Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 8, 2018

Lignin-based foams as insulation materials: a review

  • Vebi Mimini , Vasken Kabrelian , Karin Fackler , Hubert Hettegger , Antje Potthast and Thomas Rosenau EMAIL logo
From the journal Holzforschung

Abstract

The bulk use of renewable polymers is currently largely limited to cellulose and, less significantly, hemicelluloses. Technical lignins are only applied in novel materials to a rather limited extent, although bulk lignin utilization is a worldwide research object. Native lignins, which belong to the second or third most abundant biopolymers of terrestrial plants, are mostly used in the form of technical lignins from wood pulping processes; they are employed in low-performance sectors or simply burnt for the generation of energy. Technical lignins are available in huge quantities and have a large application potential, mainly in areas where their aromatic nature is of relevance. This review presents the state of the art of foamed lignin-based polymers (lignofoams) as high-performance insulation materials. In the focus of this presentation are the fundamental foaming principles and influential agents that have an improvement potential concerning the matrix interactions between technical lignins (including lignosulfonates) and a copolymer in foam composites. The different approaches for foam preparation are critically compared. In general, the reviewed papers disclose that the lignin part in foams should be less than 37%. There are significant difficulties to improve the properties of lignofoams, and thus intensive research is needed to find better formulations and new technologies.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Financial support to WOOD Kplus was provided by the Austrian government, the provinces of lower Austria, upper Austria, and Carinthia as well as by Lenzing AG. We also express our gratitude to the University of Natural Resources and Life Sciences, Vienna (BOKU University), the Johannes Kepler University, Linz, and Lenzing AG for their in-kind contributions.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Conflict of interest statement: No conflicts of interest declared.

References

Agarwal, K., Prasad, M., Sharma, R., Setua, D.K. (2014) Novel bio-degradable lignin reinforced NBR composites. Int. J. Energy Eng. 4:47–62.Search in Google Scholar

Álvarez-Láinez, M., Rodríguez-Pérez, M.A., de Saja, J.A. (2014) Acoustic absorption coefficient of open-cell polyolefin-based foams. Mater. Lett. 121:26–30.10.1016/j.matlet.2014.01.061Search in Google Scholar

Amen-Chen, C., Pakdel, H., Roy, C. (2001) Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour. Technol. 79:277–299.10.1016/S0960-8524(00)00180-2Search in Google Scholar

Asdrubali, F., D’Alessandro, F., Schiavoni, S. (2015) A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 4:1–17.10.1016/j.susmat.2015.05.002Search in Google Scholar

Balakshin, M.Y., Capanema, E.A., Chang, H.-M. (2009) Recent advances in the isolation and analysis of lignins and lignin–carbohydrate complexes. In: Characterization of lignocellulosic materials. Ed. Hu, T.Q. Blackwell Publishing Ltd., Oxford. pp. 148–166.Search in Google Scholar

Barron, B., Dunlap, J. (1974) Air frothed polyurethane foams. US3821130A.Search in Google Scholar

Barzegari, M.R., Alemdar, A., Zhang, Y., Rodrigue, D. (2012) Mechanical and rheological behavior of highly filled polystyrene with lignin. Polym. Compos. 33:353–361.10.1002/pc.22154Search in Google Scholar

Belgacem, M.N., Blayo, A., Gandini, A. (2003) Organosolv lignin as a filler in inks, varnishes and paints. Ind. Crops Prod. 18:145–153.10.1016/S0926-6690(03)00042-6Search in Google Scholar

Bernardini, J., Anguillesi, I., Coltelli, M.-B., Cinelli, P., Lazzeri, A. (2015) Optimizing the lignin based synthesis of flexible polyurethane foams employing reactive liquefying agents. Polym. Int. 64:1235–1244.10.1002/pi.4905Search in Google Scholar

Bohnke, L., Beaujean, J., Albach, R., Li, J., Ling, S. (2014) Rigid polyurethane foams with high acoustic absorption. US20160046758A1.Search in Google Scholar

