K.T., Shortle, W.C. (1997) Changes in cation concentrations in red spruce wood decayed by brown rot and white rot fungi. Can. J. For. Res. 27:567–571.10.1139/x96-188Search in Google Scholar

Otten, K.A., Brischke, C., Meyer, C. (2017) Material moisture content of wood and cement mortars – electrical resistance-based measurements in the high ohmic range. Constr. Build. Mat. 153:640–646.10.1016/j.conbuildmat.2017.07.090Search in Google Scholar

Pandey, K.K., Pitman, A.J. (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeter. Biodegr. 52:151–160.10.1016/S0964-8305(03)00052-0Search in Google Scholar

Pandey, K.K., Pitman, A.J. (2004) Examination of the lignin content in a softwood and a hardwood decayed by a brown-rot fungus with the acetyl bromide method and Fourier transform infrared spectroscopy. J. Polym. Sci. Part A: Polym. Chem. 42:2340–2346.10.1002/pola.20071Search in Google Scholar

Papadopoulos, A.N. (2012) Sorption of acetylated pine wood decayed by brown rot, white rot and soft rot: different fungi – different behaviours. Wood Sci Technol 46:919–926.10.1007/s00226-011-0450-ySearch in Google Scholar

Robbers, K., Fromm, J., Melcher, E. (2018) Evaluation of pedestrian timber bridges in the city of Hamburg with particular consideration of design detailing. Wood Mat. Sci. Eng. 13:174–183.10.1080/17480272.2018.1424730Search in Google Scholar

Schmidt, O. Wood and Tree Fungi. Springer, Berlin Heidelberg, 2006.Search in Google Scholar

Schultze-Dewitz, G., Lenhart, K., Peschka, F. (1969) Das Sorbtionsverhalten des Holzes verschiedener Kiefernarten und der Fichte nach Angriff durch Braunfäulepilze (Basidiomyceten). Holztechnol. 10:113–118.Search in Google Scholar

Shigo, A.L., Shigo, A. Detection of Discoloration and Decay in Living Trees and Utility Poles. Forest Products Service, US Department of Agriculture, Northeastern Forest Experiment Station, 1974.Search in Google Scholar

Shortle, W.C. (1982) Decaying Douglas-fir wood: ionization associated with resistance to a pulsed electric current. Wood Sci. 15:29–32.Search in Google Scholar

Shortle, W.C., Smith, K.T. (1987) Electrical properties and rate of decay in spruce and fir wood. Phytopathol. 77:811–814.10.1094/Phyto-77-811Search in Google Scholar

Stienen, T., Schmidt, O., Huckfeldt, T. (2014) Wood decay by indoor basidiomycetes at different moisture and temperature. Holzforschung 68:9–15.10.1515/hf-2013-0065Search in Google Scholar

Theden, G. (1941) Untersuchungen über die Feuchtigkeitsansprüche der wichtigsten in Gebäuden auftretenden holzzerstörenden Pilze. Dissertation. Friedrich Wilhelms-University, Berlin. Angewandte Botanik 23:189–253.Search in Google Scholar

Thybring, E.E. (2017) Water relations in untreated and modified wood under brown-rot and white-rot decay. Int. Biodeter. Biodegr. 118:134–142.10.1016/j.ibiod.2017.01.034Search in Google Scholar

Venkateswaran, A. (1974) The interdependence of the lignin content and electrical properties of wood. Wood Fib. Sci. 6:46–52.Search in Google Scholar

Windeisen, E., Bächle, H., Zimmer, B., Wegener, G. (2009) Relations between chemical changes and mechanical properties of thermally treated wood. 10th EWLP, Stockholm, Sweden, August 25–28, 2008. Holzforschung 63:773–778.10.1515/HF.2009.084Search in Google Scholar

Zabel, R., Morell, J.J. Wood Microbiology: Decay and its Prevention. Academic Press, San Diego, 1992.Search in Google Scholar

Zelinka, S.L., Glass, S.V., Stone, D.S. (2008) A percolation model for electrical conduction in wood with implications for wood-water relations. Wood Fiber Sci. 40: 544–552.Search in Google Scholar

Zeller, S.M. (1920) Humidity in relation to moisture imbibition by wood and to spore germination on wood. Annals of the Missouri Botanical Garden 7:51–74.10.2307/2990045Search in Google Scholar

Received: 2018-07-31
Accepted: 2018-11-27
Published Online: 2018-12-25
Published in Print: 2019-05-27

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.6.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2018-0171/html
Scroll to top button