Brook, M.A., Grande, J.B., Ganachaud, F. (2010) New synthetic strategies for structured silicones using B(C6F5)3. In: Silicon Polymers. Ed: Muzafarov, A.M. Springer, Berlin, Heidelberg. pp. 161–183.10.1007/12_2009_47Search in Google Scholar

Brown, R.C., Brown, T.R. Biorenewable Resources: Engineering New Products from Agriculture. John Wiley & Sons, Inc., New Jersey. 2014.10.1002/9781118524985Search in Google Scholar

Cateto, C.A., Barreiro, M.F., Rodrigues, A.E., Belgacem, M.N. (2011) Kinetic study of the formation of lignin-based polyurethanes in bulk. Reactive Func. Polym. 71:863–869.10.1016/j.reactfunctpolym.2011.05.007Search in Google Scholar

Cateto, C.A., Barreiro, M.F., Ottati, C., Lopretti, M., Rodrigues, A.E., Belgacem, M.N. (2013) Lignin-based rigid polyurethane foams with improved biodegradation. J. Cell. Plast. 50:81–95.10.1177/0021955X13504774Search in Google Scholar

Chen, R., Kokta, B.V., Valade, J.L. (1979) Graft copolymerization of lignosulfonate and styrene. J. Appl. Polym. Sci. 24: 1609–1618.10.1002/app.1979.070240704Search in Google Scholar

Chung, H., Washburn, N.R. (2012) Improved lignin polyurethane properties with Lewis acid treatment. ACS Appl. Mater. Interfaces 4:2840–2846.10.1021/am300425xSearch in Google Scholar PubMed

Cinelli, P., Anguillesi, I., Lazzeri, A. (2013) Green synthesis of flexible polyurethane foams from liquefied lignin. Europ. Polym. J. 49:1174–1184.10.1016/j.eurpolymj.2013.04.005Search in Google Scholar

Czaplicki, M., Kosal, D., Madaus, K. (2004) Two component (epoxy/amine) structural foam-in-place material. US20050020703A1.Search in Google Scholar

Davis, K., Rover, M., Brown, R., Bai, X., Wen, Z., Jarboe, L. (2016) Recovery and utilization of lignin monomers as part of the biorefinery approach. Energies 9:808.10.3390/en9100808Search in Google Scholar

Del Saz-Orozco, B., Oliet, M., Alonso, M.V., Rojo, E., Rodríguez, F. (2012) Formulation optimization of unreinforced and lignin nanoparticle-reinforced phenolic foams using an analysis of variance approach. Compos. Sci. Technol. 72:667–674.10.1016/j.compscitech.2012.01.013Search in Google Scholar

Dongre, P., Driscoll, M., Amidon, T., Bujanovic, B. (2015) Lignin-furfural based adhesives. Energies 8:7897–7914.10.3390/en8087897Search in Google Scholar

Engelmann, W.H. (1978) Foam injection leaching process for fragmented ore. US4080419A.Search in Google Scholar

Engelmann, G., Ganster, J. (2016) Lignin reinforcement in thermosets composites. In: Lignin in Polymer Composites. Eds. Faruk, O., Sain, M. William Andrew Publishing, Norwich, NY. pp. 119–151.10.1016/B978-0-323-35565-0.00007-2Search in Google Scholar

Feghali, E., Cantat, T. (2014) Unprecedented organocatalytic reduction of lignin model compounds to phenols and primary alcohols using hydrosilanes. Chem. Commun. (Camb) 50:862–5.10.1039/C3CC47655CSearch in Google Scholar PubMed

Fengel, D., Wegener, G. Wood: Chemistry, Ultrastructure, Reactions. De Gruyter, Berlin, New York, 1984.10.1515/9783110839654Search in Google Scholar

Fisher, A.B., Fong, S.S. (2014) Lignin biodegradation and industrial implications. AIMS Bioeng. 1:92–112.10.3934/bioeng.2014.2.92Search in Google Scholar

Frisch, K.C. (2006) History of science and technology of polymeric foams. J. Macromol. Sci. A: Chemistry 15:1089–1112.10.1080/00222338108066455Search in Google Scholar

Ghorbani, M., Liebner, F., Van Herwijnen, H.W.G., Pfungen, L., Krahofer, M., Budjav, E., Konnerth, J. (2016) Lignin phenol formaldehyde resoles: the impact of lignin type on adhesive properties. BioResources 11:6727–6741.10.15376/biores.11.3.6727-6741Search in Google Scholar

Ghorbani, M., Konnerth, J., Budjav, E., Silva, A., Zinovyev, G., van Herwijnen, H., Edler, M., Griesser, T., Liebner, F. (2017) Ammoxidized fenton-activated pine kraft lignin accelerates synthesis and curing of resole resins. J. Polym. 9:43.10.3390/polym9020043Search in Google Scholar PubMed PubMed Central

Gribble, M.Y., Kennedy, J.G., White, D.P., Van Bellegem, P.C.J.M., Autenrieth, R.E. (2004) Process for applying polyurethane dispersion-based foam to article. US 20040109992A1.Search in Google Scholar

Han, X., Shen, J., Huang, H., Tomasko, D.L., Lee, L.J. (2007) CO2 foaming based on polystyrene/poly(methyl methacrylate) blend and nanoclay. Polym. Eng. Sci. 47:103–111.10.1002/pen.20679Search in Google Scholar

Hingmann, R. (2017) Thermoplastic foams: an exciting story of versatile cellular materials for multifaceted applications and markets. SPE Foams 2017, Conference on Advances in Foam Materials & Technology. Bayreuth, Germany.Search in Google Scholar

Hu, L.H., Zhou, Y.H., Zhang, M., Liu, R.J. (2012) Characterization and properties of a lignosulfonate-based phenolic foam. BioResources 7:554–564.10.15376/biores.7.1.554-564Search in Google Scholar

Huang, J., Zhang, L. (2002) Structure and properties of regenerated cellulose films coated with polyurethane-nitrolignin graft-IPNs coating. J. Appl. Polym. Sci. 86:1799–1806.10.1002/app.11202Search in Google Scholar

Huo, S.P., Nie, M.C., Kong, Z.W., Wu, G.M., Chen, J. (2012) Crosslinking kinetics of the formation of lignin-aminated polyol-based polyurethane foam. J. Appl. Polym. Sci. 125:152–157.10.1002/app.35401Search in Google Scholar

Hwa, C.C.L., McNeil, D.W. (1964) Method for leaching a polyurethane foam. US3125541A.Search in Google Scholar

Ikem, V.O., Menner, A., Bismarck, A. (2010) High-porosity macroporous polymers synthesized from titania-particle-stabilized medium and high internal phase emulsions. Langmuir 26:8836–8841.10.1021/la9046066Search in Google Scholar PubMed

Jeong, H., Park, J., Kim, S., Lee, J., Ahn, N. (2013) Compressive viscoelastic properties of softwood kraft lignin-based flexible polyurethane foams. Fibers Polym. 14:1301–1310.10.1007/s12221-013-1301-2Search in Google Scholar

Kai, D., Tan, M.J., Chee, P.L., Chua, Y.K., Yap, Y.L., Loh, X.J. (2016) Towards lignin-based functional materials in a sustainable world. Green Chem. 18:1175–1200.10.1039/C5GC02616DSearch in Google Scholar

Kim, D.J., Kim, S.W., Kang, K.J., Seo, K.H. (2001) Foaming of aliphatic polyester using chemical blowing agent. J. Appl. Polym. Sci. 81:2443–2454.10.1002/app.1686Search in Google Scholar

Kühnel, I., Podschun, J., Saake, B., Lehnen, R. (2015) Synthesis of lignin polyols via oxyalkylation with propylene carbonate. Holzforschung 69:531–538.10.1515/hf-2014-0068Search in Google Scholar

Kyoto Protocol to the United Nations Framework Convention on Climate Change, Kyoto (1997, in force 2005), Vol. 2303 United Nations, Treaty Series, p. 162.Search in Google Scholar

Laurichesse, S., Avérous, L. (2014) Chemical modification of lignins: towards biobased polymers. Prog. Polym. Sci. 39:1266–1290.10.1016/j.progpolymsci.2013.11.004Search in Google Scholar

Lee, S.T., Ramesh, N.S. Polymeric Foams: Mechanisms and Materials. CRC Press, New York, 2004.10.1201/9780203506141Search in Google Scholar

Lee, L., Zeng, C., Cao, X., Han, X., Shen, J., Xu, G. (2005) Polymer nanocomposite foams. Compos. Sci. Technol. 65:2344–2363.10.1016/j.compscitech.2005.06.016Search in Google Scholar

Lee, S.T., Park, C.B., Ramesh, N.S. Polymeric Foams: Science and Technology. CRC Press, Taylor and Francis Group, New York, 2006.10.1201/9781420004625Search in Google Scholar

Lee, K.-Y., Wong, L.L.C., Blaker, J.J., Hodgkinson, J.M., Bismarck, A. (2011) Bio-based macroporous polymer nanocomposites made by mechanical frothing of acrylated epoxidised soybean oil. Green Chem. 13:3117.10.1039/c1gc15655aSearch in Google Scholar

Li, Y., Ragauskas, A.J. (2012) Kraft lignin-based rigid polyurethane foam. J. Wood Chem. Technol. 32:210–224.10.1080/02773813.2011.652795Search in Google Scholar

Li, H., Zhang, Q., Gao, P., Wang, L.-L. (2015) Preparation and characterization of graft copolymer from dealkaline lignin and styrene. J. Appl. Polym. Sci. 132:41900.10.1002/app.41900Search in Google Scholar

Lisperguer, J., Núñez, C., Pérez-Guerrero, P. (2013) Structure and thermal properties of maleated lignin-recycled polystyrene composites. J. Chil. Chem. Soc. 58:1937–1940.10.4067/S0717-97072013000400005Search in Google Scholar

Luo, X., Mohanty, A., Misra, M. (2013) Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane. Ind. Crops Prod. 47:13–19.10.1016/j.indcrop.2013.01.040Search in Google Scholar

Mahmood, N., Yuan, Z., Schmidt, J., Tymchyshyn, M., Xu, C. (2016) Hydrolytic liquefaction of hydrolysis lignin for the preparation of bio-based rigid polyurethane foam. Green Chem. 18:2385–2398.10.1039/C5GC02876KSearch in Google Scholar

Mannella, G.A., Conoscenti, G., Carfì Pavia, F., La Carrubba, V., Brucato, V. (2015) Preparation of polymeric foams with a pore size gradient via thermally induced phase separation (TIPS). Mater. Lett. 160:31–33.10.1016/j.matlet.2015.07.055Search in Google Scholar

Merle, J., Birot, M., Deleuze, H., Mitterer, C., Carré, H., Bouhtoury, F.C.-E. (2016a) New biobased foams from wood byproducts. Mater. Design 91:186–192.10.1016/j.matdes.2015.11.076Search in Google Scholar

Merle, J., Trinsoutrot, P., Charrier-El Bouhtoury, F. (2016b) Optimization of the formulation for the synthesis of bio-based foams. Eur. Polym. J. 84:577–588.10.1016/j.eurpolymj.2016.09.044Search in Google Scholar

Montreal Protocol on Substances that Deplete the Ozone Layer, Montreal (1987, in force 1989), Vol. 1522 United Nations, Treaty Series, p. 3.Search in Google Scholar

Mostafa, A., Abdolreza, O. (2015) Improving sound absorption of polyurethane foams by the incorporation of nano-particles. The 22th International Congress on Sound and Vibration, Florence, Italy.Search in Google Scholar

Nadji, H., Bruzzèse, C., Belgacem, M.N., Benaboura, A., Gandini, A. (2005) Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols. Macromol. Mater. Eng. 290:1009–1016.10.1002/mame.200500200Search in Google Scholar

Negrão, D.R., Sain, M., Leão, A.L., Sameni, J., Jeng, R., de Jesus, J.P.F., Monteiro, R.T.R. (2015) Fragmentation of lignin from organosolv black liquor by white rot fungi. BioResources 10:1553–1573.10.15376/biores.10.1.1553-1573Search in Google Scholar

Obaid, N., Kortschot, M.T., Sain, M. (2016) Lignin-based foaming materials. In: Lignin in Polymer Composites. Eds. Faruk, O., Sain, M. William Andrew/Elsevier, Oxford, UK. pp. 217–232.10.1016/B978-0-323-35565-0.00012-6Search in Google Scholar

Ockenfels, H.-M., Uter, W., Lessmann, H., Schnuch, A., Geier, J. (2009) Patch testing with benzoyl peroxide: reaction profile and interpretation of positive patch test reactions. Contact Dermatitis 61:209–216.10.1111/j.1600-0536.2009.01603.xSearch in Google Scholar PubMed

Opris, C., Cojocaru, B., Gheorghe, N., Tudorache, M., Coman, S.M., Parvulescu, V.I., Duraki, B., Krumeich, F., van Bokhoven, J.A. (2017) Lignin fragmentation onto multifunctional Fe3O4@Nb2O5@Co@Re catalysts: the role of the composition and deposition route of rhenium. ACS Catal. 7:3257–3267.10.1021/acscatal.6b02915Search in Google Scholar

Pan, X., Saddler, J.N. (2013) Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam. Biotechnol. Biofuels 6:12.10.1186/1754-6834-6-12Search in Google Scholar PubMed PubMed Central

Pandey, M.P., Kim, C.S. (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem. Eng. Technol. 34:29–41.10.1002/ceat.201000270Search in Google Scholar

Petchwattana, N., Covavisaruch, S. (2011) Influences of particle sizes and contents of chemical blowing agents on foaming wood plastic composites prepared from poly(vinyl chloride) and rice hull. Mater. Des. 32:2844–2850.10.1016/j.matdes.2010.12.044Search in Google Scholar

Phillips, R.B., Brown, W., Stannett, V. (1973) The graft copolymerization of styrene and lignin. III. Chain transfer reactions of lignin and lignin model compounds. J. Appl. Polym. Sci. 17:443–451.10.1002/app.1973.070170210Search in Google Scholar

Rials, T.G., Glasser, W.G. (1986) Engineering plastics from lignin – XIII. Effect of lignin structure on polyurethane network formation. Holzforschung 40:353–360.10.1515/hfsg.1986.40.6.353Search in Google Scholar

Sanchez-Martin, J., Beltran-Heredia, J., Delgado-Regana, A., Rodriguez-Gonzales, M.A., Rubio-Alonso, F. (2013) Optimization of tannin rigid foam as adsorbents for wastewater treatment. Ind. Crops Prod. 49:507–514.10.1016/j.indcrop.2013.05.029Search in Google Scholar

Saraf, V.P., Glasser, W.G., Wilkes, G.L. (1985) Engineering plastics from lignin. VII. Structure property relationships of poly(butadiene glycol)-containing polyurethane networks. J. Appl. Polym. Sci. 30:3809–3823.10.1002/app.1985.070300921Search in Google Scholar

Sauceau, M., Fages, J., Common, A., Nikitine, C., Rodier, E. (2011) New challenges in polymer foaming: a review of extrusion processes assisted by supercritical carbon dioxide. Prog. Polym. Sci. 36:749–766.10.1016/j.progpolymsci.2010.12.004Search in Google Scholar

Schidrowitz, P., Goldsbrough, H.A. (1915) British patent No. 1,111.Search in Google Scholar

Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T. (1984) Reporting physisorption data for gas-solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57:603–619.10.1351/pac198254112201Search in Google Scholar

Singh, S.N. Blowing Agents for Polyurethane Foams. Rapra Technology Ltd., online, 2001.Search in Google Scholar

Štěpek, J., Daoust, H. (1983) Chemical and physical blowing agents. In: Additives for Plastics. Springer New York, New York, pp. 112–123.10.1007/978-1-4419-8481-4_7Search in Google Scholar

Stevens, E.S., Klamczynski, A., Glenn, G.M. (2010) Starch-lignin foams. Express Polym. Lett. 4:311–320.10.3144/expresspolymlett.2010.39Search in Google Scholar

Szabó, G., Romhányi, V., Kun, D., Renner, K., Pukánszky, B. (2017) Competitive interactions in aromatic polymer/lignosulfonate blends. ACS Sustain. Chem. Eng. 5:410–419.10.1021/acssuschemeng.6b01785Search in Google Scholar

Szczurek, A., Fierro, V., Pizzi, A., Stauber, M., Celzard, A. (2014) A new method for preparing tannin-based foams. Ind. Crops Prod. 54:40–53.10.1016/j.indcrop.2014.01.012Search in Google Scholar

Thakur, V.K., Thakur, M.K., Raghavan, P., Kessler, M.R. (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain. Chem. Eng. 2:1072–1092.10.1021/sc500087zSearch in Google Scholar

Tondi, G., Pizzi, A. (2009) Tannin-based rigid foams: characterization and modification. Ind. Crops Prod. 29:356–363.10.1016/j.indcrop.2008.07.003Search in Google Scholar

Tondi, G., Link, M., Kolbitsch, C., Gavino, J., Luckeneder, P., Petutschnigg, A., Herchl, R., Van Doorslaer, C. (2016) Lignin-based foams: production process and characterization. BioResources 11:2972–2986.10.15376/biores.11.2.2972-2986Search in Google Scholar

Victor, P.A., Gonçalves, S.B., Machado, F. (2018) Styrene/lignin-based polymeric composites obtained through a sequential mass-suspension polymerization process. J. Polym. Environ. 26:1755–1774.10.1007/s10924-017-1078-2Search in Google Scholar

Vishtal, A., Kraslawski, A. (2011) Challenges in industrial applications of technical lignins. BioResources 6:3547–3568.10.15376/biores.6.3.3547-3568Search in Google Scholar

Wong, J.C.H., Tervoort, E., Busato, S., Gonzenbach, U.T., Studart, A.R., Ermanni, P., Gauckler, L.J. (2009) Macroporous polymers from particle-stabilized foams. J. Mater. Chem. 19:5129.10.1039/b908926hSearch in Google Scholar

Yoshida, H., Morck, R., Kringstad, K.P., Hatakeyama, H. (1987) Kraft lignin in polyurethanes I. Mechanical properties of polyurethanes from a kraft lignin-polyether triol-polymeric MDI System. J. Appl. Polym. Sci. 34:1187–1198.10.1002/app.1987.070340326Search in Google Scholar

Yoshida, H., Morck, R., Kringstad, K.P., Hatakeyama, H. (1990) Kraft lignin in polyurethanes II. Effects of the molecular weight of kraft lignin on the properties of polyurethanes from a kraft lignin-polyether triol-polymeric MDI system. J. Appl. Polym. Sci. 40:1819–1832.10.1002/app.1990.070401102Search in Google Scholar

Zhai, W., Leung, S.N., Wang, L., Naguib, H.E., Park, C.B. (2010) Preparation of microcellular poly(ethylene-co-octene) rubber foam with supercritical carbon dioxide. J. Appl. Polym. Sci. 116:1997–2004.10.1002/app.31640Search in Google Scholar

Zhang, J., Fleury, E., Brook, M.A. (2015) Foamed lignin–silicone bio-composites by extrusion and then compression molding. Green Chem. 17:4647–4656.10.1039/C5GC01418BSearch in Google Scholar

Zinovyev, G., Sumerskii, I., Korntner, P., Sulaeva, I., Rosenau, T., Potthast, A. (2017) Molar mass-dependent profiles of functional groups and carbohydrates in kraft lignin. J. Wood Chem. Technol. 37:171–183.10.1080/02773813.2016.1253103Search in Google Scholar

Received: 2018-05-13
Accepted: 2018-10-26
Published Online: 2018-12-08
Published in Print: 2018-12-19

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2018-0111/html
Scroll to top button